
Helsinki University of Technology Department of Communications and Networking

Teknillinen korkeakoulu Tietoliikenne- ja tietoverkkotekniikan laitos

Espoo 2009 Report 6/2009

FOUNTAIN CODES: PERFORMANCE ANALYSIS AND

OPTIMISATION

Tuomas Tirronen

Dissertation for the degree of Doctor of Science in Technology to be presented with
due permission for public examination and debate in Auditorium S4 at Helsinki
University of Technology / Aalto University (Espoo, Finland) on the 4th of March,
2010, at 15 o’clock.

Helsinki University of Technology
Faculty of Electronics, Communications and Automation
Department of Communications and Networking

Teknillinen korkeakoulu
Elektroniikan, tietoliikenteen ja automaation tiedekunta
Tietoliikenne- ja tietoverkkotekniikan laitos

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distribution:
Helsinki University of Technology
Department of Communications and Networking
P.O. Box 3000
FI-02015 TKK
Tel. +358-9-470 25300
Fax +358-9-470 22474

© Tuomas Tirronen

ISBN 978-952-248-266-2
ISBN 978-952-248-267-9 (pdf)
ISSN 1797-478X
ISSN 1797-4798 (pdf)

Multiprint Oy
Espoo 2009

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author Tuomas Tirronen

Name of the dissertation

Manuscript submitted 7.10.2009 Manuscript revised 17.12.2009

Date of the defence 4.3.2010

Article dissertation (summary + original articles)Monograph
Faculty
Department

Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords fountain coding, erasure coding, rateless coding, coding theory, Markov chains

ISBN (printed) 978-952-248-266-2

ISBN (pdf) 978-952-248-267-9

Language English

ISSN (printed) 1797-478X

ISSN (pdf) 1797-4798

Number of pages 109 + 65 pp.

Publisher Department of Communications and Networking / Helsinki University of Technology

Print distribution Department of Communications and Networking / Helsinki University of Technology

The dissertation can be read at http://lib.tkk.fi/Diss/

Fountain Codes: Performance Analysis and Optimisation

X

Faculty of Electronics, Telecommunications and Automation
Department of Communications and Networking
Teletraffic theory
Prof. Muriel Médard (Massachusetts Institute of Technology, USA)
Prof. Jorma Virtamo (Helsinki University of Technology)

X

The fountain coding principle provides a framework for efficient and reliable data transmission techniques over erasure
channels, such as file transmission over the Internet. This thesis presents topics related to the optimisation and
performance analysis for different settings where fountain coding methods are applied. We start by reviewing the
fountain coding principle on which our own contributions are based. Strategies for both elastic and streaming traffic
are considered. The coding schemes are typically modelled as stochastic processes and we analyse them using
well-known tools, such as Markov chains and fixed-point iteration. Some of the schemes realise the principles of an
ideal digital fountain, while the other sacrifice some characteristics, such as time-independence and the statistical
equivalence of the encoded packets.
The description of our own work is divided into two parts. The first part begins by addressing the optimisation of the
degree distribution of LT coding, the first universal fountain coding method, for small file sizes. We present exact
analysis for LT codes of very small size with some novel results. A simulation based method is presented for the
analysis and optimisation of longer codes, up to hundreds of source blocks. We further present a method in which a
random linear fountain code is divided into parts and conduct a performance analysis of the system. We propose and
analyse two different strategies to overcome the performance degradation caused by the division. The first part ends
with the description and optimisation of a systematic, sequential coding scheme in which the sender makes greedy
choices concerning the repair packet structure on the basis of his belief about the state of the receiver. We present
repair packet degree sequences which result in a low required overhead.
In the second part we will address the problem of achieving a low residual erasure probability for streaming traffic
using packet erasure correction. The methods are based on a sliding window. Four different methods are presented
differing in how the repair packets are constructed. These codes further differ in the repair packet sending strategy;
one code always sends a repair packet deterministically after a window movement, while the others send the repair
packets probabilistically.
We conclude that methods inspired by fountain coding provide efficient, yet simple, coding strategies for implementing
data transfer in many settings.

AB
VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU

PL 1000, 02015 TKK
http://www.tkk.fi

Tekijä Tuomas Tirronen

Väitöskirjan nimi

Käsikirjoituksen päivämäärä 7.10.2009 Korjatun käsikirjoituksen päivämäärä 17.12.2009

Väitöstilaisuuden ajankohta 4.3.2010

Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)Monografia
Tiedekunta
Laitos
Tutkimusala
Vastaväittäjä(t)
Työn valvoja
Työn ohjaaja

Tiivistelmä

Asiasanat suihkulähdekoodaus, poiston korjaava koodaus, nopeudeton koodaus, koodausteoria, Markovin ketjut

ISBN (painettu) 978-952-248-266-2

ISBN (pdf) 978-952-248-267-9

Kieli Englanti

ISSN (painettu) 1797-478X

ISSN (pdf) 1797-4798

Sivumäärä 109 + 65 sivua

Julkaisija Tietoliikenne- ja tietoverkkotekniikan laitos / Teknillinen Korkeakoulu

Painetun väitöskirjan jakelu Tietoliikenne- ja tietoverkkotekniikan laitos / Teknillinen korkeakoulu

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Suihkulähdekoodit: Suorituskykyanalyysi, optimointi ja sovellukset

X

Elektroniikan, tietoliikenteen ja automaation tiedekunta
Tietoliikenne- ja tietoverkkotekniikan laitos
Teleliikenneteoria
Prof. Muriel Médard (Massachusetts Institute of Technology, USA)
Prof. Jorma Virtamo (Teknillinen korkeakoulu)

X

Suihkulähdekoodaus tarjoaa puitteet tehokkaalle ja luotettavalle tiedonsiirrolle poistokanavilla, kuten esimerkiksi
tiedoston siirrolle Internetissä. Tässä työssä esitellään optimointi- ja analyysimenetelmiä erilaisissa tilanteissa, joissa
hyödynnetään suihkulähdekoodausta. Työn ensimmäisessä osassa esitetään suihkulähdekoodauksen perusteet, joihin
työssä kehitetyt menetelmät perustuvat. Esitetyt menetelmät kattavat sekä elastisen että virtaavan liikenteen tapaukset.
Koodausmenetelmät mallinnetaan stokastisina prosesseina ja analyyseissa käytetään tunnettuja menetelmiä, kuten
Markovin ketjuja ja kiintopisteiteraatioa. Ideaalisen digitaalisen suihkulähteen ominaisuudet saavutetaan joillakin
menetelmillä, kun taas joissain tapauksissa on luovuttu esimerkiksi aikariippumattomuudesta ja pakettien tilastollisesta
samanarvoisuudesta.
Oman työn osuus aloitetaan esittelemällä menetelmä LT-koodien, ensimmäisten yleisten suihkulähdekoodien,
astelukujakauman optimointiin. Työssä esitellään pienille lohkomäärille soveltuva eksakti analyysi. Suuremmille
tiedon määrille esitellään simulointeihin perustuva optimointimenetelmä, jonka avulla analyysi onnistuu sadoille
lohkoille. Tämän jälkeen esitellään ns. satunnaisen lineaarisen suihkulähteen jako useaan osaan. Tämän jaon johdosta
syntyvän epätehokkuuden korjaamiseen esitellään ja analysoidaan kaksi eri menetelmää. Työn tämän osan viimeinen
aihe on uuden systemaattisen, sekventiaalisen koodin esittely, jossa korjauspaketit muodostetaan tavalla, jossa lähettäjä
ylläpitää omaa uskomustaan vastaanottajan tilasta ja tekee ahneita päätöksiä korjauspakettien muodostamisessa.
Korjauspakettien askelukusekvenssit optimoidaan siten, että tarvittavien pakettien lukumäärän odotusarvo minimoituu.
Työn viimeinen osa käsittelee pakettitason koodausmenetelmiä jatkuvalle liikennevirralle. Tavoitteena on saada
jäännösvirhetodennäköisyys mahdollisimman pieneksi. Esiteltävät menetelmät perustuvat liukuvan ikkunan käyttöön.
Työssä käsitellään neljää erilaista menetelmää, jotka eroavat tavassa, jolla korjauspaketit luodaan. Lisäksi menetelmät
eroavat korjauspakettien lähetystavassa: yhdessä tapauksessa korjauspaketti lähetetään aina ikkunan siirtymän jälkeen,
kun taas muissa paketti lähetetään tietyllä todennäköisyydellä.
Johtopäätöksenä todetaan, että suihkulähdeperiaatteeseen perustuvilla koodausmenetelmillä on mahdollista toteuttaa
tehokkaita ja yksinkertaisia tiedonsiirtomenetelmiä.

PREFACE

The �rst time I heard about the topic of this thesis, fountain coding, was
when Professor Jorma Virtamo offered me a chance to work on this topic for
my Master's thesis in the Networking Laboratory in 2005. I am glad I took
the opportunity, as it gave me the opportunity to continue my studies as a
post-graduate student, a path that had always intrigued me. Fortunately, I
have not regretted the decision I made back then to pursue a Ph.D. degree.

This dissertation is the result of work that had already begun during
the writing of my Master's thesis in 2005. Since then, part of the fund-
ing for this work has come from the Pannet and ABI projects funded by
the Finnish Funding Agency for Technology and Innovation (TEKES). I
have had the great opportunity to be a student in the Graduate School in
Electronics, Telecommunications and Automation (GETA) since the au-
tumn of 2006, and it is from there that I have received most of the funding.
I also gratefully acknowledge the personal scholarships received from the
Nokia Foundation, HPY:n tutkimussäätiö and the Finnish Foundation for
Technology Promotion (TES).

I would like to thank with my deepest gratitude the supervisor of my
thesis, Professor Jorma Virtamo. Without his enthusiasm for research work
and numerous ideas this thesis would not have been possible. It has been
a great privilege to be supervised by and to work together with such a tal-
ented researcher. I would further like to thank Dr. Esa Hyytiä for many
discussions during the initial phase of my work and for co-authoring the
�rst two publications which are part of this thesis. Many thanks also go to
Docent Samuli Aalto and William Martin for the help and improvement
ideas provided during the writing of the manuscript of this thesis.

The Department of Communications and Networking, previously the
Networking Laboratory, has been a great place to work during these years.
I would like to thank all of the staff for providing a nice atmosphere. In par-
ticular I would like to thank the �oorball gang for keeping me at least partly
�t. During the years at TKK my of�ce and my of�ce mates have changed a
couple of times. Big thank-yous go to Eeva Nyberg-Oksanen, Riikka Susi-
taival and Aleksi Penttinen for many discussions on other important things
in life.

Finally I would like to thank my family and friends for an enjoyable
journey and my wife Laura for her love, and for listening (or at least pre-
tending to) to my sometimes endless mumbling about mathematics and my
research topics.

Helsinki, Finland, 2.9.2009

Tuomas Tirronen

2

CONTENTS

Preface 1

Contents 3

List of publications 5

Abbreviations 7

1 Introduction 9
1.1 Fountain and rateless erasure coding 11
1.2 Contributions and the perspective of this thesis 11
1.3 Terminology . 15
1.4 Outline of the thesis . 16

2 Fountain coding 17
2.1 Basics of packet erasure coding 17
2.2 Fountain coding principle 21
2.3 LDPC, Tornado and random linear fountain codes 23
2.4 LT codes . 29
2.5 Raptor codes . 36
2.6 Applications . 37
2.7 Summary . 37

3 Optimisation of fountain codes 41
3.1 Contribution . 42
3.2 LT codes for small message lengths 44
3.3 Random linear fountain � divide and conquer 56
3.4 A systematic code with belief updating 65
3.5 Summary . 71

4 Erasure coding for real-time scenarios 75
4.1 Contribution . 76
4.2 Related research . 78
4.3 Sliding window algorithm 78
4.4 Half-window and probabilistic repair packet generation . . . 83
4.5 Markovian model for degree-based repair packets 87
4.6 Summary . 93

5 Summary 95

6 Author's contribution 99

A Errata 101

References 103

3

4

LIST OF PUBLICATIONS

[1] E. Hyytiä, T. Tirronen, and J. Virtamo. Optimal degree distribution
for LT codes with small message length. In Proceedings of the 26th
IEEE International Conference on Computer Communications,IEEE
INFOCOM 2007, pages 2576�2580, Anchorage, Alaska, USA, May
2007.

[2] E. Hyytiä, T. Tirronen, and J. Virtamo. Optimizing the degree distri-
bution of LT codes with an importance sampling approach. In Pro-
ceedings of the 6th International Workshop on Rare Event Simulation,
RESIM 2006, pages 64�73, Bamberg, Germany, October 2006.

[3] T. Tirronen and J. Virtamo. Performance analysis of divided random
linear fountain. In Proceedings of the Global Telecommunications
Conference, IEEE GLOBECOM '07, pages 520�526, Washington,
D.C., USA, November 2007.

[4] T. Tirronen and J. Virtamo. Greedy approach for ef�cient packet era-
sure coding. In Proceedings of the 5th International Symposium on
Turbo Codes and Related Topics, Turbo coding 2008, pages 344�349,
Lausanne, Switzerland, September 2008.

[5] Tuomas Tirronen and Jorma Virtamo. Finding fountain codes for
real-time data by �xed point method. In Proceedings of the Inter-
national Symposium on Information Theory and Applications, ISITA
2008, pages 1244�1249, Auckland, New Zealand, December 2008.

[6] Tuomas Tirronen and Jorma Virtamo. Performance analysis of sliding
window based erasure correction for real-time traf�c. In Proceedings of
the 5th Euro-NGI Conference of Next Generation Internet Networks,
NGI 2009, pages 1�8, Aveiro, Portugal, July 2009.

[7] Tuomas Tirronen. Sliding window-based erasure correction using bi-
ased sampling. In Proceedings of the 4th International Conference
on Systems and Networks Communications, ICSNC 2009, pages 144�
152, Porto, Portugal, September 2009.

5

6

ABBREVIATIONS

3GPP 3rd Generation Partnership Project
ARQ Automatic repeat request
BEC Binary erasure channel
DCCP Datagram congestion control protocol
FEC Forward error correction
GE Gilbert-Elliott
LDPC Low-density parity-check (codes)
LT Luby transform
PCO Pre-code only
PEC Packet erasure channel
RFC Request for comments
R-S Reed-Solomon
RFL Random linear fountain
TCP Transmission control protocol
UDP User datagram protocol
WWW World Wide Web
XOR Exclusive OR

7

8

1 INTRODUCTION

Since the dawn of communications using different kinds of signals, re-
searchers and inventors have come up with methods for correcting the er-
rors which occur in information transmission. One of the most basic forms
of error correction is to repeat the transmitted message several times, to
make sure the recipient receives the whole message correctly. Instead of the
whole message being replicated, the recipient can explicitly ask for speci�c
parts of the message to be sent again, because parts are either completely
missing or they were received with some errors (or, at least the receiver
believes there is something wrong with the message). Even the most ba-
sic forms of communications using electromagnetic signals, such as using
maritime signal lights between ships, or Morse code over radio or telegraph
lines use these kinds of methods to provide reliability against errors caused
by bad or clogged transmission channels, the inability of the receiver to
receive the original message in the intended form, or its misinterpretation.

The Internet was originally based on best-effort communication. This
means that no guarantees are given by the network that all of the data will
be delivered, or on the quality of the service the users or applications will
receive. Some transmission protocols, such as the Transmission Control
Protocol (TCP) [Pos81], have mechanisms which provide the means to en-
sure that all of the data are delivered to the recipient intact. The mecha-
nism used by TCP relies on all of the received data packets being acknowl-
edged. When the sender does not receive proper acknowledgements for all
of the sent data, he deduces that something is missing and sends the rele-
vant packet again. This strategy works well enough in many scenarios, as
can be concluded from the success of different services used on the Internet
which rely on all of the data being received correctly, such as World Wide
Web (WWW) pages, email, �le transfers and so on.

Although asking for missing pieces works, it is not the best method for
all situations. It is easy to come up with circumstances where explicitly ask-
ing for missing packets would cause performance problems for the server
working as the distribution platform. For instance, nowadays a common
scenario in the Internet is the distribution of large-sized content to multi-
ple receivers. The content might be movies, games or installation �les for
operating systems, whose distributors are companies and communities sell-
ing, or even providing free downloads of their products over the Internet.
These kinds of situations, when there are many downloaders with multiple
simultaneous requests for again resending missing parts of the �les, could
potentially cause network congestion in the physical network hardware or
overuse of the serving capacity of the distribution server.

An entirely different kind of approach to error correction, compared
to resending missing information, is provided by forward error correction
(FEC) coding methods. FEC codes work by using extra redundancy to
overcome the problem of missing data. The messages sent using FEC cod-
ing are traditionally coded in such a way that the original message block size
of k symbols is extended to n, effectively resulting in using a fraction k/n of

9

the available bandwidth for the actual information transmission. Another
option is to send packets of the same size as with the other methods but to
send extra packets in addition to the absolute minimum number required.
FEC codes require some amount of computational effort in order to en-
code and decode the sent messages, as at least parts of the received data
is not the same as the original data and needs to be decoded. In addition,
they typically utilise some kind of �nite �eld arithmetic in their operation.

The main bene�t of FECmethods, as their name suggests, is the ability
of the code to correct errors without relying on a repeat-type operation. This
means that lost information does not need to be asked for again, nor do the
received data need to be acknowledged. This kind of operation is advisable,
for example, in the content distribution example, or in any kind of situation
where the use of a backward channel is not possible or encouraged.

The branches of science studying the means to correct errors in com-
munications are coding theory and information theory. Asking for missing
pieces belongs to a broad class of automatic repeat request (ARQ) mecha-
nisms. The class studied in this thesis is the already mentioned FEC codes.
Repeating the original message several times is called a repetition code,
and is one of the simplest methods to implement forward error correction.
All of these methods can be employed on different communication lay-
ers. However, in this thesis we speci�cally study the packet level, where
modern FEC methods are applied directly to the packet itself. The most
fundamental result in information theory, Shannon's channel capacity the-
orem [Sha48], basically states that there is no need to use the backward
channel to achieve the best possible bandwidth utilisation, and thus the
use of one on the Internet is not needed for achieving the best possible
performance and use of available resources.

In particular, the topic of this thesis is the analysis of different settings
where methods inspired by fountain coding are used. In effect, fountain
codes are packet erasure correcting codes. Erasure correction refers to
correcting packet erasures, that is, correction and recovery of full packets
erased by the network as a result of network congestion or mechanisms
dropping packets with detected bit errors. This is in contrast to error cor-
rection, where the erroneous bits, usually because of physical imperfections
in the communication medium itself, are corrected, by ARQ or FECmeth-
ods.

End-to-end data transfer in networks is an example of a scenario, in
which erasure codes can be used to provide FEC. The end-to-end path
can be modeled as an erasure channel, where a particular packet is either
transferred correctly or dropped. The modern-day Internet is an impor-
tant application for this simple channel model, and packet erasure coding
could be used, for example, in conjunction with protocols providing only
best-effort service, such as UDP (User Datagram Protocol) [Pos80]. One
potential problem with these schemes is that to complete the decoding,
the amount of overhead (in addition to the absolute minimum) can grow
impractically large if the codes are not designed carefully enough.

In addition to elastic traf�c, such as �le downloads, we also propose
and analyse erasure correction methods for streaming traf�c. This is an in-
teresting application of fountain coding-related schemes, as many types of

10

Internet media today are streamed to a potentially large group of simulta-
neous users (video streams, Internet radio, etc.).

1.1 Fountain and rateless erasure coding

Fountain codes are a novel and interesting method to provide robustness
against packet losses. They were developed especially for such scenarios as
multicasting or for delivering large amounts of content to multiple recipi-
ents simultaneously. Fountain codes are essentially FEC codes, but instead
of the traditional way of specifying the overhead used, i.e., the redundancy
used for the erasure correction, before transmission, they typically work by
sending packets as long as needed for decoding, with the potential to gen-
erate a practically in�nite number of different packets. This is called the
rateless property of the codes.

All of the packets include the same information from a statistical view-
point; no packet is more important than any other for the recipient. The
term 'fountain coding' originates from an analogy to a metaphorical digital
fountain. The server is the fountain, spraying packets, like water drops, into
the air. The recipient (or several recipients) have buckets for collecting the
drops. As long as a bucket gets �lled, it does not matter which water drops
are used or in which order they arrive to �ll the bucket [BLMR98]. Only
the amount of water falling in decides if the collection is successful or not.

Many kinds of codes can be constructed and used to approximate the
ideal digital fountain principle. In practice, it is hard to satisfy all of the
ideal properties of such a fountain. The Luby transform (LT) codes [Lub02]
and Raptor codes [Sho06] can be regarded as the state-of-the art fountain
codes ful�lling the ideal properties for an asymptotic case (i.e., in�nite �le
length). Other schemes such as the classic Reed-Solomon codes [RS60]
can be used to approximate the ideal digital fountain. In this thesis, we
will study different settings in which fountain codes and methods inspired
by the fountain coding principle are employed. Although not all of the
methods are strictly fountain codes, the ideas and inspiration behind the
mechanisms that are studied come from the fountain principle. The en-
coding is based on the same algorithm as in LT codes, namely using XOR
operation to add up �le blocks into linear combinations which are sent as
packets or repair packets. The decoding is also performed using a similar
iterative algorithm as with the LT and Raptor codes.

1.2 Contributions and the perspective of this thesis

In this thesis we consider different kinds of settings where fountain coding
and fountain type codes are used for packet erasure correction. The actual
applications are not speci�ed, but could be, for example, �le transmission
to one or several receivers, over the Internet. Our viewpoint is to consider
the end-to-end paths on the application level. Of the different fountain
coding methods, we will study LT codes in particular.

Fountain coding methods like LT and Raptor codes have been proved
to be asymptotically optimal. This means that as the �le length in blocks
tends to in�nity, the additional overhead required for decoding tends to

11

zero. In the �rst part of our contribution small scenarios are studied, in
which the �le lengths are some hundreds of blocks at most. We feel that it is
important to study and develop fountain coding for these kinds of scenarios,
as exact analyses can be made and the results provide some insight into the
larger cases, as well.

Also streaming applications are considered, where the residual erasure
probability is used as the performance metric. As typical streaming applica-
tions need to take into account the fact that some data may be irrecoverably
lost during the transmission, the applications often use error concealment
and other techniques, which allow the data to be useful even if some parts
are lost. The objective of the erasure correction methods proposed in this
thesis for streaming traf�c is to make the residual erasure probability, i.e.,
the probability of a block in the stream remaining erased after all possible
correction attempts, as low as possible. When this probability is minimised,
the coding works as ef�ciently as possible, and the quality of the actual
content of the data in the original stream is improved.

In brief, the contributions of this thesis include the following.

• We �nd optimal degree distributions for LT codes for cases of three
and four �le blocks by making an exact analysis of the LT coding
process as a Markov chain.

• We optimise LT coding degree distributions for up to 30 message
blocks using an exact combinatorial method.

• We propose a simulation-based method for LT degree distribution
optimisation for up to hundreds of blocks. The objective function
estimate is constructed using ideas from importance sampling theory
and optimised using a gradient-based algorithm.

• We analyse a random linear fountain code divided into multiple parts
for lower computational complexity. We propose methods to im-
prove the performance loss caused by the division.

• We study a systematic erasure correcting code for channels with a
known loss probability, based on updating the belief of the sender
about the receiver's status and making greedy decisions in the repair
packet generation.

• We propose and optimise erasure correcting codes using a sliding
window for real-time traf�c. Four different methods are presented
and analysed. Themethods differ in the way in which the repair pack-
ets are generated and, in particular, how the stream blocks are sam-
pled when their inclusion in a repair packet is being considered. We
propose methods based on half-window step size, independent sam-
pling probability for the blocks in the current window, and degree-
based sampling methods using either uniform or biased sampling in
the current window.

Next we will describe in more detail the contributions of this thesis.
The presentation is divided into two categories: optimisation for short �le
lengths and erasure correction based on the fountain principle for stream-
ing (real-time) traf�c.

12

1.2.1 Optimisation for small code lengths

We start by considering optimising the degree distribution, the component
of fountain codes determining their performance, for small message lengths
of the LT codes. We model the coding process as a Markov chain and solve
the optimal degree distributions for toy cases of three and four original �le
blocks. We proceed by developing a combinatorial approach, which can be
used to analyse larger scenarios for up to tens of source blocks. Thus, the
results that are presented give optimal degree distributions for LT codes for
�le sizes below 30 �le blocks. We further identify some key properties of
these distributions: the importance of the low degrees, the requirement for
the presence of a high degree component, and that the degree distribution
is quite robust to changes in many directions; only the changes in some
principal directions of the optimal degree distributions result in notable
deterioration of the performance of the coding.

We continue with the optimisation of LT code degree distributions by
presenting a novel idea of using an estimator based on simulations and con-
structed using the principles of importance sampling. This estimator can
be evaluated for a different degree distribution than that originally used in
the simulations. Using simulations with a certain degree distribution, a gra-
dient of the estimator is constructed. Then a better degree distribution is
searched in the direction of this gradient. The degree distribution is iter-
atively optimised using a numerical algorithm based on these ideas. The
method works reasonably well, but has some numerical dif�culties because
of the �nite simulation sample set. Again, we �nd that the same key prop-
erties are present with the best forms of the degree distributions that are
tested. The idea of using a simulation-based estimator which can be evalu-
ated using a different degree distribution is novel, and can potentially have
applications in other kinds of optimisation problems as well.

After considering LT codes and their optimisation, we present and anal-
yse two different erasure coding methods for elastic traf�c. We consider a
random linear fountain code divided into multiple parts, in order to lessen
the computational complexity of the decoding, and study how the division
affects the overhead required for successful decoding. We propose two dif-
ferent strategies to overcome the deterioration of performance caused by
the division, namely using a data carousel-based approach to send packets
into different parts and the use of macropackets, which actually represent
an LT code applied on top of the divided random code. The macropackets
preserve the ideal property of fountain codes that all packets are stochasti-
cally identical. However, when channel loss probability is realistically low
and the losses are independent, the data carousel-inspired method works
better.

As the �nal method for small code lengths and elastic traf�c, we present
and analyse a systematic erasure correction method for scenarios in which
the channel loss probability is known or estimated. The coding process is
started by sending original data blocks as-is once, i.e., the method is sys-
tematic. Some of the sent systematic packets are dropped, and after the
initial round repair packets are generated and sent to �ll the gaps of missing
blocks. Using the probability distribution of the number of missing pack-
ets as a belief about the situation of the receiver, the sender uses a greedy

13

criterion to select the blocks to be included in the repair packets. The
sender updates his belief based on the degree of the repair packets sent,
taking also into account the possible repair packet erasures, and further ap-
plies the greedy criterion to select the degree for subsequent repair packets.
Thus, the sender calculates a deterministic sequence of degrees for the re-
pair packets. With the previously presented methods we are not able to
analyse scenarios with large �le lengths, because of state space explosion
or other computational complexity issues in the analyses. However, this
sequential packet degree calculation works for larger �le lengths as well.

1.2.2 Erasure codes for streaming media

The second part of the thesis considers different strategies for correcting era-
sures when streaming data are transferred. We continue in the spirit of the
last method presented for elastic traf�c and assume that an estimate for the
channel loss probability is available. The original fountain codes are not
applicable as-is for streaming traf�c, as they were developed to work over
large �le sizes without considering the possible real-time requirements of
the applications at all. Our proposed methods use a sliding window, which
ensures that the time constraints of real-time applications are met. All of
the methods that are considered are systematic, and thus it is possible to use
most of the sent packets as-is without any decoding operations. This is par-
ticularly helpful for receivers that do not have the computational capabili-
ties or are otherwise not willing or able to perform decoding. In addition,
when the channel loss probability is low or even zero, the decoder does not
need to do anything to the received packets; they are useful as-is.

The sliding window is used in two different settings. First, we analyse
a case where the window is moved in half-window-sized steps. After the
window movement the novel blocks introduced into the window are sent
as systematic packets. A repair packet is always sent in a deterministic fash-
ion after the systematic packets. The repair packets are constructed by �rst
choosing a degree for each of the half-windows and combining the cor-
responding number of randomly selected blocks from the respective half-
windows using a bitwise XOR operation.

The second strategy considers probabilistic repair packet generation, in
which redundant packets are sent after each systematic packet with a certain
probability. This scenario is �continuous�; the sliding window moves one
block at a time. We present three different codes, which differ in the way in
which the repair packets are generated. First, we propose a method where
each of the blocks corresponding to different window locations has its own
probability of being sampled into a repair packet. This method does not
work as well as, for example, the half-window method, in which the repair
packets are generated by degree-based sampling. Furthermore, the analysis,
and thus also the optimisation, is based on an independence assumption,
which raises the question of whether the repair packet generation really is
optimal.

The two other methods studied in this thesis are based on sampling
repair packet degrees with probabilistic repair packet sending. The repair
packets are generated by �rst sampling the current window by selecting a
packet degree, as in LT coding. The two methods differ in the actual sam-

14

pling strategy; one of the methods uses uniform sampling after the degree
is chosen, whereas the other method allows biased sampling of the blocks.
The latter method proves to be more ef�cient, on a par with the state-of-
the-art Raptor coding.

The drawback of all of the proposed methods for streaming traf�c is
that the codes are not rateless. The optimal code constructs and their rate
depend on the targeted residual error probability as well as on an estimate
for the channel loss probability and the actual loss patterns, i.e., if the losses
are independent or correlated (bursty). However, the performance of the
methods seems to be quite insensitive to loss probability variation.

The simulation results with the last two methods reveal some interest-
ing characteristics. They suggest that the optimal degree distributions are
of a single-degree type; that is, the optimal repair packets are generated by
always choosing the same packet degree. In addition, in the biased sam-
pling case, the optimal sampling probabilities form �xed patterns, in which
certain window locations are always sampled. These results are interesting
because in many other fountain coding scenarios, such as in LT coding,
the degree distributions are more complicated and not trivial at all.

1.3 Terminology

The terminology is neither standardised nor completely uniform in differ-
ent references, which might cause some problems for the reader. Fountain
code is a term originally coined by the inventors of the Tornado and LT
codes. A more descriptive technical term would be rateless erasure correct-
ing code, which declares what the codes actually are: rateless codes, which
correct erasures. On the other hand, the term fountain code includes the
metaphor of a digital fountain, which can also be used to explain the func-
tion of these types of codes.

During the work behind this thesis we have mostly used the term foun-
tain codes to refer to all kinds of codes which operate similarly to LT codes:
the encoding is simple XOR operation between blocks of data chosen ran-
domly using a degree distribution, and decoding is based on an iterative
algorithm working through a bipartite graph in order to solve the original
data using the received packets. This usage is not strictly correct in all of
the cases as, for example, some of the codes presented in the thesis are not
rateless in the same sense as true fountain codes. Nevertheless, the meth-
ods are inspired by the original fountain idea and approximate the ideal
principle, and thus the use of the term fountain code is justi�ed.

Further, when discussing the details of the contributed methods, we
refer to the source symbols as source blocks or message blocks. This is
to emphasise that the original contiguous data, being a �le or stream, are
divided into equally-sized segments. Similarly, the encoding symbols, pro-
duced by the encoding algorithm from source blocks, are termed packets.
When we discuss systematic codes, i.e., codes which send the original data
as-is at least once, the redundant packets are called repair packets.

15

1.4 Outline of the thesis

This thesis is based on seven publications studying different settings in
which fountain coding or fountain code-like schemes are used and opti-
mised. Before presenting our own work in detail, we start with a review
of the ideas and some theory behind the fountain and rateless coding, in
Chapter 2.

Chapter 3 presents optimisation techniques for small length erasure cor-
rection codes. First we study LT coding and the optimisation of the de-
gree distribution with exact methods, covered in Publication 1. For longer
�le sizes we consider the simulation-based approach presented in Publica-
tion 2. We discuss the results and the form of optimal degree distributions
for LT codes as given by these two methods. After this we present a method,
from Publication 3, in which a random linear fountain, reviewed in Chap-
ter 2, is divided. We carry out a performance analysis and discuss how the
performance can be improved either by resorting to macropackets, an LT
code over the divided random code, or by a data carousel-inspired scheme.
The chapter ends with a proposal for a novel systematic coding scheme,
in which the sender updates his belief about the state of the receiver and
generates the repair packets by making greedy decisions. This is covered
in Publication 4.

The second part of the thesis is presented in Chapter 4, where we con-
sider fountain coding inspired schemes for streaming traf�c. The codes are
systematic, and are based on a sliding window. Four different methods are
presented, differing in how the actual repair packets are generated. All of
the codes proposed in this chapter are systematic. Scenarios in which repair
packets are generated either by sampling packet degrees in half-windows or
by giving each window position its own sampling probability are studied
�rst. The optimal strategies are found using a �xed-point iteration. This
study is covered in Publication 5. In the remaining two schemes, studied
in Publications 6 and 7, the repair packet generation is fully degree-based,
with either uniform or biased sampling of the original source blocks in the
window.

Each of the chapters ends with a summary of the developments and
results provided, and the thesis ends with a brief round-up of the develop-
ments in Chapter 5.

16

2 FOUNTAIN CODING

In this chapter we discuss packet erasure correction in general and review
the fountain coding principle. We give examples of codes which can be
used to implement the digital fountain, with an emphasis on the LT codes,
the �rst universal fountain codes.

2.1 Basics of packet erasure coding

The reliability of packet-based transmission can generally be provided by
two different mechanisms. The goal is to get each packet to its destination
intact. This can be achieved either by resending erroneous or dropped
packets, or by using some mathematical algorithm to decode the miss-
ing data from redundant packets or redundant information added to the
sent packets. The �rst paradigm leads to automatic repeat request (ARQ)
types of operations and protocols. Typically, ARQ refers to the use of ex-
plicit ARQ methods in lower-layer protocols, which are responsible for
the error-control of bit streams across an unreliable link. The ubiquitous
TCP [Pos81] is an example of a transport layer protocol which relies on
resending packets which are lost during transmission or get routed via such
a long route that the sender cannot be sure whether they will arrive at their
intended destination. However, this mode of operation is usually employed
only in unicast protocols, as the performance of ARQ schemes deteriorates
when multicasting over many different paths.

Another way to correct for the missing data is by taking advantage of
the data already received. In forward error correction (FEC) techniques
this is done by adding redundancy in a controlled way, making it possible
for the receiver to recover lost data by taking advantage of the redundant
information in the received data. The advantage of FEC schemes is that
retransmissions are not required for acquiring the data lost in the channel,
and thus a backward channel is unnecessary in many situations. The tra-
ditional use of FEC is on the lower layers of communication. FEC codes
are also used in mass storage devices for error protection. Software FEC
and packet-based erasure correction mean the same thing; the latter term is
used later on in this thesis to make the distinction between traditional FEC
codes and modern packet-based coding methods.

The discussion on the applicability of FEC methods to packet-based
transmission began with the advent of broadband networks and the new
possibilities they offered in terms of applications. During the emergence of
these possibilities the use of FEC instead of, or in addition to different ARQ
schemes was considered [McA90],[SM90]. Later, for example in [NB96]
and [Hui96], the authors proposed the use of packet-level FEC in mul-
ticast trees instead of relying on retransmission-based schemes and further
demonstrated that it is a viable option.

When considering applying FEC codes on the packet level we arrive at
the problem that the encoding and decoding procedures are typically han-
dled by software instead of hardware, as is the case when considering tradi-

17

tional ARQ and FEC codes for example on network links. The traditional
FEC algorithms are much more demanding computationally than ARQ;
FEC often requires complex operations that possibly use some �nite �eld
(Galois �eld) arithmetics. This is the reason why traditional network pro-
tocols work using retransmissions to handle lost data. Simply put, software
FEC has not been a viable scheme as the computing power and memory
space have not been adequate and ef�cient FEC algorithms have not ex-
isted. Retransmission is easier to implement and requires very little extra
computational effort, only some bookkeeping to keep trace of the acquired
and missing data.

Modern computing technology, however, makes it possible to imple-
ment and operate software-based FEC ef�ciently. Several studies have
been carried out to point out that the encoding and decoding algorithms
are fast enough to be used in practise, for example in [Riz97a], [Riz97b]
and [Sii08]. Most importantly, the coding methods presented in this thesis
utilising fast XOR-based encoding and iterative decoding algorithms render
the arguments about computational complexity altogether obsolete. Thus,
software FEC or erasure coding is a viable alternative to more traditional
schemes. Even the classic Reed-Solomon erasure codes, with their com-
paratively slow encoding and decoding algorithms can be used in many
scenarios ef�ciently enough.

2.1.1 Erasure channel

The channel model we assume in this thesis is the binary erasure channel
(BEC) or its trivial extension, the packet erasure channel (PEC). The mod-
els are simple, but still useful, for example, when considering packet based
transmission over the Internet. In packet-based transmission the lower com-
munication layers typically take care of bit errors. When bit errors render a
data packet useless it is discarded. Another reason for lost packets is network
congestion, when the intermediate network nodes between the source and
the destination drop packets as a result of limited buffer space.

The input alphabet for BEC is Ai = {0, 1}, and the possible output
symbols are Ao = {0, ?, 1}, where an erasure is denoted by the ?-symbol.
The probability that an output symbol corresponds to the sent input symbol
is 1−p. The erasures are independent with a bit erasure probability p. The
packet erasure channel works similarly to BEC, but the input and output
alphabets can be considered to contain larger chunks of bits instead of just
one bit. BEC is depicted in Figure 2.1.

Regardless of the method which is used to provide reliability and re-
silience to packet erasures (or to provide error correction in general), there
is a limit to what can be achieved in terms of erasure-correcting capability.
Claude Shannon formulated the basics of information and coding theory
in 1948 with an explanation of channel capacity [Sha48]: All communica-
tions channels have a capacity C and there exists error control codes with
rates R, such that when R < C the residual error probability is arbitrarily
low. A proof for this can be found, for example, in [CT91].

It is easy to see that the upper bound of the capacity of BEC (and PEC)
is 1−p. Peter Elias, who originally introduced BEC in 1955 [Eli55], proved
that the capacity of BEC is indeed exactly 1− p, where p is the probability

18

BEC

Figure 2.1: Illustration of the binary erasure channel. The packet erasure
channel is a trivial extension of this concept.

that a bit sent over the channel is erased. Similarly, for PEC, the capacity
is 1− p, where p is the packet erasure probability.

For packet-based erasure correction this means that it is possible to send
data without any erasures with an effective code rate of 1 − p. Addition-
ally, Shannon's formulation does not explicitly require any kind of back-
ward channel, and thus it is possible to get arbitrarily close to Shannon's
limit with a coding scheme without any retransmission requests. This is
an important property and we mainly discuss channels without feedback
in this thesis. Ideally, codes approximating the fountain principle, to be
introduced in Section 2.2, send enough data through the erasure channel
to the recipients that they are able to decode the original message without
using any feedback. However, in practice, and especially with only a few
recipients, sending acknowledgements might be necessary to stop �ooding
once the receivers have decoded the data.

In conclusion, we will use the packet erasure channel model without
any feedback, such as packet acknowledgements and negative acknowledge-
ments, throughout this thesis. Further, we will not explicitly consider how
the coding process is ended, or what the exact mechanism to acknowledge
a successful transmission of the whole message is, but instead the analyses
are based on the condition that the transmission ends when the decoding
procedure is complete.

2.1.2 Traditional erasure coding

We consider a setting where a �le is divided into k equally-sized blocks and
sent over a data network, which is modelled as a packet erasure channel. A
simple example of a single erasure-correcting code is a parity code, where a
redundant symbol, the bitwise modulo-2 sum of all of the source symbols,
is generated. If one of the symbols is lost during transmission, the missing
symbol can be calculated by summing all of the received symbols together.
We see that any k of the blocks is suf�cient for a complete decoding of the
original message. The drawback is that only one erasure can be corrected
using this method. Another trivial code is the repetition code, in which a
symbol is sent n times over the channel. Here the disadvantage is the very
inef�cient use of the bandwidth; only a fraction 1/n of the sent data are
unique. Therefore, better methods operating closer to the Shannon limit
have been developed.

19

A more ef�cient way to construct an FEC code over erasure channels
is to consider a suitable polynomial and send a description of this to the
recipients. We can uniquely determine a polynomial f(x) of degree k − 1
if we know its value at k points. Now, if we use the polynomial to evaluate a
set of n distinct values, we get the set {(xi, f(xi))}ni=1, where any selection
of k pairs can be used to uniquely determine f(x).

In this way we can de�ne an (n,k) block code, in which k source sym-
bols are used to produce n encoding symbols. Over the erasure channel,
we use k �le blocks to generate n packets, which are sent over the channel
to recipients. For every k information bits, the total amount of transferred
data is n bits, resulting in the code rate

R =
k

n
. (2.1)

Thus, the bandwidth required for sending a �xed amount of data is n/k
times greater than without using coding at all. An (n,k) block erasure code
can recover from a loss of up to n − k encoding symbols. An important
feature of all block erasure codes is that any k received encoding symbols
(packets) can be used to decode the original message.

Sending packets describing a polynomial is the key idea behind the
well-known and widely used Reed-Solomon codes [RS60]. These codes
can be used to correct both errors (i.e. bit errors) and erasures. In this the-
sis, however, we are solely interested in the capabilities of Reed-Solomon
coding to correct packet erasures.

Reed-Solomon coding is based on de�ning polynomials over �nite �elds
(Galois �elds). The k blocks composing the original data are encoded into
n packets, as discussed above. However, with the �nite �eld arithmetic that
is used, the upper bound on n is limited by the size of the �eld. Typi-
cal sizes of the extension �elds used in Reed-Solomon coding are 256 and
65536, corresponding to the Galois �elds GF(28) and GF(216), respec-
tively. If the source data size is larger than the maximum possible n, the
data have to be sent using several segments of n packets.

The maximum sustainable loss probability for the erasure channel is
(n − k)/n. If the receiver does not receive at least k packets, the Reed-
Solomon code cannot recover the original data. Thus, several cycles of
packets might be needed. This, in addition to the possible multiple seg-
ments of coding, will result in inef�ciencies, as the recipient would col-
lect duplicate packets over time, reducing the ef�ciency of the channel
[BLMR98].

An example implementation of Reed-Solomon coding for the erasure
channel can be found in [Riz97b]. The coding is implemented using Van-
dermonde matrices, where the arithmetic operations are implemented as
table lookups or simple XOR operations. As the Reed-Solomon codes are
linear, linear algebra methods can be applied in the coding and decoding
processes. The Vandermonde matrix de�nes the encoding matrix G which
gives the relation between the encoding symbols y = (y0 y1 · · · yn−1)
and the source symbols x = (x0 x1 · · · xk−1) by the linear mapping

y = Gx . (2.2)

20

The encoding complexity per sent packet is then O(k), or O(nk) for all
the packets generated. The decoding can be performed by inverting the
encoding matrix G, i.e., solving x in the linear system (2.2). In its most
basic form, the linear system can be solved using Gaussian elimination with
time complexity O(k3). Per block, the decoding cost is thus quadratic.

Instead of Vandermonde matrices, Reed-Solomon erasure coding can
also be implemented using Cauchy matrices [BKK+95]. The advantage of
this method is that all of the arithemic operations can be converted into
XOR-operations which are ef�cient to calculate on general-purpose com-
puters.

Theoretically the best algorithms can decode Reed-Solomon codes with
a complexity ofO(k log2 k log log k) [MS77]. However, these kinds of high
speed theoretical algorithms are complex to implement and tend to have
large hidden constants in asymptotic complexity, making them unsuitable
for practical use. Additionally, faster algorithms often require more mem-
ory space than slower ones, resulting in time-space trade-off considerations.
Thus, quadratic [Li05] or simpler log-quadratic [Did] time-decoding algo-
rithms can be regarded as the best practical decoding strategies for Reed-
Solomon erasure correction.

In short, the most serious drawbacks of using Reed-Solomon erasure
coding are the limited number of possible symbols and the complexity of
the encoding and the decoding algorithms. Although with recent hardware
the coding can be implemented quite ef�ciently, resulting in a good encod-
ing and decoding performance, we can do better and save computational
effort and energy with modern coding techniques.

2.2 Fountain coding principle

The term fountain coding originates from the paper by John Byers et al.
[BLMR98], where the authors present the fountain coding principle. An
idealised digital fountain works as an in�nite supply of packets, which are
sent over the network to possibly multiple recipients. The original data
are divided into k blocks (the source symbols) of equal size. The source
then forms stochastically identical packets using these original blocks and,
ideally, the possible number of such packets is in�nite. The sender dissem-
inates these packets throughout the network, and the receivers collect the
packets which get through without errors. In an optimal situation, the re-
ceiver acquires exactly k of these packets, which can then be used to fully
reconstruct the original data. The receiver does not care exactly which
packets are received; any set of the sent packets is �ne. Additionally, there
is no need to use a feedback channel of any sort to acknowledge or ask for re-
transmissions, save the possible acknowledgement of the completion of the
whole transmission. In contrast, for example, in TCP-based connection the
received packets are required to be acknowledged. The connection times
out if a certain packet takes too long to travel (e.g., if routed via a longer
route for some reason) and results in retransmission and thus some wasted
bandwidth. A transmission protocol employing the fountain principle does
not require the book-keeping of outstanding packets, as the encoded pack-
ets could contain data from any location of the original �le, and the packets

21

are not acknowledged.
A server spraying the packets works as a metaphorical fountain. The

packets can be regarded as water drops and the recipient collects these drops
into a bucket. A person collecting water from fountain does not care which
speci�c water drops he gets; the only important quantity is the amount of
water. When the bucket is full, the person is happy and �nished with their
water collection.

In practice, it is impossible to have a sender producing an in�nite num-
ber of different packets. However, with k blocks it is possible to get an
exponentially large number of different packets by, for example, using lin-
ear combinations of the original source blocks as the packets. In such a
case the sender can produce 2k different combinations as packets.

Further, the absolute minimum of k received packets is not enough for
successful decoding with a high probability. When the packets are formed
using a random algorithm some of the received packets are redundant, con-
taining no new information for the receiver. For this reason we talk about
overhead factor f = 1 + ε, where ε denotes the fraction of extra packets
in addition to k needed to complete the decoding. Thus, the total number
of packets the recipient needs for the successful decoding of the original
message is f · k.

The desirable properties for a protocol employing the fountain cod-
ing principle, or a fountain coding scheme in general, include (adapted
from [BLM02] and augmented) the following:

• Scalability: the sender should be able to cope with any number of
users.

• Reliability: there should be some guarantees that all recipients can
decode an exact copy of the original data.

• Low overhead: ideally f = 1; in practice it should be as close to one
as possible.

• Time performance: the encoding and decoding algorithms should
have low time complexities.

• Time independence: a recipient should be able to start reception at
any given time regardless of the other recipients.

• Sender independence: packets from any set of the possible senders
should qualify for decoding.

• Tolerance: the whole process should tolerate different erasure prob-
abilities and possible data rates for the receivers.

• Ease of implementation: to lower the threshold for actual imple-
mentation and widespread adoption, the methods should be concep-
tually easy.

• Freedom from patents: depending on the user and implementer, a
patent-free solutionmight be preferable. The state-of-the-art fountain
coding schemes are patented.

22

The idealised fountain scenario is not achieved by any existing coding
method. There are trade-offs involved when choosing one coding method
over another. For example, with Reed-Solomon codes, it is guaranteed that
any k distinct received packets are enough for full decoding of the original
data, and thus the overhead factor f = 1. However, the decoding complex-
ity is high for large k and the number of possible packets is not as large as
with many other codes. Further, with Reed-Solomon codes k and n need
to be �xed beforehand, and n is limited by the Galois �eld used. In con-
trast, with true fountain codes, the encoded packets can be created on the
�y without n being �xed in advance. Such codes are called rateless codes.
With a rateless code, a potentially in�nite number of distinct, stochastically
equivalent descriptions of the source data can be generated. The code rate
is not �xed before the encoding process begins.

The rateless property is ideal when the true channel conditions are not
known in advance. All block codes need to have an estimate of the erasure
probability p in order to choose an appropriate expansion factor n/k for the
code. As the channel conditions are rarely static, the chosen parameters
seldom stay optimal through the whole transfer process. Instead, with rate-
less codes the code rate needs not be �xed beforehand, and new packets are
generated all the time until decoding is completed.

The origins of the basic idea of the digital fountain can be traced back
to 1975, when N.F. Maxemchuk presented an idea of dispersity routing in
his PhD thesis [Max75b] and in [Max75a]. Later, in 1989, M.O. Rabin
presented an information dispersal algorithm [Rab89] for the reliable dis-
persal of data into multiple locations with a method closely resembling the
fountain principle.

Last, a remark on the terminology used in this thesis is in order. In the
context of fountain and related codes, the source symbols are the original
message blocks and the encoding symbols are the packets. We will use the
terms block and packet for the source and encoding symbol in most of this
thesis to emphasise the focus on packet-level erasure correction.

2.3 LDPC, Tornado and random linear fountain codes

Universal fountain codes are asymptotically optimal for any erasure chan-
nel. This means that when the number of message blocks, k, grows to
in�nity the overhead needed tends asymptotically to the Shannon limit of
the channel. Before discussing the �rst universal fountain codes, the LT
codes, we brie�y review the Tornado codes, which are considered to be the
�rst fountain codes with a background in LDPC codes. We also review a
fountain coding scheme based on sending random linear combinations of
the source blocks.

2.3.1 LDPC codes

We brie�y review the class of low-density parity-check (LDPC) codes, whose
theoretical analysis and properties are ultimately behind the current suc-
cess of the state-of-the-art fountain codes. LDPC codes were originally
presented by Robert Gallager in [Gal62]. These codes can be used to
correct bit errors, as well as erasures [PT03] [Pla05]. Although the codes

23

were discovered as early as in the 1960s, they were then largely forgotten
as the computing power to utilise them fully did not exist. However, after
their rediscovery [MN97] the codes attracted much attention from the cod-
ing theory research community. The LDPC codes have great asymptotic
performance surpassing even that of turbo codes [BGT96], and code con-
structs achieving the Shannon capacity have been developed [LMS+97].
The driving factor behind the modern success of the LDPC codes is the
progress in the random generation of the code structures and iterative de-
coding algorithms.

Let us consider a �le which is divided into k distinct blocks of contigu-
ous bits, where all of the blocks are of the same size. We denote m =
(m1, m2, . . . , mk), where m is the �le (message) and mi the ith block.
The LDPC codes are linear block codes, i.e., the encoding process gener-
ates linear combinations of the message blocks. The linear combinations
are calculated over GF(2), i.e., binary alphabet 1, and the summation op-
eration is XOR (⊕). A generator matrix G speci�es the relation between
the source and encoding symbols.

The LDPC codes are sparse-graph codes, implying that the parity check
matrix H corresponding to a certain LDPC code is sparse, meaning the
matrix contains primarily zeroes as its elements. The codewords x of a
certain code C have to satisfy

Hx = 0 . (2.3)

Gallager's original LDPC codes are regular. This means that for each row
and each column of H the number of ones is the same.

The LDPC codes can be de�ned as codes on bipartite graphs. The two
parts are formed by the message blocks and check nodes as presented in an
example of a very small LDPC code in Figure 2.2 on the left-hand side.
Another description can be given with the help of Tanner graphs, in which
each node on the right-hand side does not directly present a data node,
but represents a parity constraint, which enforces the sum of the connected
message blocks to be zero. The parity check matrix corresponding to the
graphs in Figure 2.2 is

H =

1 1 1 0 1 0 0
0 1 0 1 0 1 0
1 1 1 1 0 0 1

 . (2.4)

Several distinct types of LDPC codes can be de�ned. An irregular and
systematic LDPC code is presented as an example in Figure 2.2. The origi-
nal constructs by Gallager were not systematic; in the corresponding graphs
this would be seen through the absence of k distinct degree-1 message
blocks. LDPC codes can also be constructed by cascading several layers
of check nodes.

The optimal decoding of LDPC codes is an NP-complete problem
[Mac03]. Therefore, the academic studies on LDPC codes concentrate
on �nding such graph constructs which result in good performance when

1Using larger �nite �elds is also possible, but in this thesis we only address binary arith-
metic.

24

Figure 2.2: Two different representations of a systematic LDPC code as a
bipartite graph. On the left-hand side the redundant nodes are presented
as sums of the original message blocks. On the right-hand side is the rep-
resentation of the code as a Tanner graph, where each of the nodes on the
right is a constraint node forcing the parity of the neighbouring nodes to be
zero.

decoded using iterative algorithms such as message passing algorithm. An
ef�cient realisation of the message passing concept is belief propagation al-
gorithm. In very general terms, such decoding algorithms work by sending
messages or beliefs of their situation to neighbouring nodes in order to ul-
timately �nd an estimate x̂, satisfying Hx̂ = 0, for the original codeword
x.

When using LDPC codes over an erasure channel, one does not need to
worry about possible erroneous bits, as the assumption is that those packets
which get through are correct. The encoding symbols are packets which are
linear combinations of the original source blocks, where the summation
operation is bitwise XOR. This is a recurring theme throughout this thesis.
The sent packets can be seen as linear equations conveying the information
of exact contents, i.e., which blocks are XORred together, of each packet.
The decoding of LDPC codes is simpli�ed in an erasure correction setting;
we analyse the decoding algorithm in more detail in the context of LT
coding in Section 2.4.

Although the asymptotic properties of LDPC are of great interest, only
little theoretical work has been done to analyse the �nite-length scenarios.
However, the LDPC codes have been shown also to be suitable for small
code lengths, with considerably lower encoding and decoding complexity
than Reed-Solomon codes. The reduction in the computational complex-
ity is due to the iterative algorithms employed, which can be used because
the LDPC codes are sparse.

More extensive treatments of LDPC codes and modern coding theory
in general can be found, e.g., in [RU08] and [Mac03].

25

Traditional erasure code

Cascading graphs

Figure 2.3: The original Tornado code is formed using cascading levels of
coding and a traditional code on the last stage.

2.3.2 Tornado codes

In [BLMR98], Byers et al., besides discussing the fountain coding princi-
ple, also present Tornado codes as an example of an ef�cient erasure cor-
recting code approximating the ideal digital fountain. An extensive analysis
of this class of codes can be found in [LMSS01], while preliminary results
appeared in [LMS+97],[LMA98] and [LMSS98].

Tornado codes are a capacity-achieving class of LDPC codes designed
for erasure channels with a channel loss probability p. Tornado codes are
capable of approximating the digital fountain concept better than Reed-
Solomon codes [BLM02]. However, Tornado codes are not rateless. The
rate is R = 1 − p(1 + ε) (i.e., ε below the capacity of the erasure chan-
nel), and the time complexity of the decoding algorithm is proportional to
k log(1/ε) ∀ε > 0 per symbol. The key innovation made in [LMSS01] is
the realisation that irregular codes perform better than regular ones. Espe-
cially with a large block length, the codes can operate with a low residual
erasure probability arbitrarily close to the Shannon limit. Thus Tornado
codes are capacity-achieving codes.

Tornado codes are systematic, and, in addition to the original message
symbols, check symbols are generated and sent. As with the other code
types presented later on in this thesis, the successful decoding of a Tornado
code requires extra packets in addition to the k original blocks. Thus, the
overhead factor f > 1. The original construct of Tornado codes uses cas-
cading levels of LDPC coding to generate check symbols, i.e., the initial
source blocks are encoded, the resulting encoding symbols are again en-
coded in a similar fashion, and so on. At the �nal level some traditional
coding scheme, such as Reed-Solomon code, is used to generate the �nal
check symbols (packets). Figure 2.3 depicts the idea. After the �nal stage

there should be O(
√
k) check symbols. If the �nal code has quadratic de-

coding complexity (such as Reed-Solomon erasure codes), then the code
constructed using cascading bipartite graphs can be encoded and decoded

26

in a period of time proportional to the total number of graph edges in the
whole construct. This idea of using several layers of bipartite graphs to rep-
resent the code was presented for the �rst time in [LMSS01].

The graphs used in Tornado coding are formed using a random process,
in which the degrees of the nodes are chosen from distributions which yield
an irregular structure for the code. The analysis in [LMSS01] is done in
terms of the degree sequences, i.e., the performance and capabilities of the
code depend on said sequences.

Tornado decoding takes advantage of the fact that the code operates on
an erasure channel. A missing (erased) message symbol can be decoded by
setting it to be the XOR sum of all of the other message bits a neighbouring
check bit is connected to. We present a more exhaustive treatment of this
later in Section 2.4 in the context of LT coding, as the algorithm is exactly
the same.

It was further shown in [RU01] that the coding can be performed with-
out the cascading steps while retaining the linear encoding and decoding
costs. Still, the graphs used in Tornado coding need to be explicitly con-
structed and n prede�ned, resulting in a �nite code rate R. Compared to
Reed-Solomon codes, Tornado codes sacri�ce a little in their decoding inef-
�ciency, as f > 1, but gain a lot in the time complexities of both encoding
and decoding.

2.3.3 Random linear fountain

Good results in terms of the required overhead can be achieved by us-
ing random linear codes. We examine the random linear fountain (RLF),
which is explained, e.g., in [Mac05]. The RLF is, as the name suggests, a
random linear code approximating the ideal digital fountain principle.

A packet, i.e., an output symbol, ci is generated by selecting each of
the k message blocks to be included in a packet uniformly with probability
1/2. This is equivalent to generating a random binary vector of length
k. The packets are linear combinations of the selected blocks, where the
blocks are summed using the bitwise XOR operation. Thus it is convenient
to interpret each packet as a linear equation. The recipient collects these
equations to form a linear system. When this system is of full rank with
n ≥ k received equations (packets), the original �le can be recovered.
The recipient needs the information on which blocks are included in each
packet in order to be able to decode the original data.

For example, consider a �le of three blocks m = (m1, m2, m3), from
which the packets are generated. Assume that the receiver has successfully
received the following set of equations:

m1 ⊕m3 = c1

m1 ⊕m2 ⊕m3 = c2

m2 ⊕m3 = c3

which is a linear system of full rank. Thus, using the received packets c1, c2
and c3 the recipient can decode the original �le m = (c2⊕c3, c1⊕c2, c1⊕
c2 ⊕ c3).

When the packets are generated as presented above, from the statistical

27

point of view the whole process is random as each packet is generated using
the same information and a random algorithm. Thus no one packet is
statistically more important than another, meeting one of the main ideal
properties of fountain codes. Furthermore, this means that the loss process
of the channel is irrelevant from the point of view of the process and its
properties; the only thing that matters is the number packets received.

As already stated, the goal for the receiver is to receive k linearly in-
dependent packets successfully. Thus, we need to �nd the probability of a
random binary matrix being of full rank. If the problem consists of k blocks,
the number of different encoded packets is 2k − 1, excluding the all-zero
packets, each representing an equation. Let us now consider how the num-
ber of linearly independent equations evolves from the recipients point of
view. If we have one equation, the probability that we do not receive a
linearly independent equation is

P1 =
1

2k − 1
, (2.5)

as we are unsuccessful only if we generate the same equation as before
out of 2k − 1 different possibilities. In general, when we have m linearly
independent vectors, the probability of failing to receive a new one is

Pm =
2m − 1
2k − 1

, (2.6)

where the numerator determines the size of the subspace of all linear com-
binations of m linearly independent vectors, again excluding the zero vec-
tor.

Let stepm refer to the state in whichm linearly independent equations
have already been received. We use Tm to denote the random variable for
the number of extra trials (in addition to the one we certainly need) needed
for a new linearly independent equation at step m. It is geometrically dis-
tributed with the failure probability Pm, that is,

P̃m,i = P [Tm = i] = Pim(1− Pm) , i = 0, 1, 2, . . . (2.7)

The probability distribution for the total number of extra packets needed
for successful decoding is then the same as the distribution of the sum of

independent random variables T =
∑k
m=1 Tm:

P{T = i} =
k⊗

m=0

P̃m[i] , (2.8)

where ⊗ denotes the convolution operation, and the square brackets de-
note the ith element of the resulting vector. The probabilities (2.8) depend
mostly on the highest terms of Pm, that is, on terms with m near k. As
we can see from (2.6), the probability of unsuccessful generation depends
almost only on k − m for any reasonably sized k. The last step before k
(m = k − 1) has a failure probability near to 1/2, the second last 1/4,
and so on. This means that the actual convoluted probability distribution
for the number of extra packets needed for decoding is already almost the

28

Table 2.1: The probabilities for the extra number of equations needed for a
full rank linear system with k unknowns

k + # packets probability (CDF)
0 0.289
1 0.578
2 0.770
3 0.880
4 0.939
5 0.970
6 0.984
7 0.992
8 0.996
9 0.998
10 0.999
11 1.000

same for k ≥ 13 irrespective of the actual problem size k. The cumulative
distribution function

F̃ (t) = P [T ≤ t] =
t∑
i=0

P [T = i] =
t∑
i=0

(
k⊗

m=0

P̃m[i]

)
, (2.9)

de�nes the probability that t extra packets (i.e., packets in addition to k)
or less are suf�cient for decoding. For k ≥ 13, the distribution F̃ (t) is
presented in Table 2.1.

The expected overhead for RLF can now be calculated with the help of
Table 2.1:

T =
∞∑
i=0

(1− F̃ (i)) ≈ 1.61 . (2.10)

This means that regardless of the size of the problem, the expected overhead
of the random linear fountain is very low.

In Section 3.3 we need the distribution function F (t) of the number of
packets needed for successful decoding. This is simply related to that of the
extra packets by

F (t) = F̃ (t− k) . (2.11)

Further, let us use δ to denote the probability that decoding is not com-
plete after receiving n > k packets. It can be shown that δ ≤ 2−n+k. The
total number of received packets needed for succeeding in the decoding
with probability 1− δ is k+ log2 1/δ, and we can get arbitrarily close to the
Shannon capacity as k →∞ [Mac05].

Although the RLF has a very desirable overhead performance, the en-
coding and decoding costs make the scheme useful only for small message
lengths k. The encoding cost is k/2 operations per packet on average, and
the decoding requires Gaussian elimination, which is a O(k3) operation.

29

2.4 LT codes

Luby Transform (LT) codes [Lub02] are the �rst true universal fountain
codes and a proper realisation of the fountain coding principle presented
in Section 2.2. They are rateless and asymptotically optimal codes. Al-
though they are nearly optimal for a large number of input blocks k, for a
smaller number the overhead the LT coding process takes to provide a high
probability of decoding is not close to the optimum. Optimisation for small
lengths is discussed in Publications 1 and 2.

2.4.1 LT encoding and decoding

LT encoding and decoding algorithms use only the XOR operation be-
tween blocks and packets. The performance of LT codes is directly affected
by the degree distribution used. A degree distribution ρ de�nes the proba-
bilities ρ(d) for choosing exactly d blocks for one packet. The degree refers
to the degree of the node corresponding to the formed packet in the encod-
ing graph. In the literature the symbol Ω is also used to denote the degree
distribution. Often, in the analysis of the asymptotic properties of fountain

codes, a generator polynomial representation Ω(x) =
∑k
i=1 Ωixi is used.

The general LT encoding algorithm is described in Algorithm 1. In
short, a packet is formed by �rst sampling a degree d from the degree distri-
bution, then picking uniformly at random d blocks and calculating a linear
combination of these using bitwise XOR. This process constitutes a bipar-
tite graph, where the input nodes are the �le blocks and the output nodes
are the encoding packets, which are sent over the erasure channel. In order
for the decoder to use iterative decoding on the graph, it needs to know the
neighbours of every output node in the graph, i.e., the exact constituents
of each packet. This information can be conveyed to the receiver, for ex-
ample, by using headers on the sent packets or using a pseudo-random
number generator initialised with a common seed at both ends of the chan-
nel. Which method is used is to be decided by the implementor to suit the
speci�c scenario at hand.

The encoding cost of LT codes depends directly on the average packet
degree. For one packet the encoding cost of calculating the linear combi-
nation is the packet's degree less one XOR operation. This average should
be as low as possible in order to guarantee ef�cient operation, but also high
enough to guarantee a high probability of decoding with as low an overhead
as possible.

The de�nition of LT encoding that is presented is the one in [Lub02]. It
is clear that in this form the LT codes are not systematic, unlike many tra-
ditional erasure correcting codes (Tornado codes, Reed-Solomon codes).
However, there has been recent work on a construct of systematic LT codes
[YP08], as will be discussed in more detail in the context of Raptor coding
in Section 2.5. Another systematic approach using soft decoding is pre-
sented in [NYH07].

The decoding algorithm de�ned for LT coding is a special case of be-
lief propagation decoding used for LDPC codes for erasure channels. Al-
gorithm 2 provides an overview of a general LT decoding algorithm. The
process starts with a degree-1 packet. As the recipient knows which par-

30

Algorithm 1 General LT encoding algorithm

1: repeat
2: choose a degree d from degree distribution ρ(d).
3: choose uniformly at random d blocksm (i1) , . . . ,m (id).
4: send c← m (i1)⊕m (i2)⊕ · · · ⊕m (id).
5: until enough output symbols are sent.

Algorithm 2 A general LT decoding algorithm

1: repeat
2: while no degree-1 packets in buffer B do
3: receive a packet and remove the known blocks.
4: store the packet in the buffer B.
5: end while
6: m(j)← degree-1 packet from B
7: for all c ∈ B : c includesm(j) do
8: c← c⊕m(j)
9: end for

10: until original message is recovered.

ticular block is an exact copy of such a packet (i.e., is a neighbour in the
bipartite graph), this immediately yields a new decoded block. This block
is then subsequently XORred to any remaining neighbours in the graph,
and the corresponding edges are removed. This removal reduces the de-
grees of the neighbouring packets, possibly revealing new degree-1 packets,
which can subsequently be used to decode new blocks. This process is iter-
atively continued for as long as possible, until there are no degree-1 packets
to process or the whole original message of k blocks has been decoded.
An example of decoding for k = 3 is depicted in Figure 2.4. The topmost
nodes correspond to the original blocks, while the nodes below are received
packets.

The decoding algorithm is suboptimal in the sense that if degree-1 pack-
ets are absent, the process halts even though the relationships between the
blocks and packets could in some cases be used to uniquely decode new
blocks. As the packets are linear combinations of the message blocks, an
algorithm such as Gaussian elimination could possibly be used for further
decoding. However, the main reason for the success of LT codes is the
time ef�ciency of the encoding and decoding processes. This means that
costly operations such as Gaussian elimination should not be performed.
Instead, the degree distribution design dictates the performance of both the
encoding and decoding procedures. The remarkable result presented by
Michael Luby in [Lub02] is that degree distributions which result in fast
decoding and a low overhead do exist. These degree distributions further
make it clear that the use of irregular graph constructs results in a very good
performance and capacity-achieving codes.

31

Figure 2.4: Decoding of LT codes for k = 3. The process starts with a
degree-1 node (top right), which is XORred to the neighbouring block.
Subsequently, the data in the block are XORred to connected packets and
the edges removed (middle left). A degree-1 packet remains, which is used
to continue the decoding (middle right). Ultimately, the two remaining
degree-1 packets uniquely give the content of the last missing block. Pro-
cessing either of these will complete the decoding.

2.4.2 Balls and bins and fountain coding

A simple degree distribution results by setting Ω1 = 1, i.e., all of the point
probability mass is set for degree one. In [Lub02] this is called all-at-once
distribution, hinting that this case is analogous to throwing balls into sep-
arate bins until each one of the bins contains at least one ball. Converted
to our coding problem, this means that we want to cover all of the k mes-
sage blocks with at least one packet, where the packets are formed by just
selecting a random block and sending that one as a degree-1 packet.

Let us denote by Ai the event that bin i remains empty after n balls
have been thrown into k distinct bins. Then we have

P [Ai] =
(

1− 1
k

)n
→
(

1
e

)n
k

as n→∞ . (2.12)

Therefore, if we throw n = −k log δ balls, the probability that a bin does
not yet contain a ball is δ. We get a lower bound for the probability that all

32

of the bins contain at least one ball,

P [All bins contain at least one ball] = 1− P

[⋃
i

Ai

]
≥

1−
k∑
i=1

P [Ai] = 1−
k∑
i=1

(
1− 1

k

)n
→ 1− ke−n/k , (2.13)

where we have used Boole's inequality. In other words, if we throw n =
k log(k/δ) balls into the bins we succeed in having at least one ball in
every bin with a probability > 1− δ.

If there are i bins which already contain a ball, then the probability that
a randomly thrown ball will drop into an empty bin is (k− i)/k. The num-
ber of throws needed for an empty bin to be occupied is clearly geometrical
and the expected number of throws needed is k/(k − i). Let us denote by
X the random variable of the number of throws needed to cover all of the
bins and by Xi the number of throws needed for an empty bin to be �lled
when i bins already contain a ball. Then X =

∑
iXi and by linearity of

expectation we have:

E[X] =
∑
i

E[Xi] =
k−1∑
i=0

k

k − i
= k

k−1∑
i=0

1
k − i

= k

(
1 +

k∑
i=2

1
i

)
≤ k

(
1 +

∫ k

1

1
x
dx

)
= k(1 +O(log k)) , (2.14)

i.e., by sending approximately k log k degree-1 packets we can expect to
have every message block covered.

2.4.3 Soliton distribution � ripple analysis

The LT process, which describes how the decoding of LT codes is per-
formed, is de�ned in [Lub02]. The set of blocks which have been decoded
but not yet subtracted from the packets they are neighbours of is called the
ripple. In the LT process each block in the ripple is evaluated one at a
time, subtracting it from all its neighbouring packets. If this step results
in degree-1 packets, the corresponding blocks have been decoded and the
ripple increases. The LT process ends when there is no further ripple to be
processed.

In order to succeed in the decoding process, the ripple must not disap-
pear until all of the blocks have been decoded. With a good degree distri-
bution the ripple should be small enough not to release too many blocks
at one time, to avoid an unnecessarily large ripple, and at the same time
ensure that the decoding process keeps going on.

A probability distribution known as soliton distribution can be derived
by walking through the LT process while keeping the expectation of the
ripple equal to one throughout the decoding. This means that at every
step, when time is increased by one, exactly one block is used to subtract
one degree from its neighbouring packet and subsequently the packet is

33

processed. Additionally, the corresponding block is decoded, and thus the
number of steps needed to decode the whole message is k.

Let us denote by n(t, d) the random variable for the number of packets
of degree d at the time instant t. The decoding process starts at time t = 0
when there is one degree-1 packet available, and none of the blocks has
been decoded yet. At the beginningE[n(0, d)] = kρd and the total number
of incident edges for degree d packets in the graph is d · ρd. The ripple
expectation condition can be stated as

E[n(t, 1)] = 1 ∀t ∈ {0, . . . , k − 1} . (2.15)

During the LT process, the expected number of packets whose degree is
reduced from d to d−1 as a result of a block being processed is the expected
number of edges incident to degree-d packets. This can be seen as follows:
at time t, with k − t blocks unprocessed (i.e., not yet decoded), the proba-
bility of a random degree-d packet being a neighbour to the processed block
is d/(k− t). When we multiply this probability by the expected number of
degree-d packets, E[n(t, d)], we get the number of packets whose degree is
reduced. On the other hand, the expected number of edges incident to a
packet of degree d is the total number of edges incident to the said packets
divided by the number of unprocessed blocks:

d · E[n(t, d)]
k − t

. (2.16)

The LT process is started with one degree-1 packet. To satisfy the con-
dition E[n(1, 1)] = 1 one packet needs to reduce its degree from two to
one in the transition from t = 1 to 2. That is, a degree-2 packet needs to be
a neighbor to the block in the ripple at t = 1. We set the expected number
of degree-2 packets whose degree is reduced to one, as this is suf�cient to
keep the process alive:

2E[n(t, 2)]
k

= 1 , (2.17)

that is, E[n(t, 2)] = k/2.
All of the nodes of degree d which are not neighbours to the block

processed at time t remain as-is for the next step at t + 1. In addition,
packets whose degree is d + 1 at time t and which are neighbours to this
block will reduce their degrees by one, thus resulting in degree-d packets at
time t + 1. Thus a general formula for the expected number of particular
degree packets can be written in a recursive form as

E[n(t+ 1, d)] =
(

1− d

k − t

)
E[n(t, d)] +

d+ 1
k − t

E[n(t, d+ 1)] . (2.18)

A solution to this recursion is

E[n(t, d)] =
k − t

d(d− 1)
, (2.19)

with n(0, 1) = 1 as the initial value. The initial assumption in this analysis
was that the decoder has n = (1+ε)k received packets and does not receive
any new ones during the decoding. Thus, the values we are looking for in
order to derive a degree distribution are of the form n(0, d). AsE[n(0, d)] =
kρd, we get the soliton distribution by dividing by k.

34

De�nition 2.1 (Soliton distribution) The soliton distribution is

ρ(d) =

{
1
k for d = 1 ,

1
d(d−1) for d = 2, . . . , k .

The average degree of soliton distribution is the harmonic sum H(k) ≈
log k.

In practice, soliton distribution performs poorly. The derivation was per-
formed under the condition that the average ripple size is one, but in sim-
ulations of the LT-process with soliton distribution it can more often than
not be seen that the ripple vanishes too early, resulting in a need for new
packets to continue the decoding and possible unnecessary redundancy in
the form of overlapping packets. Thus, the expected number of overhead
packets needed is large, in addition to a large variance of the overhead.
See Publication 2 and [Tir06] for some numerical evaluations.

2.4.4 Robust soliton distribution

As soliton distribution does not perform well enough to be used in practice
as a result of the problem of a disappearing ripple, the distribution has been
modi�ed in a way to provide a large enough ripple for the LT decoding
process to �nish with a high probability. The resulting degree distribution
is called the robust soliton distribution and is de�ned in [Lub02] as follows.

De�nition 2.2 (Robust soliton distribution) Let R = c · log (k/σ) ·
√
k,

where c > 0 is a constant and δ is the probability of a decoding error after
n received packets. Let

τ(i) =

R/ik for i = 1, . . . k/R− 1 ,

R log (R/σ)/k for i = k/R ,

0 for i > k/R .

The robust soliton distribution is

µ(i) =
ρ(i) + τ(i)∑k
i=1 ρ(i) + τ(i)

for i = 1, . . . , k .

The motivation for adding τ(i) to the soliton distribution is to ensure
that, on the average, the ripple is increased by one when a block is decoded
in order to avoid the ripple disappearing completely. τ(1) tries to ensure a
large enough ripple to begin the decoding, and the spike τ(k/R) tries to
ensure that all of the blocks are eventually covered.

The average degree of the packets using robust soliton distribution is
the same as with soliton distribution, O(log k).

In [Lub02] Luby presents a proof that when using robust soliton distri-
bution, the probability that k+O(

√
2 log2(k/δ)) packets is not enough for

decoding is 1 − δ. This is a remarkable result as it shows that there exist
degree distributions which can be used with a simple XOR-based decoding
algorithm to provide asymptotically optimal packet erasure coding.

35

The LT codes perform well when as regards the overhead, but the en-
coding and decoding time complexities can be made better. If we try to
design an LT code with a constant encoding cost, the number of packets
the receiver needs to collect is not close to k. This can be seen by proving
(see the balls and bins in Section 2.4.2 and [Sho06]) that for LT coding for
k blocks with a decoding algorithm, whose error probability is at most 1/kc

for some constant c, the bipartite graph corresponding to the code struc-
ture has O(k log k) edges. Therefore, if the decoding is to be completed
with near to k collected packets, the cost of one encoded packet needs to
be O(log k). In other words, if the degree distribution is designed to give a
constant encoding cost, then inevitably the number of packets collected is
not close to k. Thus, a fraction of the message blocks would remain unde-
coded. In other words, LT coding suffers from error �oor problem [RU08].

2.5 Raptor codes

Raptor codes [Sho06] can be regarded as the current state-of-the-art form
of fountain coding. They are actually an extension of LT codes, solving the
innate error �oor problem.

Basically, in Raptor coding a high-rate pre-code is used in addition to
outer LT coding. The LT codes that are used are designed to have linear
complexity, and the inner pre-code takes care of the error �oor problem;
that is, it alleviates the requirement that the LT code has to decode every
one of the message blocks. Instead, a constant fraction is enough and the
pre-code decodes all of the k message blocks.

The pre-code C is initially used to encode the k message blocks into
intermediate symbols. These symbols are then used as an input for the LT
encoder, which operates as required on the fountain principle generating
a potentially endless stream of encoded packets. The pre-code and the de-
gree distribution used Ω need to be designed to ensure a high probability
of decoding with (1 − ε)k collected packets, where ε is a small constant.
As the coding process involves two different codes, the encoding and de-
coding costs are not as easy to analyse as with LT codes. A thorough per-
formance analysis of Raptor coding on binary erasure channels is presented
in [Sho06].

The most basic examples of Raptor codes are the LT code, which is a
Raptor code without the pre-code, and a pre-code only (PCO) Raptor code.
In PCO Raptor code the degree distribution of the LT code is simply the
all-at-once distribution discussed in Section 2.4.2. Thus, a PCO Raptor
code can transfer any block code to a fountain code.

The application used dictates the choice of a good pre-code. Naturally,
encoding and decoding costs should be as low as possible, and in addition
the code should have a high rate. Suitable candidates are, for example,
Tornado codes or high-rate Hamming codes. Further, the asymptotic prop-
erties of Raptor codes depend on the rate of the outer code; LT codes do
not suffer from this kind of restriction.

Raptor codes can also be used as systematic codes. Systematic Raptor
codes can be constructed by performing the encoding and decoding opera-
tions in what is, in a way, the wrong order. The idea is �rst to set k output

36

symbols, i.e., packets to correspond to the k original data blocks. Then,
intermediate input symbols are derived by decoding the graph where the
original blocks are the output symbols. Then an encoding algorithm is ap-
plied, and the resulting construct has the k original blocks as the �rst pack-
ets, followed by the required number of other Raptor-coded packets (repair
packets). The graph (i.e., the degree distribution and the pre-code) has to
be carefully designed in order for this method to work. A similar approach
can be taken to derive the systematic form of LT coding [YP08].

Raptor codes are very ef�cient from the computational viewpoint, as
the encoding and decoding costs per block/packet are both constant. A
similar performance can be achieved with the codes known as Online codes
[May02] and [MM03]. However, since the publication of these papers no
further development seems to have taken place.

2.6 Applications

The original applications of fountain codes consider the reliable multicas-
ting of large �les to many recipients [BLMR98]. Since the publication of
ef�cient fountain codes, they have been considered for use in the following
applications.

• Underwater communications [CRZ08]

• Data dispersion in wireless sensor networks [AKS08]

• IPTV [LSW08]

• DVB-H [GBGC09]

• Internet protocols, such as FLUTE [PLL+04]

• Networked storage [DPR06]

• Deep-space communications [YCLX08]

• Delay-tolerant networking, DTN [AdP]

• In modern standards for sending media over cellular networks, 3GPP
MBMS [3GP07]

This list is not comprehensive, but gives the idea of many possible applica-
tions gaining a bene�t from using the fountain principle.

2.7 Summary

In this chapter we have presented the fountain coding principle and a brief
history of fountain coding and the motivation behind it. Ef�cient packet
erasure coding is mainly motivated by the need for a scalable transmission
method for multicasting data to many recipients. Methods using acknowl-
edgements and retransmissions are particularly inef�cient in multicast sce-
narios because of possible feedback implosion at the sender's end.

Traditional erasure codes, such as Reed-Solomon codes, can be used
to implement the digital fountain concept. These codes have the property

37

Table 2.2: Properties of presented coding methods. Typical encoding
and decoding costs, the amount of symbols needed for decoding and
additional notes are presented.

Code Encoding Decoding Needed symbols, f · k
Reed-Solomona O(k) O(k3) k

Tornadob O(1) O(k) (1 + ε)k
Balls and bins O(1) O(k) O(k log k)
Random linearc O(k) O(k3) k +O(1)

LT O(log k) O(k log k) k +O(
√
k log2 k)

Systematic LT O(1) O(k)
Raptor O(1) O(k) (1 + ε)k
Online O(1) O(k) (1 + ε)k

a Uses �nite �eld arithmetic. Theoretically faster decoding is pos-
sible, trade-off consists of high hidden asymptotic costs and com-
plicated algorithms. The number of symbols n is limited by the
size of the used �nite �eld, this may result in more than k received
packets needed. R-S codes are not rateless.

b Tornado codes are not rateless.
c See also Publication 3.

that for data of the size of k blocks, any k-set of collected unique encoding
symbols is suf�cient for decoding. However, the �nite number of possible
symbols and the computational complexity of the encoding and decoding
algorithms result in only an approximation of the ideal fountain principle.

The LDPC codes can be used for erasure correction, when the sent
packets consist of the original source blocks and check nodes, i.e., linear
combinations of the original blocks. Ef�cient LDPC codes known as Tor-
nado codes were the �rst published codes with linear time encoding and
decoding algorithms to approximate the ideal fountain very ef�ciently. The
trade-off in comparison with Reed-Solomon coding is inef�ciency in the
required number of received packets; the recipient needs f · k, packets to
decode the original data completely, where f > 1. With a good code
design the decoding probability is high with f close to unity. Still, with
Tornado codes, the total number of different possible encoding symbols n
has to be determined beforehand.

A signi�cant step forward was taken with the publication of LT codes,
the �rst universal fountain codes which are rateless. The number of en-
coding symbols does not need to be determined beforehand, i.e., the pack-
ets are generated on the �y for as long as required. The performance of
LT codes depends on the degree distribution, which has to be carefully
designed in order to achieve low overhead characteristics. Constant time
encoding for LT coding is not possible, as it suffers from the error �oor
problem. Raptor codes, an extension to LT codes using a pre-code before
the application of an LT code eliminate this error �oor problem and have
constant-time encoding algorithms. A comparison of the properties of the
modern fountain codes presented in this chapter is provided in Table 2.2.

A very low and constant overhead is achieved when each of the source

38

blocks is selected to be included in a packet with a probability 1/2. This
idea is used in a random linear fountain (RLF). When the receiver has
collected a linearly independent set of k packets, the decoding can be done
using Gaussian elimination. The overhead when using RLF is only 1.6
packets on average, but the downside is the high computational complexity
of the encoding and decoding algorithms.

Further issues include the need for some kind of �ow control. The
fountain principle itself is based on �ooding to the network with packets, a
scenario which not all network operators would probably like. Additionally,
no killer application for fountain coding has yet been found. Although
Raptor codes are part of some international standards, such as [3GP07],
patent and other issues may result in slow adoption.

The research pace concerning different kinds of fountain coding meth-
ods has recently picked up some speed and an increasing number of re-
search papers on the subject can be found. This chapter has presented the
basics and scratched the surface of some advanced methods. In the fol-
lowing chapters we analyse and optimise different kinds of coding methods
inspired by the fountain coding principle. LT coding in particular plays a
large part in the methods described.

39

40

3 OPTIMISATION OF FOUNTAIN CODES

The performance of fountain coding and related packet erasure correcting
schemes is determined by the ability to succeed in the data transfer process
with an overhead that is as low as possible. In the literature the term per-
formance is also often used when considering the time complexity of the
different coding methods. In this thesis, however, by the performance of
an erasure code we primarily mean the ability of the code to keep the wast-
ing of bandwidth as small as possible. However, we will also discuss some
aspects of the time complexity of the different schemes.

In [Lub02], LT codes are proved to be asymptotically optimal when ro-
bust soliton distribution is being used. This means that for a number of
source blocks tending to in�nity, the overhead needed for decoding is op-
timal, i.e., the overhead factor f → 1 when k → ∞. Indeed, for cases
when the message length k is very large, preferably thousands or tens of
thousands of blocks, robust soliton distribution with appropriate parame-
ters works remarkably well in terms of low an overhead and low encoding
and decoding complexity. Although probabilistic arguments can be used to
prove the asymptotic optimality of LT codes, for small message lengths, and
for any given k, the optimal degree distribution problem is still unsolved.

This chapter presents four aspects of the optimisation and development
of erasure correcting codes based on the fountain principle for small mes-
sage lengths. The �rst half deals directly with degree distribution optimisa-
tion for LT codes. In particular, we present an exact analysis of the system
by modelling the LT coding process as a Markov chain and solve the opti-
mal degree distributions for very small systems. We also present a combi-
natorial algorithm which can be used to derive results for up to 30 source
blocks. Besides optimal degree distributions for toy cases, our results pro-
vide a general insight into the structure of good degree distributions. The
problems with these methods are state space explosion and excessive com-
putational complexity, which prohibit their use to cover longer �le sizes.

For source �les of hundreds of blocks we present an optimisationmethod
based on simulations of the LT process. In our proposed optimisation strat-
egy, an estimator for the performance measure is constructed using con-
cepts from importance sampling theory. In particular, we use the concept
of the change of the probability measure. This allows us to construct the
estimator using simulation results generated with a speci�c degree distri-
bution, and estimate the performance if another distribution was used. An
iterative algorithm for optimising the degree distribution is proposed.

Random linear fountain (RLF), presented in Section 2.3.3, is an ef�-
cient fountain coding method in terms of low an overhead. The required
overhead is lower than with LT coding for �nite �le lengths. The problem
is the high computational cost of the encoding and, in particular, decod-
ing algorithms for large k. A divided random linear fountain is a rateless
code that is faithful to the fountain principle. The data are divided into
segments of blocks and each of the segments is transmitted using RLF. The
division is made to allow one to solve multiple parts which are of a more

41

computationally convenient size, compared to directly decoding the whole
�le. However, the division, with strict adherence to keeping all of the sent
packets statistically equivalent, results in some inef�ciency when a channel
without feedback is used, as some packets are sent to parts of the problem
that have already been decoded. Our contribution is a scheme in which
LT coding is used on top of random linear fountain coding to alleviate this
inef�ciency. Using LT coding on top of RLF is further compared to using
a data carousel method, in which packets are sent in sequence to the differ-
ent parts until all the data have been decoded. Divided RLF can be used
for �le sizes of hundreds of source blocks.

We further proceed by presenting a novel sequential erasure correcting
method. We sacri�ce some of the ideal properties presented in Section 2.2
for the ideal fountain. In particular all of the �le blocks are initially sent
as-is, i.e., the code is systematic. Thus, the time-independence property no
longer holds: the coding has a clear starting point and not all of the sent
packet are stochastically identical. An advantage is that, unlike with LT
coding, the �rst k packets contain only non-overlapping information. After
the initial round repair packets are used to attempt to correct the possible
gaps left by the erasure channel. The sender updates his belief about the
situation of the receiver, based on the channel loss probability p, which
is assumed to be known. Thus, additionally the channel independence
property of an ideal fountain is lost. We optimise the sequence of the re-
pair packet degrees using a greedy criterion based on the belief about the
sender on the current state of the receiver. The code aims for simplicity and
ef�cient performance attaining a low overhead of needed repair packets for
code lengths up to a thousand.

This chapter is organised as follows. We describe our contributions to
fountain coding optimisation in more detail in Section 3.1. The methods
and results from Publications 1 and 2 considering the degree distribution
optimisation of LT codes for small message lengths are summarised in Sec-
tion 3.2. Section 3.3 presents the divided random linear fountain, studied
in Publication 3, and the approaches that were studied to improve its ef�-
ciency. Finally we present the systematic, sequential erasure coding strategy
in Section 3.4, based on Publication 4. The chapter is summarised in Sec-
tion 3.5.

3.1 Contribution

In this section we describe our contribution in more detail. We start by con-
sidering the problem of �nding optimal degree distributions for LT codes
for small message lengths from a couple of message blocks up to hundreds
of blocks in Section 3.2. First we present an exact Markovian analysis of
the evolution of the state in the decoding process, in which a state cor-
responds to the set of received packets. A Markov chain is formed with
state transitions and their probabilities determined by the probabilities of
the reception of different possible packets. These probabilities are directly
determined by the degree distribution used. The degree distribution is opti-
mised by either minimising the expected number of steps in the chain from
the initial state to an absorbing one (complete decoding), or maximising

42

the probability of the chain being in the absorbing state at the kth step.
The degree distributions we �nd using this method are optimal; no better
ones can be found.

The drawback of the Markovian model is that it can be analysed only
for the toy cases k = 3 and k = 4, because of the state space explosion. We
further present a combinatorial approach which uses a recursive algorithm
to calculate optimal degree distributions for maximising the probability of
decoding in k steps. This can be used to calculate results for up to k =
30. These two methods, with accompanying results, are studied in detail
in Publication 1.

The small message length degree distribution studies are continued in
Section 3.2.5. We present a method based on simulating the LT process
and iteratively making the degree distribution better. We use a novel idea
inspired by importance sampling techniques to �nd a function which ap-
proximates the performance for any degree distribution, not only for the
one used in the simulations. In particular, this function allows us to use
simulations to �nd an estimate for the gradient of the given performance
measure with respect to the degree distribution. This gradient is then used
at each step of an iterative algorithm to determine the direction of modi�-
cation from the current degree distribution. Our numerical results suggest
that the best performance is obtained with a degree distribution that has a
spike similar to robust soliton distribution at some of the high degrees, and
free parameters for degrees one and two. This method is studied in detail
in Publication 2.

In the rest of this chapter we present two different erasure correction
methods with some novel ideas. In Section 3.3 we study a scenario in which
a random linear fountain (cf. Section 2.3.3) is divided into multiple parts
and packets are generated from each of the parts using RLF. The division
is made in order to make the parts reasonably fast to decode using a slow
algorithm, i.e., we use the divide-and-conquer principle in the design of the
encoding and decoding algorithm. The goal is to conserve the statistical
identicality of the packets sent. This results in the selection of the part
from which a packet is generated uniformly at random. However, when
the operation is restricted to channels without feedback, the decoding of
different parts is completed at different times without the sender knowing
this; when the sent packets are statistically identical, some packets are sent
to parts which are already decoded. Thus, with a random algorithm some
ef�ciency is lost.

Our contribution is a method in which LT coding is used on top of the
RLF encoded packets, generating what we call macropackets. The LT cod-
ing ensures that the macropackets are also statistically identical, and thus
the rateless nature and independence from channel loss statistics are re-
tained. This mode of operation alleviates some of the inef�ciency resulting
from dividing the original data into multiple parts of several blocks. We
further compare the macropacket scheme with a data carousel-inspired al-
gorithm, in which a packet from each of the parts is generated in turn until
all the original data have been decoded. The methods and the research
results are presented in detail in Publication 3.

In Section 3.4 we present a strategy in which we sacri�ce the time-

43

independence property of ideal fountain coding and study how good a per-
formance can be achieved in such a setting. The coding is started by send-
ing each of the k original blocks as such; that is, the method is systematic.
The time independence does not hold true any more as the sent packets
are not statistically identical. As it is possible that during the initial system-
atic round some of the packets are erased, repair packets are generated by
choosing a packet degree and sampling the original source blocks as in LT
coding.

The repair packet degree optimisation works by allowing the sender to
keep track of the sent packet degrees and update his belief about the state
of the receiver. An estimate p of the channel repair probability is assumed
to be known to the sender, and is used in belief updating. Basically, the be-
lief is the probability distribution of the number of the packets the receiver
is still lacking. This distribution is used in a greedy decision algorithm to
determine the degree of the next repair packet. The repair packet degree
selected is the one giving the highest probability of the packet immediately
decoding a novel original block at the receiver's end. The optimal degree
sequences are studied and discussed in detail identifying some common as-
pects and behaviours of the coding scheme. The encoding and decoding
algorithms have low complexity and the overhead in the repair packets is
low, O(p). This novel systematic erasure code is studied in Publication 4.
Although the code is not rateless in the same sense as LT coding, the num-
ber of possible repair packets is potentially in�nite and does not have to be
determined beforehand.

3.2 LT codes for small message lengths

Although using LT coding with very small lengths is not very practical, and
arguably other erasure coding methods could provide even better perfor-
mance 1, the exact analysis and results we present give us insight into the
whole optimal degree distribution problem and reveal interesting things
about the nature of good degree distributions.

First we will present a Markovian analysis of the LT process in Sec-
tion 3.2.3. Using this model optimal degree distributions for k = 3 and
k = 4 are presented. Then, in Section 3.2.4, we continue by a combi-
natorial approach, which can be used in optimisation for up to k = 10
analytically, and numerically for problem sizes of tens of message blocks.
This presentation is a summary of Publication 1.

For somewhat larger k, hundreds of source blocks, we present the nu-
merical optimisation algorithm based on simulating the LT process and
constructing a target function for optimisation using concepts from impor-
tance sampling theory. Based on the simulation results we are able to cal-
culate the direction of the gradient of the target function, i.e., we have the
best direction to modify the degree distribution, allowing one to use itera-
tive numerical methods for �nding the optimal distribution. This method
for optimisation of the degree distribution of LT codes is presented in Sec-

1For example Reed-Solomon erasure codes would require exactly k different received pack-
ets. The computational cost nor the limited number of possible symbols are not issues for the
small lengths we are considering.

44

tion 3.2.5 and Publication 2.

3.2.1 Related research

The literature on optimising the degree distributions of LT codes for very
small message lengths is scarce. In fact, at the time of writing this (June
2009) the author is not aware of any published article besides the ones
included in this thesis, namely Publications 1 and 2, with a similar ap-
proach of directly �nding the best possible degree distributions for small
k. Some recent work on �nite length analysis of LT coding is available,
e.g., in [KLS04], but the employed methods are different from ours, and
consider the error probability of the belief propagation algorithm.

Small length LDPC codes are studied for example in [PB05]. The used
methods are combinatorial, and the studied message sizes fall under the
same range studied in this thesis. Further, the resulting optimal overhead
factors of small length LDPC codes are similar to small length cases of LT
codes presented in this thesis.

The small length analysis and discussion in Publications 1 and 2 seems
to have inspired research such as [BC08]. There the authors study robust
soliton distribution and search for parameters giving good performance for
message sizes k = 100 and less. Small message lengths are justi�ed by
real-time applications requiring low-latency in the transmission.

3.2.2 Optimisation objectives

The degree distributions for LT codes can be optimised using different cri-
teria. Let us denote by T the number of steps (received packets) needed
in the LT decoding process for completion (full decoding), and by Zn the
number of decoded blocks after receiving n packets and performing the pos-
sible iterative decoding steps. These are related by T = min{n : Zn = k}.

We de�ne two different objectives for the coding optimisation problem:

1. Objective Min.Avg.: Minimise the expected number of steps E[T]
needed for full decoding.

2. Objective Max.Pr.: Maximise the probability of decoding with ex-
actly k received packets. This is the point where full decoding is possi-
ble for the �rst time. We denote this probability by Pk = P [Zk = k]
= P [T = k].

These two optimisation goals are closely related and result in only slightly
different degree distributions when the optimisation results are compared.

The second optimisation goal, Max.Pr., is close to those de�ned in the
literature, in which the studies typically consider the failure probability of
the belief propagation decoder.

3.2.3 Markovian model

We study the LT process presented in Section 2.4 as a Markov chain. The
set of distinct packets the receiver has collected determines the state of the
chain. The decoder performs the decoding in a particular state as far as it
can, possibly revealing fully decoded blocks. The process starts when the

45

receiver has no packets at all. The degree distribution used in the encoding
process determines the probabilities of different packets. The form of the
received packet, in turn, determines the corresponding state transition.

Let us consider the case with k = 3 message blocks and denote the orig-
inal blocks by a, b and c. If the receiver has already decoded the �rst block,
a, in the message and has received a packet with second and third block
summed together, bc, the system would be in the state {a, bc}. The LT
process ends when all of the blocks are decoded, that is, the state {a, b, c}
is the absorbing state.

The total number of non-zero packets the sender can combine out of k
blocks is 2k − 1. As each of these potential packets either belongs or does
not belong to a particular state denotation, the total number of possible

states is 22k−1, resulting in very high growth in the problem size with k.
The states formed by considering all possible combinations of distinct

received packets are called the raw states of the system. We reduce the
number of these raw states by decoding reductions, isomorphism reductions
and state aggregation.

By decoding reductions we mean situations in which the iterative de-
coder can be used to simplify the state denotation. For example, state
{a, abc} can be reduced to the state {a, bc} by subtracting the �rst decoded
block from the packet abc.

Further reduction in the number of raw states can be achieved by con-
sidering isomorphisms. Any two states that can be derived from each other
by permutation of the blocks in the state denotation are isomorphic. Each
set of isomorphic states can be represented by a canonical representative,
which can be determined by ordering the isomorphic states in some unique
way and picking up the �rst state in the list as the canonical representative2.
Thus the total number of states needed to be considered can be signi�-
cantly reduced from the original raw states. An example of a set of isomor-
phic states is: {{a, bc}, {b, ac}, {c, ab}}, which all can be represented by
the canonical representative {a, bc}. Essentially, all of these states consist
of one degree-1 block and the other two possible blocks XORred together.
Thus the structure of the example states is the same.

After doing the two basic forms of state space reduction a �nal step of
state aggregation can be performed by analyzing the states more closely.
An example of the states and the transitions for k = 3 is depicted in Fig-
ure 3.1. When we examine the four states in the shaded box before the
absorption state on the right side, i.e. {ab, bc}, {ab, ac, bc}, {ab, ac, abc}
and {ab, ac, bc, abc}, we see that any received degree-1 packet in any of
these states will result in complete decoding and transition to {a, b, c}. As
a result, these four states can be aggregated into one macro state.

Using the above reductions, we can reduce the number of states in the
chain for toy cases of k = 3 and k = 4 from 128 and 32768 raw states,
respectively, to 9 and 87 states. However, for k = 5 the number of reduced
states remains as 161065, which is too high from computational point of
view.

2The reason why it is suf�cient to consider a single permutation of the blocks is that in the
encoding process the data blocks are sampled uniformly at random once the packet degree is
chosen.

46

p3

(1/3)p2
(2/3)p1

(1/3)p1

(2/3)p2 (2/3)p1
(2/3)p2

p3
p2

(1/3)p2

p1

p2

p3

(1/3)p1

(2/3)p2

p1

(2/3)p2

p3

(2/3)p1

p1

(1/3)p1

(2/3)p1

(2/3)p2

(1/3)p2 p3

p3

{a,ab,abc}

{}

{a,b}

{abc}{ab}{a}

{ab,bc}

{ab,bc,abc}{ab,ac,bc}

{ab,ac,bc,abc}

{ab,abc}

{a,b} {a,bc}

{a,b,c}

{a,bc} {a,ab} {a,abc} {ab,bc}

{a,b,ac} {ab,bc,c}{a,b,abc}{a,b,c}

Figure 3.1: Example of state transition diagram for k = 3. The dark
shaded boxes represent the reduced states before state aggregation. Solid
lines represent state transitions, the probabilities are given corresponding
to the components of the degree distribution. Dotted lines represent reduc-
tions of raw states. The four states in a rounded box in the right side can be
further aggregated into one state, resulting in 9 uniquely different states in
the system.

Probabilities pij , with which the state of the Markov chain changes
from i to j, de�ne an N × N state transition matrix P , where N is the
number of reduced states. The state probabilities pij depend on the used
degree distribution, ρ(d). The state transition matrixP is generated by con-
sidering the reduced state sets. The idea is to consider all possible arriving
packets to each of the states, subsequently decoding what is possible and re-
placing the resulting state by its canonical representative. The probability
of the degree of the used packet is then added to the corresponding entry in
state transition matrix P . This algorithm is listed in Algorithm 3.

Using the state representations as described above the optimisation prob-
lem can be formulated as follows. We partition the state transition matrix
P in a canonical form:

P =
(

Q R
0 I

)
, (3.1)

where Q is the transition matrix between transient states, R represents tran-

47

Algorithm 3 Generation of the transition matrix P

1: generate all possible 22k−1 raw states
2: remove all states that are reducible by decoding and retain only the

canonical representative of each class of permutation isomorphic states
3: repeat
4: take a state s from the reduced state space
5: repeat
6: generate an arriving packet pckt , i.e., a non-empty subset (combi-

nation) of the n blocks
7: add pckt to the set of packets in the intial state s, reduce the new

state by decoding and �nally �nd its canonical isomorphic repre-
sentative s′

8: add ρ(d) to the entry ss′ of the transition matrix, where d is the
degree of pckt

9: until all distinct packets are generated
10: until all states of the state space are gone through

sitions from transient states to absorbing ones and I is identity matrix cor-
responding to the absorbing states. In our case, we have only a single ab-
sorbing state, i.e., the state in which the decoding is fully completed. Algo-
rithm 3 can initially be used to form P , and if necessary the states can be
relabelled so that the transient states come �rst, resulting in the canonical
form (3.1).

For an absorbing chain, the fundamental matrix M = (I − Q)−1 is
positive and well-de�ned. An element mij ∈M gives the expected num-
ber of times the chain visits state j when the chain starts in state i. Using
the fundamental matrix, it is possible to calculate the expected number of
the transitions needed for decoding:

E[T] = π0MeT

= π0(I −Q)−1eT ,
(3.2)

where π0 = (1, 0, . . . , 0) is the initial distribution vector corresponding
to an empty system, and eT = (1, . . . , 1)T. For objectiveMin.Avg, we can
directly optimise this quantity.

For objective Max.Pr. we need to consider the probability of full de-
coding on exactly k steps. Using the canonical form (3.1) we can write this
probability (actually, the probability of decoding with any number of steps)
as:

Pk = π0P
kπT

abs , (3.3)

where πabs = (0 . . . 0 1) corresponds to the absorbing state.
For k = 3 we optimise the degree distribution in the sense of the two

objectives discussed above. The Markov chain is constructed for a system
with the reduced state space consisting of 9 states. Using Algorithm 3, we

48

Table 3.1: Optimal weights in case k = 3
Min.Avg. Max.Pr. binomial soliton uniform deg-1

p1 0.524 0.517 3/7 2/6 1/3 1
p2 0.366 0.397 3/7 3/6 1/3 0
p3 0.109 0.086 1/7 1/6 1/3 0
E[T] 4.046 4.049 4.133 4.459 4.725 5.5
P3 0.451 0.452 0.437 0.397 0.354 0.222

can �nd the transition probability matrix

P =

0BBBBBBBBBBBBBBB@

0 p1 p2 p3 0 0 0 0 0

0
p1
3 0 0

2p1+2p2
3

p2
3 + p3 0 0 0

0 0
p2
3 0 2

3p1
p1
3 p3

2
3p2 0

0 0 0 p3 0 p1 p2 0 0

0 0 0 0
2p1+p2

3 0 0 0
p1+2p2+3p3

3

0 0 0 0 0
p1+p2+3p3

3 0 0
2p1+2p2

3
0 0 0 0 0

p1
3

p2
3 +p3

2
3p2

2
3p1

0 0 0 0 0 0 0 p2+p3 p1

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
,

where pi = ρ(i). Using (3.2) we now have explicitly

E[T] = π0(I −Q)−1
eT =

1
p1

+p1·
(

6
p1 − 3

+
18

(3− p2)(3− 2p1 − p2)
+

9
2(p1 + p2)(3p1 + 2p2)

)
.

(3.4)

From this result it is easy to calculate the optimal weights if we want to have
as few steps as possible on average to decode the message. Similarly, using
(3.3) it is easy to �nd the optimal weights that maximise the probability of
full decoding after 3 received encoded packets.

For k = 4 similar kinds of constructs are used to optimise the degree
distributions. A computer algebra system (Mathematica [Wol]) is used to
automatically generate the state transition matrix for the 87 reduced states
and optimise the corresponding symbolical forms of (3.2) and (3.3).

The optimisation results for both the Min.Avg. and Max.Pr. criteria
are listed in Table 3.1 for k = 3 and in Table 3.2 for k = 4. In addition
to the optimisation results, the performance with binomial, soliton, uni-
form and all-at-once distributions (deg-1) are presented. Both uniform and
all-at-once distributions perform rather poorly, the all-at-once distribution
being worst. Using only degree-1 packets suffers from the problem of �lling
the last few of the missing blocks. In contrast, the binomial distribution
performs reasonably well.

The difference in performance between the two objectives is insignif-
icant. In particular, the distribution that is optimal in the Max.Pr. sense
works very well also for the Min.Avg. criterion. Also, the ranking of the
other three distributions is the same as before. Binomial distribution works
rather well with respect to both criteria (though, in relative terms, not quite
as well as in the case k = 3), while the other two are much worse.

49

Table 3.2: Optimal weights in the case k = 4
MinAvg MaxPr binomial soliton uniform deg-1

p1 0.442 0.429 4/15 3/12 1/4 1
p2 0.385 0.430 6/15 6/12 1/4 0
p3 0.112 0.100 4/15 2/12 1/4 0
p4 0.061 0.041 1/15 1/12 1/4 0
E[T] 5.580 5.590 6.255 6.276 7.182 8.333
P4 0.314 0.315 0.257 0.262 0.184 0.094

3.2.4 Combinatorial approach

For the Max.Pr. objective, i.e., maximising the probability Pk of decoding
in exactly k steps, we can use an alternative, recursive approach, which is
viable for larger values of k. We take advantage of the fact that the order of
the received packets is irrelevant; with a speci�c set of k received packets
the decoding problem can either be solved fully or then some of the original
data blocks remain undecoded.

In order to emphasise the dependence of Pk on the degree distribution,
let us write Pk = Pk(p1, · · · , pk), where pi = ρ(i) are the point probabili-
ties of the degree distribution ρ(d). We calculate this on the condition that
of k received packets k − m have degree 1 and are all distinct. The �rst
of the conditioning events happens with (k −m)th point probability of the
Bin(k, p1) distribution. For the decoding to start, the LT decoder needs at
least one degree-1 packet, and thus (k−m) ≥ 1. Duplicate packets are not
allowed, as in the optimal situation all of the received data have to be novel
to the receiver. The probability of all of the k −m degree-1 packets being
mutually distinct is

k

k
· k − 1

k
· · · · · m+ 1

k
=

(k − 1)!
m! kk−m−1

. (3.5)

Thus, by conditioning on the number of degree-1 packets we have

Pk(p1, . . . , pk) =
k−1∑
m=0

(
k

m

)
pk−m1 (1− p1)m

× (k − 1)!
m! kk−m−1

Pm(p(k,m)
1 , . . . , p(k,m)

m) ,

(3.6)

where

p
(k,m)
j =

n∑
i=2

pi
1− p1

(
m
j

)(
k−m
i−j
)(

k
i

) , j = 1, . . . ,m (3.7)

is the degree distribution of the remaining m packets originally of degree
of at least 2, after the degree-1 packets are subtracted. Fraction pi/(1− p1)
is the probability of a packet to be of degree i given that it is not a degree-
1 packet. The remaining fraction gives the probability of the event that
when i original blocks are chosen from the k possible, we choose exactly j
blocks from the m still undecoded blocks. That is, the reduced degree of
the packet is j after subtraction of the degree-1.

50

2 4 6 8 10 12 14 16
d

0.1

0.2

0.3

0.4

0.5

p d

Figure 3.2: Optimised degree distribution for k = 15 using the recursive
combinatorial approach.

The recursion (3.6) can be solved and simpli�ed to give

P0 = 1
P1 = P1(p1) = p1

P2 =
1
2
p2

1 + 2p1p2

P3 =
2
9
p3

1 +
4
3
p2

1p2 + 2p1p
2
2 + 2p2

1p3 + 4p1p2p3

... ,

(3.8)

where P0 and P1 are the seeds for the recursion.
For small k, the recursion and optimisation can be made in symbolic

form using a suitable computer algebra system (such asMathematica [Wol]).
Examples of optimisation results are given in Table 3.3. In addition, the
symbolic form can be used for consistency checking of the results obtained
using the Markov chain optimisation model presented in Section 3.2.3.
The results are exactly the same as for cases k = 3 and k = 4 using the
Max.Pr. objective. For larger k the number of terms in (3.8) becomes soon
unmanageable for symbolic computations. For example, for k = 10 the
number of terms is already 16796.

Results for larger k can still be obtained by numerically calculating the
recursion (3.6). This can be done for up to k = 30 in approximately one
minute on a modern desktop PC. For optimisation purposes we can use
values such as k = 20, for which the computation of one point takes less
than a second. An example of optimised degree distribution for k = 15 is
presented in Figure 3.2. More results and discussion on the optimal form
of the degree distribution are presented in Section 3.2.6.

3.2.5 Simulation based optimisation

Importance sampling is a method often used in conjunction with Monte
Carlo integration methods to reduce the variance of the estimates of inter-

51

Table 3.3: Optimal weights forMax.Pr. objective in cases k = 5, . . . , 8
k 5 6 7 8
p1 0.370 0.327 0.294 0.268
p2 0.451 0.467 0.480 0.491
p3 0.102 0.099 0.093 0.085
p4 0.055 0.068 0.082 0.099
p5 0.021 0.024 0.021 0.013
p6 0.014 0.020 0.027
p7 0.009 0.010
p8 0.007
Pk 0.226 0.166 0.124 0.094

est. Variance reduction makes it possible to reduce the number of samples
needed for estimation with a certain accuracy. The basic idea is to use
another distribution to make important rare events in the simulation more
frequent, and then compensate for this by an appropriate weighting factor,
called the importance ratio [Rub97] [Ros00].

Instead of using the importance sampling as a variance reduction tech-
nique, we use this technique to estimate the value of the objective function
for a different degree distribution than what was originally used in the sim-
ulations. In particular, an estimate for the gradient of the estimator with
respect to the degree distribution is constructed, and the best direction to
improve the distribution is obtained. This technique is then used in a nu-
merical iterative algorithm to �nd the optimal degree distribution.

The proposed method is based on simulations. One simulation run is
a full realisation of the complete LT encoding and decoding process for a
speci�c size message using a degree distribution given, with the point prob-
abilities pi = ρ(i). We generate a set of samples Sk = {Rk,n(k)}, where
Rk is the outcome of the kth simulation run, i.e., the value of the objective

function in that run, and n(k) is a vector where component n
(k)
i gives the

number of degree-i packets generated and sent during the simulation run.
We use the two optimisation goals, Min.Avg. and Max.Pr. de�ned in

Section 3.2.2. For Min.Avg. we minimise E[R] = E[T] and for Max.Pr.
we maximise E[R] = E[1(T = k)].

Before introducing the estimate of R, we brie�y review the principle
of importance sampling. The expectation of function h of a continuous
random variable X with probability density function p(X) is

E[h(X)] =
∫
h(x)p(x) dx . (3.9)

This can also be written as

E[h(X)] =
∫
h(x)

p(x)
g(x)

g(x) dx , (3.10)

where g(x) 6= 0∀x : p(x)h(x) 6= 0. Now, ifm samples {X̃m
i=1} are drawn

52

from g(x), an unbiased estimate of the expectation can be calculated as

ĥ =
1
m

m∑
i=1

w(X̃(i))h(X̃(i)) , (3.11)

where

w(x) =
p(x)
q(x)

(3.12)

is the importance ratio.
The simulation samples Sk, k = 1, . . . ,m are used in constructing the

estimate of R. The importance sampling idea is used here: Simulations
are performed using a given degree distribution pi, i = 1, . . . , k, but the
value of the estimator is obtained for any other degree distribution qi, i =
1, . . . , k:

R̂(q) =
1
m

m∑
k=1

Rk
∏
i

(
qi
pi

)n(k)
i

. (3.13)

Thus, (3.13) gives an estimate ofR if distribution q is used and, in principle,
allows to an optimisation to be performed with respect to q. However,
there is a numerical problem, as the estimate has a large variance with a
�nite number of samples, especially when q and p are far from each other.
Further, as the number of free parameters in the distribution grows, the
accuracy becomes worse and more simulation samples are required for the
estimator to be formed.

For a practical optimisation algorithm, (3.13) is used to derive another
estimate, namely for the gradient vector of the objective function with re-
spect to the degree distribution. The ith component of the gradient of the

estimate R̂ with respect to q is

ĝi =
∂R̂

∂qi
=

1
m

m∑
k=1

Rkn
(k)
i

1
pi

(
qi
pi

)n(k)
i −1

. (3.14)

We evaluate the gradient at q = p, to give a direction in which the candi-
date for a better degree distribution would lay:(

∂R̂

∂qi

)
q=p

=
1
m

m∑
k=1

Rk
n

(k)
i

pi
. (3.15)

Thus, by simulating with degree distribution p, an estimate for the direction
of the gradient is obtained.

When the gradient is known, it can be used in a numerical algorithm
to �nd the optimum (minimum or maximum, depending on the goal) of
the estimator. In Publication 2 we have used the gradient method with
bisection line search [BSS93] to take the step towards a better distribution.
In addition to knowing the direction of the step, it needs to made sure that
the degree distribution resulting from taking the step is feasible. This can
be carried out by projecting it to hyperplane g · e = 0, and constraint
the step size so that all of the resulting components (pnew)i ∈ [0, 1]. The
simulation is continued until a (pre-de�ned) stopping criterion is met. We

53

have calculated the sample standard deviation of the estimate R̂ and stop
the algorithm when a certain threshold is met.

For details of the optimisation algorithm, see Publication 2. We give a
simpli�ed summary of the algorithm here. The form presented here works
with point distributions, in which the probabilities pi are directly optimised.
It is easy to extend the algorithm for parametrised distributions, the details
are presented in Publication 2:

1. Use the given probability distribution (either point or parametrised
form) as a starting distribution p.

2. Generate samples Sk using the degree distribution p. Generate sam-
ples until accuracy is less than ε.

3. Use the samples Sk to calculate the gradient g. This is, in the case of
point distribution, the projection of the gradient vector.

4. Do a bisection search in the direction of the gradient.That is, op-

timise R̂ (p + λg), by �nding either a minimum or maximum de-
pending on the goal. As a result we have the step length λ.

5. The step towards a better distribution is: step← λ · g.

6. Limit the change of each component to 90% of the previous value.
This percentage can also be varied. This ensures that the conditions∑
pi = 1 and pi ∈ [0, 1] are met for point distributions.

7. Move in the direction of the gradient: p← p + step.

8. Calculate the value of R̂ and the standard deviation σ bR. If the abso-
lute difference between the last two estimates is less than the standard
deviation, then stop. Otherwise continue and go back to step 2.

The novel idea of using the importance sampling-inspired gradient es-
timator works reasonably well when the number of samples is large and the
number of free parameters to be optimised is low. When all of the individ-
ual point probabilities are regarded as free parameters, optimisation is ef�-
cient only for up to k = 10, after which the number of required samples is
too high leading to computational and memory issues. Further, the optimi-
sation goal Max.Pr. behaves better than Min.Avg.. When maximising the
decoding probability, line search converges well to a clear maximum, and
an implementation is easy to make. However, this is not so when minimis-
ing the average number of steps needed. The main problems are choosing
a suitable interval for the line search and the fact that q = 0 is a global min-
imum (cf. (3.13)). Thus, the direction of the gradient and the convergence
of the algorithm need to be carefully controlled to produce good results.

In Publication 2, equations (3.13)-(3.15) are also presented in a parame-
trised form, allowing the use of degree distributions in which only a couple
of parameters dictate the form of the distribution. Numerical evaluations
indicate that the best results, i.e., the degree distributions giving the lowest
overhead, have only a couple of components which need to be optimised.

54

Table 3.4: Results from 10000 runs of LT simulations for k = 100

Distribution Average T Std σ̂(T)
(3.16) 125.0 13.1

(3.16) with spike at i = 50 123.9 9.9
ideal soliton 169.5 72

robust soliton, σ = 0.5, c = 0.01 148.5 44.8
robust soliton, σ = 0.5, c = 0.03 134.9 23.9
robust soliton, σ = 0.5, c = 0.1 132.9 13.3

0
0.25

0.5
0.75

1

p2

0
0.25

0.5
0.75

1

p3

0

0.2

0.4

0.25
0.5

0.75
1

0.25
0.5

0.75

1

p3

Figure 3.3: P3 as function of p2 and p3. The ridge is steep in one direction
and less so in others.

The most effective form, with three parameters η1, η2 and η3 for k = 100
is found to be

pi =

η1, for i = 1 ,

η2, for i = 2 ,

η3, for i = 50 ,
1

i(i−1) , for i = 3, . . . , k, i 6= 50 ,

(3.16)

which is actually soliton distribution with the �rst two degrees as free pa-
rameters, with an added �spike� at i = 50. This form mimics that of robust
soliton distribution, in which the spike is also present. Note that the distri-
bution needs to be normalised, and thus the form (3.16) has only two free
parameters. Numerical results from simulations when using the optimised
parameters in (3.16) are presented in Table 3.4.

3.2.6 Results � The form of optimal degree distribution

The results presented in both Publications 1 and 2 suggest that a degree
distribution has only a few parameters that have to be correctly adjusted to
get a good performance. Also, the best form of degree distributions remains

55

similar to that of the robust soliton distribution, with a `probability spike'
on some higher degree. This can be seen, for example, from the optimal
form in Figure 3.2, in which the combinatorial approach is used, and from
the results in Table 3.4. The robust soliton distribution is optimal in the
asymptotic case k →∞, but degree distributions of the form resembling it
seem to perform well also in the �nite length cases, even for small k.

The insensitivity of the performance to the degree distributions can be
further studied by calculating the eigenvectors and -values of the second
derivative matrices ∂2Pk/∂pi∂pj at the optimum (maximum) point using
the analytical forms of Pk, presented in Section 3.2.4. The eigenvectors
indicate the principal directions, and with the corresponding eigenvalues
themagnitude of the curvatures in these principal directions can be studied.
Figure 3.3 depicts P3, with principal directions displayed as small arrows.
The two eigenvalues corresponding to the eigenvectors in this case are λ1 =
−6.97 and λ2 = −0.71. In the direction of the second principal direction,
changing the degree distribution would result in a very slight change in the
performance of the coding.

In general, the eigenvalues of the principal directions form a decreasing
sequence, in which the typical ratio between two consecutive eigenvalues
is of the order of 10. For example, when k = 10 the largest eigenvalue (in
magnitude) is λ1 = −27.3 while the lowest is λ9 = −2.53 · 10−6, indi-
cating that the function is highly insensitive to changes in the direction of
the last eigenvector. The conclusion from these considerations is, that the
performance is very insensitive to changes in many directions, and all distri-
butions represented by points laying at the intersection of a few hyperplanes
perform well.

3.3 Random linear fountain ± divide and conquer

As explained in Section 2.3.1 the fountain codes can be perceived as send-
ing linear equations over the erasure channel. Random linear fountain
(RLF) can be used to approximate the ideal digital fountain. RLF operates
by sending randomly selected linear combinations of source blocks. Ran-
dom selection in this context means selecting each of the original blocks
with probability 1/2 and calculating the linear combination of the selected
blocks using the exclusive-or operation, as explained in Section 2.3.3.

The main drawback of using RLF is that the computational complexity
of decoding grows very fast with the number of source blocks, as the corre-
sponding linear system is dense, and not a sparse one generally preferred
in fountain coding. Dense systems typically need to be solved with high
complexity algorithms, such as the Gaussian elimination algorithm with
time complexity of O(k3). An advantage of the RLF scheme is a very low,
and constant, average overhead of 1.6 packets, in contrast to much higher
overheads for �nite length cases with Tornado, LT and Raptor codes.

We analyse divided random linear fountain in Publication 3. Our main
driving factor for the division lays in the growing computational complex-
ity of RLF with the message size. Therefore, the problem is divided into
multiple parts of smaller size. To preserve the statistical equivalence of all
of the generated packets, the coding is performed by �rst picking the part

56

uniformly at random. After a part is picked, a packet is generated and sent
using RLF as presented in Section 2.3.3. Information on the constituent
blocks of the RLF packet and the index of the part the packet is from are
sent to the recipient, e.g., in the packet header, along with the packet itself.
Each of the parts works as their own RLF and the receiver can continue
with the decoding only by receiving packets from the corresponding part.
The encoding procedure is depicted in Figure 3.4.

The purpose is to study how the division affects the overhead and what
measures can be taken to overcome the possible degradation in the perfor-
mance. The sender does not know if a particular part is already solved, but
keeps on choosing the parts from which to generate RLF encoded packets
at random. This will eventually result in sending super�uous packets to
those parts already solved, especially when there are only one or a couple
of undecoded parts left. To make the performance degradation lower, we
study how clumping many of the RLF produced packets together using LT
coding, a method known as macropackets, works. We compare this to a
data carousel -inspired scheme, which works by selecting different parts for
packet generation in sequence. The intent with macropackets is again to
preserve the statistical equivalence of the sent packets, as the LT encoding
works by selecting the blocks (here the parts of the whole problem) at ran-
dom. However, the data carousel does not have this property; the packets
have sequence numbers, and therefore are not statistically identical.

We use a slightly different notation in this section compared to the rest
of the thesis, stemming from the original notation in Publication 3. We
denote by k the number of parts and by n the number of source blocks
in each of the parts so that N = k · n is the total size of the source data.
This thesis uses the word part when referring to the segments of multiple
original �le blocks resulting from the division. In Publication 3 these parts
are referred to as subproblems.

3.3.1 Related research

The division scheme and the possible performance degradation is similar
what would happen when, for example, Reed-Solomon coding is used for
large data sets in which the number of �nite �eld symbols is not large
enough [BLM02].

The data carousel has been studied in the context of many different
communications problems, in particular, e.g., in multicasting and broad-
casting scenarios.

3.3.2 Divided random linear fountain

The encoding procedure of divided RLF is depicted in Figure 3.4. A part
is chosen uniformly at random, and a packet is generated by sampling the
blocks in the selected part with probability 1/2 and �nally combining them
with the bitwise XOR operation. The division of RLF into k parts would
ideally result in a total overhead of k ·1.6 packets, if each of the parts would
work as a separate RLF. The minimal overhead can be achieved only if
the sending of the repair packets to each of the parts is stopped immedi-
ately when the corresponding part of the data are decoded. If we follow the

57

XOR

Similarly as in normal RLF but the file is divided
into k subproblems, and one is chosen uniformly at random

Figure 3.4: Illustration on how the encoding works in divided random lin-
ear fountain. A part is selected uniformly at random and a packet is gener-
ated by choosing each of the blocks with probability 1/2.

n

1 2 3 … k

(a) Ideal situa-
tion, n packets
for each of the
parts

n

1 2 3 … k

(b) Separate
acknowledge-
ments for each
part

n

1 2 3 … k

(c) Packets
sent to ran-
domly chosen
parts

n

1 2 3 … k

(d) Data
carousel with
low channel
loss rate

Figure 3.5: Illustration of the decoding process for different strategies of
selecting the part in which a packet is generated in. The shaded areas indi-
cate the total number of packets received and lines the number of needed
packets.

fountain coding paradigm, such information, however, is not available to
the sender as the backward channel does not exist or is not used3. Thus,
some of the packets might be sent to the already decoded parts of the origi-
nal data resulting in an increased overhead.

The amount of overhead required for different modes of operation of
divided RLF is illustrated in Figure 3.5. The height of the bars correspond
to the number of sent packets for each of the k parts shown as distinct bins.
The horizontal lines represent the ideal case of n received packets and the
number of packets ultimately required for a full decoding of the whole data.
The ideal situation, in which exactly n packets are enough, is presented on
the far left in Figure 3.5a. The middle left shows the scenario in which
each of the parts is acknowledged upon completion, resulting on average
in 1.6 ·k total overhead packets. The scenario in which the packets are sent
randomly to any of the parts is presented on the middle right (this is our di-
vided RLF scenario). The packets may be sent into parts already completed
as long as there is one part still lacking packets. This results in inef�ciency,
seen as the bar above the upper horizontal line in Figure 3.5c. The last pic-
ture, furthest on the right, shows the scenario when data carousel is used

3Or it may be used only for the acknowledgement of the decoding of the whole message

58

to send an equal number of packets to each of the parts. The process is
completed when the last part is decoded, effectively resulting in the same
amount of overhead in all of the parts.

To support our reasoning we present an exact analysis of the perfor-
mance of divided RLF. Let ν be the total number of received packets and
let further ν = (ν1, ν2, . . . , νk), where νi denotes the number of received

packets into part i, i.e. ν =
∑k
i νi. The encoding algorithm selects the part

at random, thus the probability of a generated packet belonging to part i is
1/k. Then ν obeys the multinomial distribution:

Q(ν) = P(ν = (ν1, . . . , νk)) =
ν!

ν1!ν2! · · · νk!

(
1
k

)ν
= ν!

k∏
i=1

(
1
k

)νi
νi!

.

(3.17)
Given the composition of ν, the probability of successful decoding of all
the parts is Fn(ν1)Fn(ν2) · · ·Fn(νk), where Fn is the distribution function
of the number of packets needed for successful decoding of n source blocks
in the random linear fountain, given by (2.11). By deconditioning, the
probabilityRk of successful decoding with at most ν received packets is

Rk(ν) = ν!
∑
|ν|=ν

k∏
κ=1

(
1
k

)νκ
νκ!

Fn(νκ) = ν!
∑
|ν|=ν

k∏
κ=1

G(νκ) , (3.18)

where G(ν) = (1/k)ν

ν! Fn(ν). Now, the sum is recognised to be of the type
that can be calculated by convolution:

Rk(ν) = ν!
k⊗
κ=1

G[ν] , (3.19)

where G = (G(0), G(1), . . . , G(ν)).
In Table 3.5 we have listed some performance results of divided RLF

calculated using (3.19). The results show that with an increasing number k
of the parts the performance deteriorates rapidly. These results support the
reasoning above, and are in accord with the fact that the expectation of the
minimum of k i.i.d. random variables is less than the mean, the difference
growing with k.

In the following, methods which can be used to alleviate the perfor-
mance loss, associated with the division of the original data set into multiple
parts, are studied. The next section introduces the concept of macropack-
ets and the exact performance analysis of scenarios with k = 2 and k = 3.
After this the data carousel, which makes the number of packets in each of
the parts identical, is considered.

3.3.3 Macropackets

From the discussion above, it should be clear that the strategy of choos-
ing the part from which RLF packet is generated at random makes the
average overhead too large. Especially when many of the parts are already
solved, most of the sent packets are wasted and the decoding of the last
few parts may take considerable amount of time. Thus, we propose using

59

Table 3.5: Mean number of packets required for decoding and correspond-
ing overhead percentages for divided random linear fountain with k parts
and n blocks per part.

N k n E[T] overhead %

128

2 64 141 10
4 32 160 25
8 16 196 53
16 8 268 109

200 2 100 215 7.5

300
2 150 317 5.7
3 100 331 10

400 2 200 419 4.8
450 3 150 487 7.6
600 3 200 641 6.8

Algorithm 4 The encoding algorithm with macropackets

Require: a �le divided into k parts each of n blocks, macropacket degree
distribution ρ(d)
repeat
choose macropacket degree d from ρ(d)
choose uniformly at random d partsM(i1),M(i2), . . . ,M(id)
for each chosenM(ih) do
ch ← empty, the to-be RLF encoded packet
for j ← 1 to n do
choose and set ch ← ch ⊕mj inM(ih) with probability 1/2

end for
store ch

end for
send macropacket c1 ⊕ c2 ⊕ · · · ⊕ cd

until enough packets are sent

macropackets, which are generated using an LT code over all of the parts.
A macropacket degree d is �rst sampled from the degree distribution ρ(d),
d parts are then chosen uniformly at random, and a packet is generated by
using the RLF encoding algorithm in each of these selected parts. These
packets are �nally XORred together to form the macropacket. The algo-
rithm for the macropacket generation is listed in Algorithm 4 and depicted
in Figure 3.6.

Themacropackets help especially when only one of the parts is still lack-
ing packets to achieve full decoding. When generated over multiple parts,
the content of the macropacket corresponding to the already resolved parts
can be subtracted, in effect reducing the macropacket into a packet from
the one remaining part. As stated when discussing the LT coding in Chap-
ter 2, the information on which parts are included needs to be included
in the macropacket in one way or another. Thus, the LT decoder works
through the received macropackets possibly revealing degree-1 macropack-

60

For macropackets we
choose uniformly at
random d subproblems

XOR XOR

XOR

generate packets as in

RLF and further combine

these packets with XOR

Figure 3.6: A macropacket is generated by choosing d parts of the original
data, generating packets using RLF in each of those parts and calculating a
linear combination of the generated packets.

ets, which then can be fed into the corresponding part for the RLF decoder.
When all of the parts have enough packets, the RLF decoder in each part
is able to recover all of the original data blocks.

When the original data is divided into k = 2 or k = 3 parts an ex-
act analysis of the performance of divided RLF with macropackets can be
made, by taking into account all the possible ways to decode a part. We will
present an analysis of the case k = 3.

There are 7 different kinds of macropackets possible for k = 3. Let us
denote these byA,B, C, AB,BC, AC andABC, corresponding to which
of the parts A,B and C are chosen to be included in the macropacket.
Let ν denote the vector specifying the number of received macropackets of
each kind.

The decoding probability with ν = |ν| received packets is

Rk(ν) =
∑
|ν|=ν

Qk(ν)Pk(ν) , (3.20)

where Qk(ν) is the multinomial distribution giving the probability of a
speci�c macropacket (cf. (3.17)) and Pk(ν) is the probability of decoding
with the speci�ed ν.

For k = 3 we need to derive P3 in (3.20). Taking the symmetry into
account cases of three different types are identi�ed: (i) either all of the parts
are solved directly by degree-1 macropackets, i.e., as with standard divided
RLF, (ii) two of the parts are solved directly with divided RLF and one with
help of the macropackets and (iii) one part solved directly with two oth-
ers solved with help of macropackets. Let A[ν], B[ν] and C[ν] denote the
events that part A,B or C is solved when ν macropackets of corresponding
type are available. Further, P [A[ν]] = Fn(ν), where Fn is the distribu-
tion function of the number of packets needed for successful decoding of n
source blocks in the random linear fountain, see Section 2.3.3. Using this
notation, we have for (i)

P(A[νA] ∩B[νB] ∩ C[νC]) = F (νA)F (νB)F (νC) (3.21)

61

and for (ii)

P(A[νA] ∩B[νB] ∩ C[νC + νAC + νBC + νABC] ∩ C[νC])
= F (νA)F (νB)(F (νC + νAC + νBC + νABC)− F (νC)) , (3.22)

allowing for decoding with the help of macropackets of type AC,BC and
ABC but not for direct solving of C. By symmetry we have similar equa-
tions for solving A or B with help of macropackets.

Case (iii) is a little bit trickier. We take as an example the case where A
is solved directly but the others are not. We have three different possibilities
for solving B and C:

1. B and C are solved with macropackets common with A correspond-
ing to the event

A[νA] ∩B[νA + νAB] ∩B[νB] .

2. FirstB is solved with macropackets common withA and thenC with
macropackets common with B, corresponding to the event

A[νA] ∩B[νA + νAB] ∩B[νB] ∩ C[νC + νAC + νBC + νABC]∩

∩ C[νC + νAC] .

3. FirstC is solved with macropackets common withA and thenB with
macropackets common with C, corresponding to the event

A[νA] ∩ C[νA + νAC] ∩ C[νC] ∩B[νB + νAB + νBC + νABC]∩

∩B[νB + νAB] .

We add up the probabilities of all these three possibilities and arrive at

P = F (νA)((F (νB + νAB)− F (νB))(F (νC + νAC)− F (νC))
+(F (νB +νAB)−F (νB))(F (νC +νAC +νBC +νABC)−F (νC +νAC))
+(F (νC+νAC)−F (νC))(F (νB+νAB+νBC+νABC)−F (νB+νAB))) .

(3.23)

Again, because of the symmetry, the total probability of a speci�c composi-
tion of macropackets requires adding up three of these equations which we
get by cyclically permuting A,B and C in (3.23).

Now, using (3.20) we can write the total decoding probability, where

P3(νA, νB , νC , νAB , νBC , νABC) = F (νA)F (νB)F (νC)
+ F (νA)F (νB)(F (νC + νAC + νBC + νABC)− F (νC)) + . . .

+ F (νA)((F (νB + νAB)− F (νB))(F (νC + νAC)− F (νC))
+ (F (νB + νAB)− F (νB))(F (νC + νAC + νBC + νABC)

−F (νC +νAC))+(F (νC +νAC)−F (νC))(F (νB +νAB +νBC +νABC)
− F (νB + νAB))) + . . . , (3.24)

62

where in the place of dots one should substitute cyclic permutations of
A,B and C in (3.22) and (3.23). The analysis of k = 2 subproblems can
be performed in similar way and is presented in Publication 3. These results
can be used to perform an exact performance analysis of divided RLF using
macropackets.

3.3.4 Data carousel

Instead of using an LT code as an outer code to divided RLF, the number
of wasted packets can be reduced by using the encoder on each of the parts
in sequential order instead of selecting the part in random. This kind of
operation mode can be seen as a special case of a data carousel. A data
carousel operates by sending data blocks sequentially one after another over
a communications channel, starting from the beginning again when the
last block is sent. Eventually the recipient should get all of the blocks. The
drawback is that the performance of this kind of operation is often poor if
the channel is lossy.

We use the packet erasure channel model as introduced in 2.1.1. This
means independent losses with probability p. As explained in Publica-
tion 3, the performance can be calculated using the decoding probability
Pk(ν) = Fn(ν1)Fn(ν2) · · ·Fn(νk). The sampling of ν can be carried out
by using the fact that the difference of the sequence number of two consec-
utive received packets is geometrically distributed. Samples from a geomet-

ric distribution give the part number by calculating (
∑i
j=1 Uj) mod k,

where the Uj are realisations of a geometric random variable. This way we
can count the number of packets belonging to each of the parts out of total
ν, and get the components of ν. For details we refer to Publication 3.

3.3.5 Numerical results

Before moving into the performance results obtained using macropackets
and the data carousel scheme, we take a look at Table 3.5 from Publica-
tion 3, which shows the mean number of packets required decoding with
basic divided RLF (cf. Figure 3.5c). The performance degradation is severe
when the data is divided into more than two or three parts. The results addi-
tionally show reduction in the overhead percentage as the original problem
size N grows. This is in line with the fact that the scheme is asymptotically
optimal.

This degradation can be reduced by either using the macropackets or
the data carousel-inspired scheme. The data carousel makes the number of
the sent packets to each of the parts the same. As discussed above, however,
the data carousel violates the strict fountain principle as the sent packets
are not statistically identical.

Now, when using the macropackets we calculate the performance as
presented in Section 3.3.3. Already for k = 3, evaluation of (3.20) would
require six nested summations, which effectively implies that a direct direct
calculation ofR3 is impossible for any practical values of n and k. Thus, the
generation of results is performed using Monte Carlo summation in (3.20).

63

Essentially this translates to

Rk(ν) ≈ 1
S

S∑
s=1

Pk(νs) , (3.25)

where the samples νs are drawn from the multinomial distributionQk and
S is the sample size.

Sampling from the multinomial distribution can be performed by sam-
pling its marginal distributions, i.e., binomial distributions. The idea is to
�rst sample the number of type-1 packets from Bin(ν, p(1)) and continue
by subtracting the number of already generated packets from ν and using
conditioning:

ν1 ∼ Bin (ν, p(1)) ,

νi ∼ Bin
(
ν −

∑i−1
j=1 νj ,

p(i)Pk
j=i p(j)

)
, i = 2, 3 . . .

νk = ν −
∑k−1
i=1 νi .

(3.26)

Also, the performance of data carousel can be calculated using (3.25), as
described in Section 3.3.4.

Numerical results for macropackets are presented in Figure 3.8 and
Table 3.6. An example of the performance of data carousel with different
channel loss probabilities p is plotted in Figure 3.7. Macropackets and
the data carousel scheme are further compared with the scenario in which
separate acknowledgements are sent for each completed part, and packets
are generated uniformly from each of the parts. The degree distributions
for macropackets were numerically optimised for best results.

As already discussed in Section 3.3.2, the performance of the divided
random linear fountain is rather poor. The worst case performance (i.e.,
when the decoding success probability → 1) results in an overhead per-
centage of 50% for n = 32 and 25% for n = 100. If a backward channel
and separate acknowledgements were utilised, the optimum performance
of 3 · 1.6 = 4.8 overhead packets on average could be achieved. The per-
formance of the macropacket scheme falls approximately in the middle be-
tween these two extremes. An interesting feature is that the data carousel
for n = 32 performs better than the macropacket scheme for independent
channel losses when the loss rate is less than 20%. For larger loss rates the
macropacket scheme seems to take the advantage, but for lower probabili-
ties the data carousel effectively sends an equal number of packets into each
of the parts without adverse extra overhead.

The viability of using divided RLF in a real application depends on
the time complexity of the algorithm used to decode the RLF encoded
packets in each of the parts. If a fast enough decoding algorithm (which
would not work well for the whole data size) could be used, then, as the
results indicate, the division into a couple of parts while in addition using
the macropackets or the data carousel scheme would result in a low overall
overhead.

64

100 110 120 130 140 150

Ν

0.2

0.4

0.6

0.8

1

0

0.1

0.2 0.4

0.7

1

Figure 3.7: The decoding success probability using data carousel with k =
3 and n = 32 as a function of the number of received packets. Different
channel loss probabilities are used to demonstrate the dependence of this
scheme on the erasure probability p.

Table 3.6: Mean overheads for case k = 3 using macropackets and divided
RLF.

Mean overhead
n ρ(d) Separate acks Macropackets No macro
32 {0.89, 0.10, 0.01} 4.82 (5.0%) 12.5 (13.1%) 20.3 (21.1%)
64 {0.911, 0.08, 0.01} 4.82 (2.5%) 15.6 (8.1%) 26.0 (13.5%)
100 {0.936, 0.05, 0.014} 4.82 (1.6%) 18.2 (6.1%) 31.0 (10.3%)

3.4 A systematic code with belief updating

We will now move slightly away from the ideal fountain coding principle.
In an ideal digital fountain, all of the packets are statistically equivalent, and
a receiver can join anytime to start collecting the packets. When enough
packets, f · k on average, are collected, the decoding of the original data
can be completed.

In this section we abandon this time independence property and study
how low an overhead is attainable by sequential repair packets, when an
estimate of the channel erasure probability p is available. The coding is
started by sending the original �le blocks as such once, this round forms
the systematic part of the code. The idea is to optimise the sequence of
the repair packet degrees sent after the systematic part, when the sender
continuously updates his belief about the status of the receiver. Themethod
we study is based on a greedy decision making in the sense that each of the
repair packets is optimised to advance the decoding process as much as
possible immediately upon arrival. This strategy is studied in Publication 4.

After the systematic part, repair packets are sent until the decoding is
complete. Following the spirit of LT coding, the repair packets are random
linear combinations of d original blocks sampled over the whole message,
where d is the repair packet degree. We retain the rateless property of the
coding, as a potentially unlimited sequence of repair packets can be sent.

65

90 100 110 120 130 140 150
received packets @ΝD

0

0.2

0.4

0.6

0.8

1

de
co

di
ng

su
cc

es
s

pr
ob

ab
ili

ty

Data carousel without losses

Separate acknowledgements

Basic encoding

Macropackets

(a) n = 32

300 320 340 360 380 400
received packets @ΝD

0

0.2

0.4

0.6

0.8

1

de
co

di
ng

su
cc

es
s

pr
ob

ab
ili

ty

Data carousel without losses

Separate acknowledgements

Basic encoding

Macropackets

(b) n = 100

Figure 3.8: Basic encoding (plain divided RLF) compared to the use of
macropackets, data carousel and separate acknowledgements in the case
k = 3.

However, the repair packets are no longer statistically identical because the
construct of the repair packets changes as the sender's belief about the state
of the receiver evolves when more packets are sent.

The estimate of the channel erasure probability p is used to keep track
of the state of the receiver. The sender calculates the probability of the
receiver to have any particular number of decoded blocks and uses this in-
formation to optimise the degree of the repair packet. After the systematic
part, repeating this optimisation procedure results in an optimal degree se-
quence for given p and �le size k.

We can describe two different greedy strategies for �nding good degree
sequences. We will �nd the packet degree which maximises the probability
of the next packet to include only one block yet unknown to the receiver,
and thus giving the receiver the possibility to decode a new block.

Alternatively, we could optimise the packet degree for giving the high-
est probability of advancing to the `fully decoded'-state at the recipient end.
The idea is similar as in the Max.Pr. optimisation goal presented in Sec-
tion 3.2. This kind of goal would have to take into account all of the pack-
ets the receiver has collected so far in order to optimise the packet degree,
whereas the �rst goal leads to considering only such packets which have
directly helped the decoder instantly decode a new block.

66

The �rst described goal is more convenient for our scenario. First of all,
if there is more than one missing block at the receiver and no unprocessed
packets in the buffer, it is impossible to advance to a decoded state with
just a single extra received packet. The book-keeping we would have to do
in the algorithm would additionally cause serious complexity issues, as we
would have to somehow track a vast number of different states and calculate
the state transition probabilities from these states to the decoded state. It
is much easier to consider packets which are optimised just for including
enough information to help the decoder to decode a new block, as we will
see in Section 3.4.2.

3.4.1 Related research

The greedy encoding strategy is partly inspired by [KFMR05], which is a
preliminary work to [KMFR06], in which the authors present Growth codes
to increase data persistence in sensor networks. Growth codes are further
considered in [DWR07], in which a method for unequal error protection
(i.e., data in which some of the packets are more important than others) is
presented with a video streaming application.

An alternative scenario to ours would be one where the sender knows
the exact number of blocks the receiver has decoded. This approach is stud-
ied in [Con01], where the author presents an oracle who knows the exact
number of already decoded blocks. This information is used to improve
existing degree distribution by suggesting possibly better packet degrees for
some of the generated packets. Thus, this work presents a heuristic for
packet degree optimisation. The oracle-based packet degrees are chosen
using the same criterion as in our scenario, i.e., by choosing the packet de-
gree giving highest probability to reduce the degree to one immediately by
decoding.

Further, in [BCMR04] the same greedy criterion is used in an approach
to data reconciliation between downloaders in a peer-to-peer-type environ-
ment. The downloaders are allowed to recode already acquired packets and
distribute these to peers possibly speeding up each other's downloads. The
degrees of recoded packets are chosen between the greedy optimum and
some upper limit to mitigate the possible inef�ciency of choosing a local
optimum.

Similar results as in Publication 4 are also presented in [BDS07]. The
used optimisation criterion is similar as used in our work, and the publica-
tion time of [BDS07] coincided with that of �nalising Publication 4.

3.4.2 The greedy method based on belief about the receiver's state

The greedy encoder differs from the LT encoder presented in Section 2.4
in how the degree of the packet is determined. The coding starts by sending
the k original blocks as-is as systematic packets, then repair packets are sent
with given degrees. A degree distribution is not sampled, but instead a
packet degree sequence is calculated and is deterministic. The used packet
degree depends on the channel loss probability p through the sender's belief
about the state of the receiver. Next we study in more detail how to optimise
the degree sequence of the repair packets.

67

Let us denote byP (i, n) the probability of a randomly generated degree-
i packet being such that it includes exactly one block the receiver has not
yet decoded, given that there are n missing blocks in total. Further, let
Pt(i) denote the unconditional probability of a degree-i packet to give the
decoder at least one new, yet undecoded block at time t. The time is mea-
sured in discrete steps where t = 0 corresponds to the time instant when
the initial systematic part is �nished, i.e., all the k blocks have been sent as
such. After this, each sent packet advances the time count by one.

The repair packets are optimised to reveal exactly one new, yet unde-
coded packet upon arrival at the receiver's side with the maximum proba-
bility. The exact optimisation criterion is

i∗ = arg max
i

Pt(i) , (3.27)

which we call the greedy optimisation criterion. Note that although the
de�nition states the optimisation is done to reveal exactly one novel block,
in practice the situation might be such that more than one block is decoded
if an iterative decoder is used.

We can calculate P (i, n) using a combinatorial argument. Exactly one
of the i blocks must be chosen from the n missing ones and the rest i − 1
blocks from the k − n blocks the receiver has already decoded. Thus,

P (i, n) =
n
(
k−n
i−1

)(
k
i

) , (3.28)

and the unconditional probability can be written as

Pt(i) =
k∑

n=0

P (i, n)ft−1(n) . (3.29)

The distribution ft(i) gives the probability of i missing blocks out of the
total k at time t. Initially, at t = 0, after the systematic round, ft is binomial:

f0(n) =
(
k

n

)
pn(1− p)k−n . (3.30)

The greedy optimisation criterion in De�nition 3.27 is used to choose
the repair packet degree at speci�c time t. The sender calculates the opti-
mal degree, maximising (3.29), sends the corresponding packet and updates
the belief (i.e., distribution ft) about the state of the receiver,

ft(n) =
(
1− (1− p)P (i∗, n)

)
ft−1(n) (3.31)

+ (1− p)P (i∗, n)ft−1(n+ 1) , (3.32)

where we have taken into account the possibility of a successful repair
packet to reduce the number of missing blocks and the possibilities of a
non-useful repair packet and packet erasure, i.e., the cases when a new
block cannot be decoded.

By using (3.27)-(3.32) we can calculate as long a degree sequence as
needed. For a speci�c k and p the sequence is always the same an can be
precomputed. However, if the estimate of p changes during the transfer,
new degrees can be calculated on the �y.

68

p=0.10

p=0.01

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

sent packets after initial round

pr
ob

ab
ili

ty
fo

r
go

od
pa

ck
et

Figure 3.9: The probability of repair packet to reveal a new block for differ-
ent p and number of sent repair packets after the initial systematic round
for k = 100.

3.4.3 Decoding algorithm

The decoding is performed exactly as in LT decoding (cf. Section 2.4). In
the derivation of the optimisation steps, we have not taken into account the
buffered packets which do not immediately yield new decoded blocks.

3.4.4 Numerical results

As presented in Publication 4, the probability of the �rst repair packet after
the initial round being helpful is roughly 1/e ≈ 0.368. This probability
then decreases as more repair packets are sent at a speed that depends on
the erasure probability p. This is depicted in Figure 3.9 for k = 100. Al-
though the probability does not seem high, i.e., it is much less than 1, this
greedy strategy yields good results in practice. When the packet losses are
not too high, only a few repair packets need to be sent and the required
overhead is low even for small data lengths of tens or hundreds of blocks.
Figure 3.10 shows the probability of decoding failure in terms of overhead
factor and Table 3.7 shows the simulation results for mean number of pack-
ets sent and received for decoding with different erasure probabilities.

As the size of the source data, k, increases, the required overheads again
become lower and the decoder error performance better. For example, for
k = 100 with 5% overhead the decoding does not succeed with probability
0.02, whereas for k = 1000 the same probability is only 7 · 10−4. This
demonstrates the asymptotic optimality of this scheme.

The nature of the degree sequences the greedy algorithm yields is de-
picted in Figure 3.11, in which the resulting sequences for k = 100 and
different values of p are plotted. The average degree of the sequences is near
20 for all p. Typically, the degrees start at a low value near 1/p, then grow
a little and after a peak they decrease. Ultimately, for any p, the sequences
form a saw-tooth like pattern, which always ends in sending a full, degree-k,
packet. This kind of packet is guaranteed to decode the last missing block

69

p = 0.01

p = 0.07

1.0 1.1 1.2 1.3 1.4
10-6

10-5

10-4

0.001

0.01

0.1

1

Overhead

E
rr

or
pr

.

Figure 3.10: The decoder error probability for k = 100 and different p as
the function of the overhead factor.

Table 3.7: Simulations for k = 100 with greedy sequences

Received Sent
p Mean Std Mean Std

0.01 100.4 1.36 101.5 2.12
0.02 101.5 2.40 103.5 3.43
0.03 102.4 2.84 105.6 4.03
0.04 103.4 3.35 107.8 4.62
0.05 104.5 3.83 110.0 5.23
0.06 105.4 3.99 112.2 5.43
0.07 106.4 4.23 114.4 5.74
0.08 107.5 4.49 116.8 6.01
0.09 108.4 4.67 119.1 6.19
0.10 109.4 4.85 121.5 6.33

when all of the other blocks have been decoded, and thus it makes sense to
send it every now and then.

These results demonstrate that the greedy erasure correction strategy
is a viable erasure correction method for BECs. In Publication 4 we fur-
ther discuss how the scheme performs when the estimated p differs from
true channel conditions and brie�y mention that the performance is decent
even with burst errors. We also present a simpli�ed algorithm with lower
time complexity to calculate the degree sequences, with somewhat poorer
performance in terms of required overhead. The simpli�cation essentially
keeps simpler belief about the state of the receiver at the sender's side, by
truncating the used distribution f or even using only maximum likelihood
estimation and setting f0(n) = δ(p · k), where δ is Dirac's delta function.
This resembles the information the oracle gives in [Con01], but instead of
exact knowledge we have only an estimate of the number of missing blocks.

Overall the results warrant similar kind of conclusions as are presented
in [Con01]. By selecting a degree which maximises the probability for de-

70

p=0.01

p=0.05
p=0.09

p=0.12

0 50 100 150 200
0

20

40

60

80

100

sent packets after initial round

se
nt

pa
ck

et
de

gr
ee

Figure 3.11: The greedy sequences for k = 100 and different p.

coding one new block, many of the resulting packets are redundant. How-
ever, in our scenario a systematic sequence is sent initially, and thus, with
reasonably low channel loss probabilities, the inef�ciency due to redun-
dant packets is small when considering the total required overhead for the
decoding process. Also, without full knowledge of which particular blocks
are missing some redundancy cannot be avoided. Nevertheless, the greedy
optimisation criterion does not necessarily result in globally optimal degree
sequences.

3.5 Summary

In this chapter we have studied different settings in which packet erasure
correction coding could be applied. We have studied different coding strate-
gies and have analysed their performance and suggested some optimisation
techniques to get the best possible performance with discussion of the ad-
vantages and possible disadvantages of the different schemes. In particular,
we considered the optimisation of LT codes, random linear fountain and a
sequential erasure correction strategy.

We began by considering the optimal degree distribution problem of
LT codes with a very small message length. Exact analysis using Markov
chains and a combinatorial approach was presented with the possibility of
optimising for two different goals, either maximising the decoding probabil-
ity with exactly k packets or minimising the expected number of overhead
packets. Although in [BC08] the authors note that with robust soliton dis-
tribution and properly optimised parameters a similar performance can be
achieved for small message lengths as with the methods presented in Pub-
lication 1 (also in Publication 2), we have presented and solved the degree
distribution problem exactly for small message lengths without assuming
anything about the form of the degree distribution. These results are novel
and have not been presented in the literature before. We also noted that
the two optimisation criteria result in slightly different degree distributions
but a similar performance.

71

The degree distribution optimisation was further studied using an algo-
rithm based on simulations, borrowing some ideas from importance sam-
pling theory. This allowed us to get from the toy cases of very small k into
message sizes of the order of hundreds of blocks. This method works by it-
eratively optimising the degree distribution used by calculating the gradient
of an objective function and taking a step towards a better distribution. The
general idea of using simulation results obtained with a given degree dis-
tribution to estimate the performance when a different degree distribution
is used is intriguing and can potentially be used in other applications as
well. However, in order for this optimisation strategy to work well, we have
to make educated guesses about the form of the degree distribution. The
results indicate that the form resembling robust soliton distributions works
best out of all the different types tested. For message lengths of hundreds of
blocks we found out that our suggested degree distribution works as well as,
or slightly better than, robust soliton distribution.

These studies on the degree distributions of LT codes reveal the fact
that only a few parameters are needed to de�ne a well-performing degree
distribution. Unfortunately, the methods we have used suffer from state
space explosion or have time requirements too high for them to be used for
longer message sizes. However, the goal was to study the small lengths, for
which previously published degree distributions do not work well.

The rest of this chapter considered other kinds of erasure correction
strategies based on the fountain principle. We presented a divided random
linear fountain, where not acknowledging separate decoded parts causes
the performance to deteriorate. We proposed and analysed two ideas for
improving the performance, namely the use of macropackets, i.e., LT cod-
ing applied on top of divided RLF, and a data carousel-inspired strategy.
As the results suggest, such strategies do lower the required overhead. The
practicality of divided RLF depends on the availability of an ef�cient de-
coding algorithm for RLF in each of the parts the original data are divided
into.

Finally, we took a step away from the ideal fountain coding principle
and abandoned the requirements of the time-independence and statistical
equivalence of the sent packets. We developed an erasure correction strat-
egy in which each of the original blocks is �rst sent as such once. After
the initial round, repair packets are sent to correct the possible gaps left in
the sequence of the original blocks. As the code is systematic and the opti-
mised repair packet degrees depend on the previously sent packets, the sent
packets are not statistically identical.

The repair packet degree sequence was optimised by assuming that
an estimate of the channel loss probability p is available. On the Inter-
net, some protocols, such as the Datagram congestion control protocol
(DCCP) [KHF06], can provide such estimations. The greedy criterion of
optimising the packet degree for revealing exactly one new block at the re-
ceiver's end upon arrival works well in the simulation using a binary erasure
channel. Complex degree distributions are not required; instead, a deter-
ministic degree sequence is calculated, and typically the required overhead
with the optimised sequences is O(p). Although this method is not a true
fountain code in the strict sense, as it is channel-dependent, an implemen-

72

tation could use an adaptive scheme in which the optimisation takes into
account varying channel conditions, resulting in a robust error correction
performance.

In conclusion, we have presented novel schemes for optimising exist-
ing fountain coding methods in different settings and presented a couple
of our own ideas for new coding strategies. These methods can be used
to improve and optimise the performance of fountain coding and related
methods, resulting in as low an overhead as possible.

73

74

4 ERASURE CODING FOR REAL-TIME SCENARIOS

In this chapter we present and analyse packet erasure correction methods
for streaming applications with real-time requirements. A sliding window
is used for marking the section of the data (i.e., the source blocks) which
contains the non-expired information. The proposed coding methods are
systematic, each original data block is initially sent as-is, and repair packets
are later sent to possibly �ll in the gaps left by the packet erasures. The
methods also follow the ideas of fountain coding. The encoding uses the
same procedure as in LT coding and the decoding is done iteratively. We
aim at code simplicity and good performance of the codes in terms of low
an overhead and low encoding and decoding complexities. An example of
an application which could bene�t from these kind of codes is multime-
dia transmission, or, more speci�cally, different kinds of video and audio
streaming services.

One drawback of the existing digital fountain coding methods is that
the optimum performance is achieved only in the asymptotic case. For
smaller source data sizes the overhead can be too large in practice, espe-
cially if the degree distribution is not carefully designed for the prevailing
conditions of source size and the application requirements. Further, as tra-
ditional fountain codes send the packets as descriptions of all of the source
data, no guarantees on the relevance of the received data at any particu-
lar time instant can be given to the receiver. Although versions of Raptor
codes [Sho06] have been speci�ed for small lengths for both �le delivery
and streaming applications, we study methods which are potentially more
ef�cient.

Our methods employ a sliding window of an appropriate size for bound-
ing a section of the source data to provide rough ordering and, especially,
mark the part which the receiver can play out from the buffer used for re-
ceiving and decoding the data. The window size, w, is thus dictated by the
application employing the scheme. In the optimisation methods presented
in this chapter, we typically use example window sizes of tens of blocks,
which is a realistic assumption for the size of the buffer for low-latency ap-
plications. For example, in a typical voice-over-IP application the payload
size corresponds to 20 ms of voice. The number of outstanding packets of
such a size should not be very large in order to keep the round-trip delay of
a voice conversation suf�ciently small.

The research problem we address is the generation of ef�cient repair
packets. The codes send original data as-is once, i.e. they are systematic,
and the repair packets are chosen to give immediate bene�t in terms of
novel decoded blocks upon arrival. As in the systematic code with greedy
decisions presented in Section 3.4, we assume the sender has some estimate
of the channel erasure probability p. The optimisation is performed for this
speci�c erasure probability. However, the results indicate that the meth-
ods are quite insensitive to varying channel conditions; the speci�c code
parameters optimised for a certain estimate of the channel loss probability,
p̂, give good results even if the true p is different.

75

A major conceptual change in this chapter is the fact that with real-
time applications one does not require the full decoding of all of the source
data. In lossy channels some of the source data are inevitably lost, and
streaming applications are designed to be robust against a small number of
missing data blocks. Our aim is to achieve the best possible residual era-
sure performance, given the code properties and channel conditions. This
performance criterion is different from that considered in Chapter 3. The
methods that are presented are not true fountain codes as they have a de-
�ned rate, which has to be decided in advance. There is a clear trade-off be-
tween the design rate of the code and the erasure correction performance:
the lower the code rate, the lower the residual erasure probability is.

The channel model used is again the binary (or packet) erasure chan-
nel, BEC, without feedback. However, packet losses are often correlated in
real networks, a scenario not captured by the simple BEC model. There-
fore, we will also present some simulation results with the proposed codes
using the Gilbert-Elliot model, which is a two-state model in which both
states have their own packet erasure probability. The methods we have de-
veloped are currently not able to optimise packets for the GE model, but
the simulation results we present give us an insight into how the proposed
methods would work in the presence of correlated packet erasures.

We start by presenting our contribution in more detail in Section 4.1.
Then we will introduce the general procedure to use the sliding window
in erasure coding in Section 4.3. We also de�ne the encoding and de-
coding procedures involved. In Publication 5 we present two approaches
for �nding good fountain code-like erasure correction methods by �xed-
point iteration. The repair packets are generated either by choosing degrees
in half-windows, or then by sampling each of the window locations with
independent probability. We cover these in Section 4.4. Publications 6
and 7 present two approaches based on �rst sampling a packet degree and
then this number of blocks in the current window to be included in the re-
pair packet, which is sent probabilistically after each systematic block. We
analyse and optimise the performance of the coding using a Markov chain
model for the state evolution of the coding process. The difference between
these two methods lies in the encoding procedure. One of them uses uni-
form sampling within the window and the other one is based on the biased
sampling of the source blocks. These methods are presented in Section 4.5.

4.1 Contribution

We study the use of a sliding window in different scenarios in which we
aim at as low as possible a residual erasure probability Qr, and the trade-
off between the code rate R and Qr is the research question we address.
The code rate is controlled either by a deterministic scheme, in which a
repair packet is sent after every s sent blocks, or by a probabilistic strategy,
in which a repair packet is generated and sent with a probability P after
each systematic block. For the purpose of the analyses, we assume that the
stream is very long in order to be able to assume that the system is in a
steady-state situation.

The �rst scheme that is presented uses a sliding window with half-

76

window step sizes, in which a repair packet is deterministically sent af-
ter each window movement. The repair packets are generated by sepa-
rately sampling both of the half-windows, optimising the number of blocks
(d1, d2) picked from each of the halves, with the total packet degree d =
d1 + d2. This is a more rigid strategy with not as much of a probabilistic
�avour compared to the scenarios presented later in this chapter, but the
exact analytical calculations can be performed using the independence of
the number of missing blocks in each of the half-windows.

After this we move to a strategy in which repair packets are sent with
a probability P after each window movement of one step. Instead of the
blocks being picked from half-windows, the whole current window is con-
sidered when the stream blocks to be included in a repair packet are sam-
pled. Every position of the window has its own probability of being sampled
and included in the repair packet. These probabilities are optimised to give
the best possible performance. The repair packet sending probability P
controls the code rate.

These two methods are presented and analysed in Publication 5. The
sender keeps track of his belief about the state of the receiver, and the cycle
of optimisation (in the greedy sense), belief update and repair packet send-
ing is repeated. With the help of �xed-point iterations, stationary solutions
are found and can be used for the degree optimisations. This work can be
seen as a continuation of Publication 4 with similar ideas about the book-
keeping of the receiver's state and packet degree optimisation in a greedy
fashion.

The last part of the thesis consists of an analysis of the sliding window
erasure correction, in which the general methodology is to send a repair
packet probabilistically after each sent systematic packet. In contrast to the
previous method, the chosen degree is �rst sampled from a degree distribu-
tion, as the results in Publication 5 suggest that the degree-based approach
works better than giving each of the window positions an own probability
to be sampled into a repair packet. The performance with given degree
distributions is analysed using a Markov model. This model is derived by
considering the steps of window movement, systematic sending, and repair
packet generation. For each of these steps we derive state transition prob-
abilities, in which the state is the pattern of blocks the receiver is lacking.
We keep the window size small and limit the allowable number of missing
blocks to three in order to avoid a state space explosion. This limitation
results in some truncation error in the analytical results, but this has been
proved to be negligible for the scenarios we are studying by comparing the
analytical results to the simulations.

Two different scenarios are studied extensively using a Markov model.
First, we present a method using the LT encoding algorithm with uniform
sampling inside a window, studied in detail in Publication 6. We extend
this scheme by allowing biased sampling of the blocks inside the window,
still sampling the degree d in advance from a given degree distribution. The
decoding probability achieved using biased sampling is calculated with the
help of Wallenius' hypergeometric distribution [Wal63]. This development
is presented in Publication 7.

One of the most notable �ndings from our numerical studies is that

77

a single-degree distribution works best in those kinds of situations with a
sliding window approach. Even more, when biased sampling is allowed, a
�xed, deterministic pattern of window positions to be picked for inclusion
into the repair packets seems to be the optimal way to perform the coding.
Thus, the degree distribution problem which makes the analysis and opti-
misation of LT and Raptor codes somewhat complicated, can be avoided in
the scenarios we present.

The performance of the presented schemes is shown to be on a par
with, or even better than, Raptor coding. However, the assumption that
a good estimate of the channel erasure probability is available for optimi-
sation purposes is a clear deviation from the ideal fountain coding princi-
ple and hinders the suitability of the codes for multicasting over multiple
channels with different properties. Additionally, as the presented sliding
window-based methods are systematic, not all of the packets that are sent
are stochastically identical descriptions of the source data, another violation
of the ideal fountain principle.

4.2 Related research

Adaptation of LT coding for real-time traf�c using a sliding window al-
gorithm is dealt with in [BCG+07]. The authors present an encoding
scheme called sliding fountain, in which a sliding window partitions the
source data and marks the section from which the LT encoder picks the
data blocks. This idea is similar to the sliding window encoding we present
in Section 4.3.

The Raptor codes [Sho06] used in speci�cations, such as the recom-
mendation for erasure coding in multimedia broadcast/multicast service
(MBMS) in 3GPP [3GP07] and in RFC 5053 [LSWS07], are de�ned for
small message lengths, from k = 4 up to k = 8192. These codes work rea-
sonably well in the de�ned range and are ef�cient in terms of the overhead
and also computational complexity. However, especially the overhead can
be made lower using the optimisation methods and coding schemes pre-
sented in this chapter.

FEC coding for streaming video has been studied in many different
publications. General FEC performance studies are presented in [Fro01].
An overview of video streaming codes and strategies over the Internet is
given in [WHZ+01], in which the fountain codes are mentioned to be
an ef�cient strategy because of the independence from the loss patterns.
Scalable video streaming using fountain codes is discussed in [WCF06]
and the use of fountain codes in media streams in [JS05].

4.3 Sliding window algorithm

All of the erasure codes considered in this chapter use a �xed size sliding
window algorithm for guaranteeing the real-time requirements imposed by
the used application. The window size w is measured in source blocks.
Contrary to what is assumed for example in [BCG+07], w is not a free
parameter but dictated directly by the requirements of the application.

Let us denote by {. . . , bi−2, bi−1, bi, bi+1, bi+2, . . . } the stream of the

78

Figure 4.1: The sliding window depicted. Step size s determines howmany
blocks the window advances after the current content of the window is pro-
cessed.

source blocks, and the current sliding window by {w1, w2, . . . , ww}. Es-
sentially wi is a pointer to the stream block currently in position i of the
sliding window. Note that the stream is considered to be practically in�nite
from the analysis point of view. The sliding window operates as follows:

1. Move the window s steps forward by introducing s new subsequent
blocks into the window and drop the last s blocks out, i.e., set {w1 =
bi, w2 = bi+1, . . . , ws = bi+s}.

2. Send systematic packets w1, w2, . . . , ws.

3. Process the window as de�ned by the used coding scheme (i.e. pos-
sibly generate a repair packet and send it).

4. Go to 1.

Figure 4.1 illustrates the sliding window algorithm.

4.3.1 Encoding

As the codes are systematic, immediately after the sliding window moves, s
stream blocks bi are sent intact as systematic packets. After the systematic
packets, a repair packet is generated with probability P . Thus, the parame-
ters s and P de�ne the effective code rate:

R =
s

s+ P
, (4.1)

as for every s sent systematic packets, on average P repair packets are sent.
Figure 4.2 depicts the relation between P and R when s = 1 and between
s and R when P = 1. These are the two scenarios we will consider in this
chapter.

The encoding procedure of a repair packet is generally the same one as
is used in the LT encoding, presented in Section 2.4. A degree distribution
ρ is sampled and d blocks are added together using bitwise XOR:

r =
d⊕
j=1

wij . (4.2)

79

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0
100 90 80 70 60 50 40 30 20 10 1

P

ra
te

s

Figure 4.2: The resulting effective code rate with s = 1 (lower line) and
variable P and with P = 1 and variable s (higher line).

The average degree of all sent packets is

davg =
(
s+ P ·

w∑
i=1

iρi

)
/(s+ P) . (4.3)

In contrast to traditional LT encoding and other proposed erasure coding
methods in the literature, we will also study scenarios in which we allow
biased sampling of the source blocks, as opposed to the uniform sampling
employed in LT codes. However, this does not modify the principle of �rst
sampling a packet degree and then choosing the blocks to be included.

An exception to the degree-based sampling is the second scenario stud-
ied using �xed-point iteration in Section 4.4, in which repair packets are
actually formed by including each of the window positions independently
of the others with potentially different probabilities pi. In a way this re-
sembles the encoding algorithm of the random linear fountain in which,
however, each of the blocks is considered to be included with equal proba-
bility 1/2.

4.3.2 Decoding

The decoding is performed iteratively as in LT coding. The information on
which particular blocks are included in a repair packet is conveyed to the
receiver, and the decoding of the original source blocks can be depicted
using the graph based approach. As discussed in Chapter 2, the decoding
can be performed on different levels of completeness. We will consider the
following decoding algorithms:

1. Decoding using only those packets which immediately reveal new
symbols (cf. the greedy criterion in 3.4).

80

2. Store those repair packets which are not immediately useful in a
buffer. Purge all those packets from the buffer which include expired
(i.e., out-of-window) blocks.

3. Full iterative decoding in which no buffered repair packets are dis-
carded. Allows decoding using out-of-window blocks.

These methods are suboptimal as full solving of a linear system is not con-
sidered. The repair packets are generally chosen to reveal new decoded
block immediately with high probability, and thus it is unlikely the sliding
window methods would bene�t from such a complete decoding scheme. It
should be noted that the simplest decoding strategy 1 is the one explicitly
assumed in the performance analyses. The latter two algorithms are used in
some of the simulations to provide comparison and study the possible im-
provement in the performance provided by the more complete decoding
strategies.

4.3.3 Optimisation and repair packet generation

In the repair packet generation, we have chosen to use similar greedy cri-
terion as was presented in Section 3.4. However, now the goal of the op-
timisation is to attain as low a residual erasure probability Qr as possible.
All the repair packets are optimised in a way to give immediate bene�t for
the receiver in terms of novel decoded blocks with the highest probability
possible. This means that the buffering of packets is not considered in the
following analyses.

In general terms, a correction packet which is immediately useful in-
cludes exactly one yet undecoded block while the rest of the blocks are
known and decoded by the receiver. If the receiver has k missing blocks
in the sliding window, i.e., w − k blocks have arrived and are decoded,
then in the uniform sampling case the probability that i blocks, where
0 ≤ i ≤ w − k, which are yet undecoded are picked to be included in
a repair packet of degree d, is

Pi(d, k) =

(
k
i

)(
w−k
d−i
)(

w
d

) . (4.4)

The explanation is combinatorial: from k missing blocks i are �rst chosen,
followed by choosing the rest d− i blocks from the w − k already received
ones, giving total number of ways to generate packet with i yet undecoded
blocks. Finally this result is divided by the number of all possible packets.

As already noted, the condition for a repair packet to be immediately
useful is that it includes exactly one block yet unknown to the recipient;
all the other chosen blocks should be already decoded. Thus, in general,
repair packet degrees which maximise the probability

P1(d, k) =
k
(
w−k
d−1

)(
w
d

) (4.5)

are used.
The calculation of biased sampling probabilities will be presented in

Section 4.5.2 later in this chapter.

81

OK Burst

Figure 4.3: The Gilbert-Elliott error model. The system can be in two
states, both of which have their own erasure probability.

4.3.4 Error models

Packet losses are often correlated in real-life scenarios. For example, if the
losses occur because of network congestion, there are often multiple drops
in a row, or a period when drops are much more likely than under normal
conditions. For wireless and wired links the bit errors are often modelled us-
ing Gilbert-Elliott (GE) model [Gil60, Ell63]. We model the bursty losses
on packet level using the GE model.

Although the analysis and repair packet optimisation is performed as-
suming independent packet losses (the packet erasure channel model), we
will perform some simulations using the GE model in order to evaluate the
performance of the proposed methods under different network conditions.

In the GE model, the channel is either in a bad or in a good state, also
called OK and Burst state, both of which have their own packet loss proba-
bility, pa and pb, respectively. The losses in both of the states are assumed to
be independent. The state transitions are considered after each sent packet,
regardless of if it is dropped or not. We use the model with independent
losses for each state, with packet erasure probabilities pa and pb in good
and bad state, respectively. The changes of channel state are independent
of previous states, and thus the model constitutes a two-state discrete time
Markov chain, depicted in Figure 4.3. The state transition matrix is

P =
(

1− q q
r 1− r

)
, (4.6)

and the corresponding stationary state probabilities π = (πok, πburst) are{
πok = r

q+r

πburst = q
q+r .

(4.7)

The average packet loss probability then is

pavg = pa · πok + pb · πburst . (4.8)

This quantity will be used in comparison to results obtained with indepen-
dent packet drops where p = pavg.

82

Figure 4.4: Illustration of the situation with s = w/2. The new part in-
cludes the blocks recently introduced into the window. k1 and k2 denote
the number of missing blocks in the respective half-windows.

4.4 Half-window and probabilistic repair packet generation

In this section we will consider two separate scenarios and their analysis
using �xed-point iteration, presented in Publication 5. We begin by consid-
ering the case with step size s = w/2 and P = 1, i.e., the repair packets are
sent deterministically after every w/2 sent systematic packets. For this sce-
nario we can write �xed-point equation taking bene�t of the independence
of the number of packets missing from each of the half-windows.

In the second scenario assume continuous window movement with
s = 1 and allow probabilistic sending of the repair packets after each sent
original block, i.e., P can be chosen freely. Further, the repair packets are
generated by sampling each location i of the current window independent
of the others with probability pi, in which the probabilities for different
locations are allowed to be different.

4.4.1 Half-window step size

Figure 4.4 illustrates the situation for the �rst scenario to be analysed. The
window is divided into two different parts, 1 and 2. The new blocks after
the window movement are found in part 1. Part 2 consists of the blocks
which already have had one repair possibility (i.e., a sent repair packet) af-
ter the initial introduction to the window. After the window movement,
the number of missing blocks k1 in the half-window which includes the
newly introduced blocks is binomially distributed because of independent
losses in the channel. The distribution is denoted f1. The number of miss-
ing blocks k2 in the older part of the window is independent of k1 but its
distribution, f2, is yet unknown.

The repair packets in this scenario are generated by sampling d1 blocks
from part 1 and d2 blocks from part 2 and combining all of these sampled
blocks into a single repair packet. Both of the parts are sampled uniformly
at random. The strategy is to choose

(d∗1, d
∗
2) = arg max

(d1,d2)

Q(d1, d2) , (4.9)

where Q(d1, d2) is the probability of the correction packet to include ex-
actly one yet undecoded packet from one of the half-windows. This kind of

83

packet would result in immediate decoding in either of the halves. See Pub-
lication 5 for full form of Q(d1, d2).

The probability distribution f2 of the number of missing packets k2 in
the second part is still unknown, and a �xed-point iteration is used to �nd
it in a stationary state. Note that f1, the binomial distribution, is trans-
formed into f2 when an unknown block in the repair packet is from the
half-window with newer blocks. To this end, we calculate

U(k1) = (1− p)Q(d∗1, d
∗
2)

n∑
k2=0

f2(k2)
P0(d∗2, k2)P1(d∗1, k1)

Q(d∗1, d
∗
2)

= (1− p)
n∑

k2=0

[f2(k2)P0(d∗2, k2)] · P1(d∗1, k1) , (4.10)

for the conditional probability that a repair packet is useful and the con-
tained unknown block is speci�cally from the newer half-window. P0 and
P1 are given by (4.4).

The iteration itself is then de�ned by the distribution function update
rule

f2(k1) = U(k1) · f1(k1 + 1) + (1− U(k1)) · f1(k1) , (4.11)

where the probabilities are updated on every window movement. Since
U(k1) is a function of f2, this is a relation of the form

f2 = F (f2) , (4.12)

i.e., a �xed-point equation, which can be solved using iteration. On window
movement, the blocks in part 2 fall out of the used window. Thus the
distribution f2 can be used to calculate the residual erasure probability of
blocks inside part 2. When f2 is solved using the iteration, the optimal
degrees can be calculated, de�ning a proper erasure correction strategy.

4.4.2 Probabilistic repair packets

In addition to the half-window case, Publication 5 presents a method in
which each of the window positions have independent probability pi to be
picked into a repair packet. We further have s = 1 and keep P as the de�n-
ing parameter of the code rate (4.1). This can also be seen as a re�nement
of the half-window method, by introducing w different categories. These
categories just happen to be of size one, and the degree decision simpli�es
to using a single probability pi for each of the categories.

We use qi to denote the probability of the block at window location
i being still undecoded. For the block most recently introduced into the
window we have q1 = p, the channel erasure probability. The locations of
the older blocks, i > 1, have a lower qi, as they have had chances to become
recovered. We then optimise the repair packets, i.e., the probabilities pi, so
that the generated repair packet is immediately useful for the decoder with
maximum probability.

A particular block is undecoded and chosen for a repair packet with
probability piqi. Thus, with probability 1 − piqi the block at location i is

84

either decoded or not chosen or both. We make an approximation that the
events that two different blocks i ad j remain undecoded are independent.
This is not the case in reality, as the probabilities that certain locations are
decoded have mutual dependencies, and the assumption introduces some
error in the analysis.

However, keeping with the approximation we can write the probability
that a new block can be decoded upon repair packet arrival as

F = (1− p) ((p1q1 · (1− p2q2) · · · (1− pnqn)+
(1− p1q1) · p2q2 · (1− p3q3) · · · (1− pnqn)+

...

(1− p1q1)(1− p2q2) · · · pnqn))

= (1− p) ·
n∑
i=1

piqi∏
j 6=i

(1− piqi)

 . (4.13)

Thus we want to optimise

p∗i = arg max
pi

n∑
i=1

piqi∏
j 6=i

(1− piqi)

 . (4.14)

It can be shown that the solution for this is obtained by setting p1, p2, . . .
equal to one as long as the condition

k∑
i=1

qi
1− qi

≥ 1 (4.15)

is satis�ed for a certain k. The rest of the pi are set to 0, resulting in p1 =
1, p2 = 1, . . . , pk = 1, pk+1 = 0, pk+2 = 0,

The update rules for qi are{
q1 ← p.

qi ←
(

1− (1− p) · P · pi
∏
j 6=i(1− pjqj)

)
qi−1 .

(4.16)

This rule gives qi as a function of qi−1, so it can be used as a �xed-point
equation to calculate values of qi. Alongside with (4.16), (4.15) is used to
give the optimal sampling probabilities.

Thus, the form of optimal sampling pattern always uses the �rst k blocks
in the window in the repair packet and none of the rest. Basically, even
though biased sampling is allowed, the method degenerates into forming
deterministic repair packets.

4.4.3 Results and discussion

Figure 4.5 depicts the performance of the half-window method, in terms of
the residual channel loss probability vs. the residual erasure probabilityQr.
This can be compared to the performance obtained with the probabilistic

85

w=8
w=10

w=6

w=16

w=20

0.00 0.05 0.10 0.15 0.20
0.00

0.05

0.10

0.15

Channel loss probability

U
nd

ec
od

ab
le

pa
ck

et
s

H%
L

Figure 4.5: Results using the half-window method. A stream of 200000
packets was simulated using different values of p and different window sizes
w.

method depicted in Figure 4.6. The half-window method generally gives
better results, i.e., lower residual erasure probability than the probabilistic
method in comparable situations.

For the half-window method, smaller window sizes result in better per-
formance as the rate of the code is the lower the smaller the used window
is. For example, for w = 6, the code rate is R = 3/4 = 0.75. From
Figure 4.5, with w = 6, we see that for p = 0.1, we get residual erasure
probability of 0.02 effectively meaning 80% fewer lost packets. The used
degrees in both of the half-windows depend on the channel loss probability.
The optimised degrees in part 1 start from approximately w/2 for low p and
in part 2 from w/4. As the loss probability increases, the used degrees tend
towards zero. This is natural because the higher the erasure probability, the
more missing packets in part 1 (and 2) we have and the lower packet degree
that is required to form a packet with exactly one missing block. The de-
grees in part 2 eventually converge to zero, resulting in a strategy in which
the erasures are corrected only in part 1 of the window.

The probabilistic method gives a worse performance. The fact that the
optimisation of the probabilities pi relies on using the independence ap-
proximation in (4.13) is likely to be a part of the reason for this. As formu-
lated in Publication 5, the optimum of (4.14) is achieved by always choos-
ing some number of the newest blocks in the window while leaving the rest
out of the repair packets.

As the half-window method with �xed degrees gives better results, we
continue the studies of erasure coding for real-time streaming media by
considering a scheme with probabilistic sending of repair packets and repair
packet generation using degree distributions.

86

0.00 0.05 0.10 0.15 0.20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Channel loss probability

U
nd

ec
od

ab
le

pa
ck

et
s

H%
L

Figure 4.6: Results using the probabilistic repair packet strategy. The dotted
lines correspond to theoretical results and solid lines to simulation results.
Two different window sizes w = 10 and w = 50 were used, upper and
lower lines, respectively.

Table 4.1: Number of states

window size w

k 5 10 15 20

w 32 1024 32768 1048576

3 26 176 576 1351

2 16 56 121 211

4.5 Markovian model for degree-based repair packets

In this section we focus on schemes in which the window advances one
block at a time, i.e., s = 1, and the repair packets are sent probabilistically
with probability P after each sent systematic packet. The sending probabil-
ity P is the parameter de�ning the code rate. In contrast to the previous
methods, we now keep track of the state of the receiver by considering the
positions of the missing blocks in the current window. The two different
repair packet generation methods considered are uniform and biased sam-
pling of the stream blocks. These are studied in detail in Publications 6 and
7, respectively.

The window movement, systematic packet sending and repair packet
sending and possible erasure correction cycle together can be perceived as
a step in a Markov chain. Let us denote the state of this chain by the listing
the indices of the packets the receiver is missing from the current window
i = (i1, i2, . . . , ik), where k is the total number of currently undecoded
packets.

Again we face the problem of state space explosion if the number of the

87

missing blocks in the current window is allowed to grow without a bound.
The total number of states is 2w. Therefore, for a tractable analysis we trun-
cate the state space by limiting the number k of currently missing blocks
from the window at any given time. Table 4.1 lists the number of possible
states with different window sizes w and k = 2 or 3. Exact analysis us-
ing three missing blocks is still viable, and we will be using k = 3 when
considering the numerical results and �nding the optimal erasure correc-
tion strategies. This limitation will result in some errors in the analysis.
However, when the size of the sliding window is reasonably small and the
channel loss probability is low, the error is not signi�cant as will be con-
�rmed by simulations. Actually, the determining factor is the product of
the window size w and p. If this product is less than k, it can be safely
assumed that the analysis gives fairly accurate results.

Let us denote by P1,P2 and P3 the state transition matrices corre-
sponding to windowmovement, systematic packet sending, and repair packet
sending along with possible erasure correction, respectively. The state evo-
lution is observed over the cycle of these three steps. In an in�nitely long
stream, the state probabilities π in equilibrium can be solved from

π = π · P1 · P2 · P3 , (4.17)

together with the normalising condition π ·eT = 1, where e is the all-ones
vector. The performance quantity of interest is the residual erasure prob-
ability Qr, i.e., the probability for a certain block in the stream to remain
undecoded when it drops out of the window. From the equilibrium state
distribution we can calculate Qr as

Qr =
∑

i:ik=w

πi , (4.18)

i.e., by summing the probabilities of such states in which the block cor-
responding to the last position in the sliding window is missing from the
receiver.

Next we consider the exact transition probabilities for the three different
parts of the cycle and de�ne the matrices P1,P2 and P3.

4.5.1 State transitions

Let us �rst consider the state transitions happening as a result of window
movement. When no blocks from the current window are missing, we have
only the self-transition

P1{∅→ ∅} = 1 . (4.19)

For k ≥ 1 we haveP1{(i1, . . . , ik)→ (i1 + 1, . . . , ik + 1)} = 1 if ik < w

P1{(i1, . . . , ik)→ (i1 + 1, . . . , ik−1 + 1)} = 1 if ik = w .
(4.20)

Systematic sending occurs after every window movement step. The

88

state transition probabilities are:
P2{i→ i} = 1− p

P2{(i1, . . . , ik)→ (1, i1, . . . , ik)} = p if k < 3

P2{i→ i} = 1 if k = 3 ,

(4.21)

in which the last state transition probability is used to limit the number of
possible errors and thus truncate the state space.

Lastly, the state transitions due to possible repair packet of degree d have
the probabilities:

P3(d){∅→ ∅} = 1

P3(d){i→ i\ij} = P (1− p)q(d, i, ij) if j = 1, . . . , k

P3(d){i→ i} = 1−
∑
j Pq(d, i, ij)(1− p) ,

(4.22)

where i\ij denotes a state with index ij deleted from i. q(d, i, ij) is the
probability of a degree-d repair packet to immediately reveal a missing block
ij (and this block only) in state i. To obtain the full P3 we sum P3(d) over
all possible degrees, i.e., weighting with the corresponding degree probabil-
ities,

P3 =
w∑
d=1

ρ(d) · P3(d) . (4.23)

All of the possible state transition are now accounted for, but we still
need to consider the erasure correction probability q(d, i, ij) to apply (4.17)
and (4.18) and calculate the residual erasure probability Qr with a given
degree distribution.

4.5.2 Probability of erasure correction � uniform and biased sampling

In Section 4.3.3 we presented the optimisation criterion for picking ef�-
cient repair packet degrees as maximising the probability (4.5). When
uniform sampling is used in the repair packet generation, the probability
q(d, i, ij) in (4.22) of degree-d repair packet to be of such form it can be
immediately used upon receiving can be derived similarly. When the re-
ceiver is missing k blocks from the current window, and the index of the
missing block to be repaired is ij , we have

q(d, i, ij) =

(
w−k
d−1

)(
w
d

) , (4.24)

where k = |i|. This probability is the same as given in (4.5), without the
multiplier k, as the yet undecoded block (of the k possible) is exactly the
one at index ij , so there is no choice to be made. The rest d − 1 blocks
are picked from the w − k already decoded ones, and the total number of
possible packets is

(
w
d

)
.

This result is valid for uniform sampling, but we are also interested in
the scenario in which biased sampling of source blocks in the different win-
dow locations is allowed. For calculating the probability like (4.24) for this

89

case, a model for weighed sampling from hypergeometric distributions is
used. Such a model is originally presented in [Wal63], and later extended
to cover multivariate case in [Che]. We will refer to the distribution as Wal-
lenius' noncentral hypergeometric distribution as suggested in [Fog08].

First the sampling weights used in the biased sampling need to be de-
�ned. The sampling weight distribution ω = (ω1, . . . , ωw) de�nes the
probabilities ωi which are used by the encoder to sample d blocks inside
the sliding window. Probability ωi is the unconditional probability that the
source block at window location i is sampled for inclusion in the repair
packet. The weight distribution ω could be considered to be, for example,
the size distribution of different types of balls in a bin and the probability
that a certain randomly chosen ball is picked is dependent on the ball size.
Further, as the number of balls is �nite, the remaining weight of the balls
inside the bin will affect the subsequent samples.

Let the number of different categories, e.g., sizes, of balls be w and let
the vector m = (m1, . . . ,mw) denote the number of balls in different cat-
egories as components. Then, the probability of a vector x = (x1, . . . , xw)
of number of sampled balls in each category is given by the Wallenius' dis-
tribution:

P (x) =

(
c∏
i=1

(
mi

xi

))∫ 1

0

c∏
i=1

(
1− tωi/D(x)

)xi
dt , (4.25)

where D(x) =
∑w
i=1 ωi(mi − xi) is the total weight of the remaining

samples in the bin.
For the erasure coding problem using a sliding window, (4.25) can be

simpli�ed. The number of categories isw, the size of the window, giving for
each of the window positions a unique probability to be sampled. However,
the number of possible choices in each category is now one, the stream
block corresponding to the window position. That is, mi = 1 ∀i. Further,
x ∈ {0, 1}w, as each of the window positions is either picked or not for a
repair packet calculation. The simpli�ed version of (4.25) then is

P (x) =
∫ 1

0

∏
i:xi=1

(
1− tωi/D(x)

)
dt . (4.26)

The �nal step is to consider how to calculate the erasure correction
probability q(d, i, ij). For a speci�c state transition, we need to sum (4.26)
over allxwhich are of such a form that upon receiving of the corresponding
repair packet the receiver can decode a block.

q(d, i, ij) =
∑

xij=1,xil=0 ∀l 6=j

P (x) . (4.27)

If every position has a distinct sampling probability this is a computationally
very demanding calculation as several evaluations of the integral (4.26) are
needed.

The state transitions matrices P1,P2 and P3 are now fully de�ned state
transition matrix for the Markov chain can be calculated. The equilibrium
probabilities π can be solved using (4.17), and further used in (4.18) to get
the residual erasure probability Qr, given some degree distribution ρ(d).

90

Table 4.2: Degree distributions used in studying the truncation error for
w = 15.

Name Distribution
Uniform Ωi = 1/15 ≈ 0.067 ∀i
All-1 Ω1 = 1 and Ωi = 0 for i = 2 . . . w
Hi-low Ω1 = 0,Ω2 = 0.4,Ω15 = 0.4 and Ωi = 1/12 ≈ 0.0167

for i = 3 . . . 14

Uniform

All-1

Hi-low

0.5 0.6 0.7 0.8 0.9 1.0

5´10-4

0.05

0.01

0.005

0.001

R

Q
r

Figure 4.7: Study of the effect of the truncation error. Comparison of ana-
lytical and simulation results for w = 15 and p = 0.15.

4.5.3 Truncation error

First of all, we study the truncation error introduced by limiting the number
of allowable errors to three in a window forw = 15 by comparing analytical
results with those from simulations. Table 4.2 lists different types of degree
distributions, which are used in the comparison. The performance measure
Qr is depicted in Figure 4.7 for p = 0.15 as a function of the code rate. We
see that for the used parameters the simulation and the analytical results
are close to each other. Similar results are achieved with other (w, p) pairs
as long as w · p is low enough, of the order of three. For uniform sampling
of the window blocks, the results are presented in Publication 6. Similar
tests can be performed for the biased sampling scenario and are presented
in Publication 7.

As the truncation error is negligible in the parameter range we use to
study the erasure correction problem, we will solely rely on using the ana-
lytical results from this point on.

4.5.4 Form of the optimal degree distribution

Extensive numerical results using the Markovian analysis can be found
in Publications 6 and 7. Only the highlights of those results are replicated
here, most importantly focusing on the form of the optimal degree distribu-
tion for both uniform and biased sampling, and in addition the form of the

91

Table 4.3: Examples of optimal degrees for uniform sampling given by the
analysis.

P p = 0.01 p = 0.05 p = 0.10
0.1 15 13 10
0.2 15 12 10
0.3 13 11 9
0.4 12 10 9
0.5 11 10 9
0.6 11 9 9
0.7 10 9 9
0.8 10 9 8
0.9 10 9 8
1.0 9 8 8

Table 4.4: Analytical results using deterministic sampling patterns. Chan-
nel loss probability p = 0.1.

w P Qr pattern d
12 0.1 0.0625 {1,1,1,0,1,0,1,1,0,1,1,1} 9
12 0.2 0.0392 {1,1,1,0,1,0,1,1,0,1,1,1} 9
12 0.3 0.0230 {1,1,1,0,1,0,1,1,0,1,1,1} 9
12 0.4 0.0119 {1,1,0,0,1,0,1,0,1,1,1,1} 8
12 0.5 0.0058 {1,1,0,0,1,0,1,0,1,1,1,1} 8
12 0.6 0.0025 {1,1,0,0,1,0,1,0,1,1,1,1} 8
12 0.7 9.5 · 10−4 {1,1,0,0,1,0,0,1,0,1,1,1} 7
12 0.8 2.8 · 10−4 {1,1,0,0,1,0,0,1,0,1,1,1} 7
12 0.9 5.9 · 10−5 {1,1,0,0,1,0,0,1,0,1,1,1} 7
12 1.0 4.2 · 10−6 {1,0,0,0,0,0,1,1,0,1,1,1} 6

sampling distribution for biased sampling.
The numerical studies suggest that the optimal form of the degree distri-

bution for both cases is of a single-degree type. That is, although any degree
distribution is allowed, the best performance in terms of lowest residual era-
sure probability Qr possible is found to be attained using repair packets of
a �xed degree. Example degrees when the stream blocks in the window are
uniformly sampled are listed in Table 4.3.

Further, in addition to the �xed degree being optimal, with biased sam-
pling the best possible performance is achieved using a deterministic sam-
pling pattern. This means that ω ∈ {0, 1}w. Examples of optimal degrees
and patterns for biased sampling can be found in Table 4.4. The residual
erasure probabilityQr obtained using the biased sampling scheme is found
to be lower than that with uniform sampling. Therefore, the most effective
method is to allow biased sampling of the source blocks. In Publication 7,
the biased sampling method is also compared with Raptor coding as speci-
�ed in [3GP07]. Our proposed biased sampling based coding turns out to
give lower Qr than the Raptor code does.

Note that these results on the optimality of the degree distribution and

92

sampling pattern are empirical in nature, although in the next section we
try to reason why the single degree distributions give the best performance.

4.5.5 Discussion

An interesting �nding regarding the form of the optimal sampling pattern
is the fact that the pattern is dependent only on the used degree; for a
given d the form of the pattern stays practically the same for any w and
P . The optimal sampling pattern always includes ones at both ends of the
window (i.e., at �rst and last elements). If this were not the case, then the
window could be resized without loss of performance. Because enlarging
the window size results in better performance in our window-based erasure
correction method, it is always optimal to choose the �rst and last blocks
inside a window. The middle positions are chosen in a more random way;
there is no identi�able or intuitive pattern of ones in the middle positions.

The single-degree distribution works best for the sliding window scheme
with continuous movement of one block at a time and probabilistic repair
packet sending. As the decoder is assumed to take advantage only of such
packets which immediately yield new decoded blocks, the decoding steps
achieved using buffered packets are not taken into account in the analysis.
In addition, only a couple of missing blocks in a window are assumed, a
longer iteration chain would be worthless. The iteration is kept alive with
degree-1 packets, and with low channel erasure probability the number of
these packets is high compared to the window size. When an optimised
�xed degree distribution is used, the probability that a sent repair packet
will yield a new undecoded block after decoding is reasonably high (higher
than with any other degree) and longer iterative decoding chains are un-
necessary. When the channel conditions are static, and as the equilibrium
is assumed on a very long stream, the same decision is made over and over
again, and the optimal thing to do is to choose the single degree giving the
highest probability of a new decoded block.

4.6 Summary

In this chapter we studied erasure correcting methods for data with real-
time requirements, especially in a streaming environment. The methods
studied were novel erasure correction strategies relying on a sliding window
marking the section of source data relevant for the recipient, i.e., the non-
expired data. All of the schemes studied were systematic, leaving the choice
as to whether or not the erasure correction is taken advantage of to the
recipient.

We started by considering dividing the window into two parts and mov-
ing the window in half-window step sizes. In this scheme, the repair packet
degrees were chosen to form packets which, upon receipt, could immedi-
ately be used to decode a new stream block. The repair packets were sent
deterministically after each window movement, and thus the window size
used de�nes the code rate. The analysis was performed by making use of
the independence of the number of missing blocks in each half of the win-
dow, and calculating steady-state results using �xed-point iteration.

93

The half-window strategy was compared to a continuous and probabilis-
tic scheme in which the window is moved one step at a time and a repair
packet is formed and sent with a probability P . Further, in this scheme, the
repair packet is sampled by allowing different sampling probabilities pi for
every window position. The analysis was performed using a �xed-point it-
eration. However, the approximations made in the analysis always resulted
in a �xed number of the newest blocks in a repair packet being chosen,
making the window size somewhat irrelevant. The numerical evaluations
indicated that the half-window scheme performs better.

As the degree-based sampling turned out to perform better, we con-
tinued by making a Markovian analysis of the continuous sliding window
erasure correction with degree-based repair packet generation and proba-
bilistic sending of the repair packets. The Markovian analysis was made
possible by restricting the number of allowable packet erasures in a window
to three; otherwise we would have faced similar state space explosion prob-
lems as in Chapter 3. This restriction, however, is a justi�ed one for the
scenarios we considered.

Both uniform and biased sampling were studied in the Markov model.
Somewhat surprisingly, we found that a single-degree distribution gives the
best possible performance. In addition to single-degree distribution, when
biased sampling was used, a deterministic sampling pattern consisting of
zeroes and ones turned out to give the best results.

94

5 SUMMARY

In this thesis we have presented a performance analysis and optimisation
of different types of coding schemes based on the fountain principle. The
codes that were analysed implement some or all of the different character-
istics of a digital fountain. The digital fountain is an analogy to a conven-
tional water-spraying fountain. In the fountain principle, the packets corre-
spond to water drops which one or many recipients collect in their buckets.
All of the packets are ideally statistically identical, like water drops, which
will quench your thirst if you just collect enough of them. The fountain
itself is the data-distributing server.

Scenarios such as multicasting and the dynamic joining and leaving of
the receivers are easy to implement using codes realising the fountain prin-
ciple. This makes these techniques interesting for many modern-day �le
transfer situations over the Internet. As the fountain codes work by encod-
ing with a random algorithm, making the packets statistically equivalent
and possibly redundant, the receiver needs to collect more than the abso-
lute minimum number of packets in order to decode all the original data
with a high probability. This is a key problem which needs to be addressed
when employing fountain coding inspired schemes, as bad design leads to
large overheads, resulting in inef�cient channel and network use.

The �rst codes discussed in the context of a digital fountain were Tor-
nado codes [LMSS01]. Before this, schemes like Reed-Solomon coding
had been used to implement erasure correction, but not in quite similar
context to implementing a digital fountain. However, these codes are not
rateless and need to have their parameters, such as the number of gener-
ated encoding symbols, decided beforehand and matched to the channel
loss statistics. The �rst universal fountain codes are the LT codes [Lub02],
which are rateless and asymptotically optimal for any erasure channel. The
encoding and decoding algorithms are simple and use only bitwise XOR
operation. The current state-of-the-art fountain codes are the Raptor codes
[Sho06], which are an extension to the LT codes, providing linear time
encoding and decoding algorithm complexities. Despite the intriguing po-
tential these codes have, they have not yet seen large-scale adoption.

Our own work in this thesis was divided into two parts. In the �rst part
we discussed the performance analysis and optimisation of fountain codes
for small �le lengths. Most of the previously introduced analyses of foun-
tain codes discuss only asymptotic properties, and have left room for the
analysis of scenarios with small �le lengths (the small number of blocks
the �le is divided into). First we optimised the degree distributions, which
determine the performance, of LT codes for toy cases of three and four �le
blocks. We did an exact analysis and found the optimal degree distributions.
As the analysis suffered from state space explosion, we introduced a com-
binatorial algorithm for larger cases of tens of �le blocks and optimised the
degree distributions. Even larger numbers of �le blocks can be used with
the simulation-based method, introduced after the exact analyses. Simu-
lation samples with a speci�c degree distribution were used to construct

95

an estimate of the gradient direction where the distribution could be im-
proved. This estimate was calculated using the concept of change of the
probability measure, borrowed from importance sampling theory, allowing
us to estimate the performance from simulation samples using a different
degree distribution. The optimal form of the degree distributions of the LT
codes found using these methods is the same: the �rst few degrees are im-
portant, and in addition some weight has to be given to some large degree.
This is to guarantee that long chains of revealing novel blocks are kept alive
during the decoding. Further, we analysed the sensitivity of the degree dis-
tributions and noticed that there are only a couple of principal directions
of change which affect the performance in an observable way.

After the LT code optimisation, we turned to different settings for foun-
tain principle-inspired codes. A random linear fountain (RLF) is a code, in
which the packets are formed by sampling each of the k blocks with a prob-
ability 1/2. As with the other methods, each sent packet can be interpreted
to represent a linear equation. The receiver needs to collect k linearly inde-
pendent equations and can then decode the original information by solving
the linear system using Gaussian elimination. This strategy results in a very
low overhead on average (1.6 packets). The problem is, however, that the
decoding is done using a much slower algorithm than is typical or desirable
for a fountain code. Therefore, to relieve the computational burden, we
studied scenarios, in which RLF was divided into multiple parts. In order
to get statistically identical encoded packets, �rst a part is picked at random
and then RLF is used in that part to form a packet.

The problem with the division, however, is that when separate acknowl-
edgements to indicate completed decoding in the different parts are not
used, the sender keeps sending unnecessary packets to the already decoded
parts, resulting in inef�ciency. To counter this we proposed combining
the RLF-generated packets into macropackets by using LT coding on top
of the divided parts. In this way we still have statistically identical pack-
ets, but alleviate some of the inef�ciency resulting from the division. The
macropackets scheme was further compared to a data carousel-inspired way
of sending packets. However, the latter method breaks the statistical identi-
cality of the packets, as the packets are sent sequentially from each part. The
data carousel scheme works better than the macropackets for independent
loss rate below 0.2. The macropackets scheme outperforms it with higher
loss rates and is a rateless method, true to the fountain principle.

If we forego the requirement for the coding to be time-independent,
and have an estimate of the channel loss probability, how low an overhead
can we get? We studied this question by introducing a code with system-
atic part followed by a sequence of repair packets. After all of the blocks
have been sent once as such, the sender can calculate the distribution of
the number of missing blocks on the receiver's side, the belief about the
situation of the receiver. The repair packets are formed by using a greedy
decision to choose the packet degree which would most probably advance
the decoding at least one step further. The sender updates the belief about
the state of the receiver after every sent packet on the basis of what the ac-
tual degree of the sent repair packet was. The code proposed for this setting
achieves low overheads even for small �le sizes. Although the performance

96

is good, the problem is that an estimate of the loss probability is needed.
However, the scheme seems to be rather insensitive to small errors in the
estimate.

The second part, describing our own work, considered settings in which
we have a stream of data blocks. This kind of situation is typical for stream-
ing audio and video applications with real-time requirements. We further
used the assumption that a channel loss probability estimate is available.
All of the settings were assumed to be ones in which a systematic code is
preferred to a non-systematic one. A sliding window is used to mark the
non-expired section of the stream. As the window moves, newly introduced
blocks are sent as-is to guarantee the systematic operation. Two different
viewpoints were taken: either the repair packets were generated by sam-
pling using probabilities depending on the location of the block inside the
window, or a repair packet degree was sampled �rst and then this number
of blocks inside the window was picked at random.

In particular, �rst we considered the case where the windowmoves with
the step size equalling a half-window and a degree is drawn separately for
both of the halves. Then we allowed separate probabilities of each of the
blocks being included in the repair packet. The half-window method, with
degree-based sampling, turned out to be more ef�cient in terms of residual
erasure probability, i.e., the probability that a block remains undecoded af-
ter it is dropped out of the sliding window. This encouraged us to study in
more detail scenarios in which a degree is �rst chosen from a degree dis-
tribution and then the constituents are sampled inside the whole window.
We presented a performance analysis of both uniform sampling inside the
window and biased sampling. Of these, the biased sampling scenario gives
a lower residual error probability. An interesting empirical observation was
that the optimal degree distributions seem to be of a single-degree type.
Furthermore, with biased sampling, the optimal repair packets are such
that certain locations in the window are always sampled while others are
not. That is, the optimal way seems to be the use of a deterministic sam-
pling pattern.

We started the thesis by discussing `real' fountain codes, but later on
relaxed the strict requirement of ful�lling all of the ideal properties, e.g.,
by abandoning the time-independence requirements and assuming knowl-
edge of the channel loss probability p. As an example, we studied schemes
in which the data are initially sent as-is once, i.e., systematic coding, fol-
lowed by repair packets. Thus, not all of the packets that are sent are statis-
tically identical and the start of the initial round is a clear point in which the
receivers should start receiving packets from the beginning. Nevertheless,
typical repair packet construction relies on the same encoding algorithm as
is used with LT codes and only bitwise XOR operation is used. An inter-
esting observation is that a degree distribution similar to that used in plain
LT coding is not required, but a better performance is achieved with strate-
gies such as a sequence of packet degrees or even a deterministic sampling
pattern.

The analyses and results in this thesis show that there are ef�cient ways
to perform fountain-type coding in different settings with algorithms which
are simple to understand and implement. It is the task of the implementer,

97

by taking into account the requirements and nature of the application being
used, to decide which properties of the ideal fountain can be sacri�ced and
choose an appropriate fountain coding method.

This thesis has touched the surface of fountain coding analysis. There
remains numerous research topics to be pursued. For example, the opti-
mal degree distributions for general k for LT coding is an open question.
Another interesting question is how well fountain-coding-inspired methods
could co-operate with common transport layer protocols, such as TCP. The
actual application potential of fountain codes was not discussed at all. Fur-
ther, the optimisation methods presented in the thesis could be improved
and re�ned to work for larger �le sizes and more general situations.

98

6 AUTHOR'S CONTRIBUTION

Publication 1

The publication is a joint work between the authors. The ideas of mod-
elling the LT process as a Markov chain and the combinatorial approach
came from Prof. Jorma Virtamo and Dr. Esa Hyytiä. The present author
has drafted the publication with the exception of Section IV.

Publication 2

The publication is a joint work between the authors. The present author
has carried out all of the numerical evaluations, developed the optimisa-
tion algorithm and written the paper. The original idea of the importance
sampling based estimator came from Dr. Esa Hyytiä.

Publication 3

The publication is a joint work between the authors.

Publication 4

The publication is a joint work between the authors. The idea for greedy
optimisation came from the present author. The present author has done
the numerical evaluations and drafted the paper.

Publication 5

The publication is a joint work between the authors. The idea for �xed
point iteration came from Prof. Jorma Virtamo. The present author has
performed the numerical evaluations and drafted the paper.

Publication 6

This publication is a joint work between the authors. The publication was
drafted and all of the performance studies were conducted by the present
author.

Publication 7

This publication is an independent work of the author.

99

100

101

102

REFERENCES

[3GP07] 3GPP. TS 26.346 v.7.6.0, technical speci�cation group
services and system aspects, multimedia broadcast/multicast
service (mbms), protocols and codecs. Technical report,
3rd Generation Partnership Project, 3GPP, December 2007.
available at www.3gpp.org, accessed 27.5.2009.

[AdP] E. Altman and F. de Pellegrin. Forward correc-
tion and fountain codes in delay tolerant networks.
http://arxiv.org/abs/0808.3747 , accessed 7.6.2009.

[AKS08] Salah A. Aly, Zhenning Kong, and Emina Soljanin. Foun-
tain codes based distributed storage algorithms for large-scale
wireless sensor networks. In Proceedings of the 7th interna-
tional conference on information processing in sensor net-
works, pages 171�182, April 2008.

[BC08] E. A. Bodine andM. K. Cheng. Characterization of luby trans-
form codes with small message size for low-latency decoding.
In Proceedings of IEEE International Conference on Com-
munications, ICC'08, pages 1195�1199, May 2008.

[BCG+07] C.O. Mattia Bogino, Pasquale Cataldi, Marco Grangetto, En-
rico Magli, and Gabriella Olmo. Sliding-window digital foun-
tain codes for streaming of multimedia contents. In Proceed-
ings of IEEE International Symposium on Circuit and Sys-
tems'07, ISCAS'07, May 2007.

[BCMR04] J.W. Byers, J. Considine, M. Mitzenmacher, and S. Rost.
Informed content delivery across adaptive overlay networks.
IEEE/ACM Transactions in Networking (TON), 12(5):767�
780, October 2004.

[BDS07] Amos Beimel, Shlomi Dolev, and Noam Singer. RT oblivious
erasure correcting. IEEE/ACM Transactions on Networking,
15(6):1321�1332, December 2007.

[BGT96] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon
limit error-correcting coding and decoding. IEEE Transac-
tions on Information Theory, 42:1732�1736, November 1996.

[BKK+95] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby,
and D. Zuckerman. An XOR-based erasure-resilient coding
scheme. Technical report, International Computer Science
Institute, 1995.

[BLM02] J.W. Byers, M. Luby, and M. Mitzenmacher. A digital foun-
tain approach to asynchronous reliable multicast. IEEE Jour-
nal on Selected Areas in Communications, 20(8):1528�1540,
2002.

103

[BLMR98] J.W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A
digital fountain approach to reliable distribution of bulk
data. ACM SIGCOMMComputer Communication Review,
28(4):56�67, 1998.

[BSS93] Mokhtar S. Bazaraa, Hanif D. Sherali, and C.M. Shetty. Non-
linear Programming: Theory and Algorithms. John Wiley and
Sons., Inc., 2nd edition, 1993.

[Che] J. Chesson. A non-central multivariate hypergeometric distri-
bution arising from biased sampling with application to selec-
tive predation. Journal of Applied Probability, 13:795�797.

[Con01] J. Considine. Generating good degree distributions for sparse
parity check codes using oracles. Technical Report BUCS-TR
2001-019, Boston University, 2001.

[CRZ08] P. Casari, M. Rossi, and M. Zorzi. Fountain codes and their
application to broadcasting in underwater networks: perfor-
mance and relevant tradeoffs. In Proceedings of the 3rd ACM
international workshop on wireless network testbeds, exper-
imental evaluation and characterization, pages 11�18, San
Francisco, California, USA, September 2008.

[CT91] Thomas Cover and Joy Thomas. Elements of Information
Theory, volume 41 of Wiley Series in Telecommunications.
John Wiley & Sons, Inc., 1991.

[Did] Frederic Didier. Ef�cient erasure decoding of Reed-Solomon
codes. http://arxiv.org/abs/0901.1886v1 , accessed 18.9.2009.

[DPR06] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Dis-
tributed fountain codes for networked storage. In Proceed-
ings of the 2006 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2006, pages 1149�
1152, May 2006.

[DWR07] Alexandros G. Dimakis, Jiajun Wang, and Kannan Ramchan-
dran. Unequal growth codes: Intermediate performance and
unequal error protection for video streamin. In Proceedings
of the 9th IEEE Workshop on Multimedia Signal Processing,
MMSP 2007, pages 107�110, October 2007.

[Eli55] Peter Elias. Coding for two noisy channels. In Proceed-
ings of the 3rd London Symposium on Information Theory,
pages 61�76. Buttersworth's Scienti�c Publications, Septem-
ber 1955.

[Ell63] E.O. Elliott. Estimates of error rates for codes on burst-error
channels. Bell Systems Tech. Jouranl, 42:1977�1997, Septem-
ber 1963.

104

[Fog08] Agner Fog. Calculation methods for wallenius' noncentral
hypergeometric distribution. Communications in Statistics -
Simulation and Computation, pages 258�273, 2008.

[Fro01] Pascal Frossard. FEC performance in multimedia streaming.
IEEE Communication Letters, 5(3):122�124, March 2001.

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Trans-
actions on Information Theory, 8(1):21�28, 1962.

[GBGC09] D. Gomez-Barquero, D. Gozalvez, and N. Cardona. Ap-
plication layer FEC for mobile TV delivery in IP datacast
over DVB-H systems. IEEE Transactions on Broadcasting,
55(2):396�406, June 2009.

[Gil60] E.N. Gilbert. Capacity of a burst-error channel. Bell Systems
Tech. Jouranl, 39:1253�1266, September 1960.

[Hui96] Christian Huitema. The case for packet level FEC. In Pro-
ceedings of the IFIP 5th International Workshop on Protocols
for High-Speed Networks, pages 109�120, Sophia Antipolis,
France, October 1996.

[JS05] H. Jenkac and T. Stockhammer. Asynchronous media stream-
ing over wireless broadcast channels. In Proceedings of IEEE
International Conference on Multimedia and Expo, ICME
2005, pages 1318�1321, Amsterdam, The Netherlands, July
2005.

[KFMR05] Abhinav Kamra, Jon Feldman, Vishal Misra, and Dan Ruben-
stein. Data persistence in sensor networks: Towards opti-
mal encoding for data recovery in partial network failures.
SIGMETRICS Performance Evaluation Review, 33(2):24�
26, September 2005.

[KHF06] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion
Control Protocol (DCCP). RFC 4340 (Proposed Standard),
March 2006.

[KLS04] R. Karp, M. Luby, and A. Shokrollahi. Finite length analysis
of LT codes. In Proceedings of International Symposium on
Information Theory, ISIT 2004, page 39, June 2004.

[KMFR06] Abhinav Kamra, Vishal Misra, Jon Feldman, and Dan Ruben-
stein. Growth codes: Maximizing sensor network data per-
sistence. In Proceedings of the 2006 Conference on Ap-
plications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM'06, pages 255�
266, Pisa,Italy, August 2006.

[Li05] J. Li. The ef�cient implementation of Reed-Solomon high
rate erasure resilient codes. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Pro-
cessing, ICASSP'05, volume 3, 2005.

105

[LMA98] M. Luby, M. Mitzenmacher, and Shokrollahi A. Analysis of
random processes via and-or tree evaluation. In Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 364�373, 1998.

[LMS+97] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A. Spielman,
and V. Stemann. Practical loss-resilient codes. pages 150�159,
1997.

[LMSS98] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. A. Spiel-
man. Analysis of low density codes and improved designs us-
ing irregular graphs. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, pages 249�258, 1998.

[LMSS01] Michael Luby, Michael Mitzenmacher, Amin Shokrollahi,
and Daniel Spielmann. Ef�cient erasure correcting codes.
IEEE Transactions on Information Theory, 47(2):569�584,
February 2001.

[LSW08] M. Luby, T. Stockhammer, and M. Watson. IPTV systems,
standards and architectures: Part II - application layer FEC in
IPTV services. IEEE Communications Magazine, 46(5):94�
101, May 2008.

[LSWS07] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer.
Raptor Forward Error Correction Scheme for Object Delivery.
RFC 5053 (Proposed Standard), October 2007.

[Lub02] Michael Luby. LT codes. In Proceedings of The 43rd An-
nual IEEE Symposium on Foundations of Computer Science,
2002, pages 271�280, 2002.

[Mac03] David J.C. MacKay. Information theory, inference and learn-
ing algorithms. Cambridge University Press, 2003.

[Mac05] David J.C. MacKay. Fountain codes. IEE Proceedings Com-
munications, 152(6):1062�1068, December 2005.

[Max75a] N.F. Maxemchuk. Dispersity routing. In Proceedings of
ICC'75, pages 41�10,41�13, San Francisco CA, USA, 1975.

[Max75b] N.F. Maxemchuk. Dispersity routing in store-and-forward net-
works. PhD thesis, University of Pennsylvania-Electronic Dis-
sertations, 1975.

[May02] Peter Maymounkov. Online codes. Technical report, New
York University, October 2002.

[McA90] A. J. McAuley. Reliable broadband communication using a
burst erasure correcting code. In Proceedings of the ACM
symposium on communications architectures and protocols,
SIGCOMM'90, pages 297�306, Philadelphia, Pennsylvania,
USA, 1990.

106

[MM03] Peter Maymounkov and David Mazier�es. Rateless codes and
big downloads. In In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems, IPTPS'03, Berkeley, Cali-
fornia, USA, 2003.

[MN97] David J. C. MacKay and R.M. Neal. Near Shannon limit
performance of low density parity check codes. Electronics
letters, 33(6):457�458, 1997.

[MS77] F.J. Macwilliams and N.J.A. Sloane. The Theory of Error-
Correcting Codes, volume 16. North Holland Mathematical
Library, 1977.

[NB96] Jörg Nonnenmacher and Ernst Biersack. Reliable multicast:
where to use FEC. In Proceedings of the IFIP 5th Interna-
tional Workshop on Protocols for High-Speed Networks, pages
134�148, Sophia Antipolis, France, October 1996.

[NYH07] T. D. Nguyen, L. L. Yang, and L. Hanzo. Systematic luby
transform codes and their soft decoding. pages 67�72, October
2007.

[PB05] James S. Plank and Adam L. Buchsbaum. Small parity-check
codes � exploration and observations. In Proceedings of the
2005 International Conference on Dependable Systems and
Networks, pages 326�335, June 2005.

[Pla05] James S. Plank. Assessing the performance of erasure codes
in the wide-area. In Proceedings of the 2005 International
Conference on Dependable Systems and Networks, DSN'05,
pages 182�187, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[PLL+04] T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh.
FLUTE � �le delivery over unidirectional transport. RFC
3926 (Experimental), October 2004.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (Standard), Au-
gust 1980.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (Stan-
dard), September 1981. Updated by RFCs 1122, 3168.

[PT03] J. S. Plank and M. G. Thomason. On the practical use of ldpc
erasure codes for distributed storage applications. Technical
Report CS-03-510, University of Tennessee, September 2003.

[Rab89] M.O. Rabin. Ef�cient dispersal of information for security,
load balancing, and fault tolerance. Journal of the ACM
(JACM), 36(2):335�348, 1989.

[Riz97a] L. Rizzo. On the feasibility of software FEC. 1997. available
at: http://www.iet.unipi.it/ luigi/softfec.ps , accessed 5.5.2009.

107

[Riz97b] Luigi Rizzo. Effective Erasure Codes for Reliable Computer
Communication Protocols. ACM SIGCOMM Computer
Communication Review, 27(2):24�36, 1997.

[Ros00] Sheldon M. Ross. Introduction to Probability Models. Aca-
demic Press, 7th edition, 2000.

[RS60] I.S. Reed and G. Solomon. Polynomial codes over certain
�nite �elds. Journal of the Society for Industrial and Applied
Mathematics, pages 300�304, 1960.

[RU01] T. J. Richardson and Rüdiger Urbanke. Ef�cient encoding of
low-density parity-check codes. IEEE Transactions on Infor-
mation Theory, 47(2), February 2001.

[RU08] Tom Richardson and Rüdiger Urbanke. Modern Coding The-
ory. Cambdrigde University Press, 2008.

[Rub97] Reuven Y. Rubinstein. Optimization of computer simulation
models with rare events. European Journal on Operational
Research, 99(1):89�112, May 1997.

[Sha48] Claude Shannon. A mathematical theory of communication.
Bell Systems Tech. J., 27:379�423, 1948.

[Sho06] Amin Shokrollahi. Raptor codes. IEEE Transactions on In-
formation Theory, 52(6):2551�2567, June 2006.

[Sii08] Sebastian Siikavirta. Toistokorjausalgoritmit multimedian si-
irrossa matkapuhelinverkoissa. Master's thesis, University of
Helsinki, 2008.

[SM90] N. Shacham and P. McKenney. Packet recovery in high-speed
networks using coding and buffer management. In Proceed-
ings of IEEE Infocom'90, pages 124�131, June 1990.

[Tir06] Tuomas Tirronen. Optimizing the degree distribution of LT
codes. Master's thesis, Helsinki University of Technology,
2006.

[Wal63] K.T. Wallenius. Biased Sampling: The Non-central Hyperge-
ometric Probability Distribution. PhD thesis, Stanford Uni-
versity, 1963.

[WCF06] J.-P. Wagner, J. Chakareski, and P. Frossard. Streaming of
scalable video from multiple servers using rateless codes. In
Proceedings of IEEE International Conference ofMultimedia
and Expo, ICME 2006, pages 1501�1504, Toronto, Canada,
July 2006.

[WHZ+01] Dapeng Wu, Yiwei Thomas Hou, Wenwu Zhu, Ya-Qin
Zhang, and Jon M. Peha. Streaming video over the internet:
Approaches and directions. IEEE Transactions on Circuits
and Systems for Video Technology, 11(3), March 2001.

108

[Wol] Wolfram. Mathematica. http://www.wolfram.com , accessed
27.5.2009.

[YCLX08] Wending Yao, Lijia Chen, Hui Li, and Hongguang Xu. Re-
search on fountain codes in deep space communications. In
Proceedings of Congress on Image and Signal Processing,
CISP'08, pages 219�224, May 2008.

[YP08] Xiaojun Yuan and Li Ping. On systematic LT codes. Commu-
nications Letters, IEEE, 12(9):681�683, September 2008.

109

110

	Preface
	Contents
	List of publications
	Abbreviations
	Introduction
	Fountain and rateless erasure coding
	Contributions and the perspective of this thesis
	Terminology
	Outline of the thesis

	Fountain coding
	Basics of packet erasure coding
	Fountain coding principle
	LDPC, Tornado and random linear fountain codes
	LT codes
	Raptor codes
	Applications
	Summary

	Optimisation of fountain codes
	Contribution
	LT codes for small message lengths
	Random linear fountain -- divide and conquer
	A systematic code with belief updating
	Summary

	Erasure coding for real-time scenarios
	Contribution
	Related research
	Sliding window algorithm
	Half-window and probabilistic repair packet generation
	Markovian model for degree-based repair packets
	Summary

	Summary
	Author's contribution
	Errata
	References

