4,678 research outputs found

    The mass area of jets

    Get PDF
    We introduce a new characteristic of jets called mass area. It is defined so as to measure the susceptibility of the jet's mass to contamination from soft background. The mass area is a close relative of the recently introduced catchment area of jets. We define it also in two variants: passive and active. As a preparatory step, we generalise the results for passive and active areas of two-particle jets to the case where the two constituent particles have arbitrary transverse momenta. As a main part of our study, we use the mass area to analyse a range of modern jet algorithms acting on simple one and two-particle systems. We find a whole variety of behaviours of passive and active mass areas depending on the algorithm, relative hardness of particles or their separation. We also study mass areas of jets from Monte Carlo simulations as well as give an example of how the concept of mass area can be used to correct jets for contamination from pileup. Our results show that the information provided by the mass area can be very useful in a range of jet-based analyses.Comment: 36 pages, 12 figures; v2: improved quality of two plots, added entry in acknowledgments, nicer form of formulae in appendix A; v3: added section with MC study and pileup correction, version accepted by JHE

    Boosted top: experimental tools overview

    Full text link
    An overview of tools and methods for the reconstruction of high-boost top quark decays at the LHC is given in this report. The focus is on hadronic decays, in particular an overview of the current status of top quark taggers in physics analyses is presented. The most widely used jet substructure techniques, normally used in combination with top quark taggers, are reviewed. Special techniques to treat pileup in large cone jets are described, along with a comparison of the performance of several boosted top quark reconstruction techniques.Comment: Proceedings from the 7th International Workshop on Top Quark Physics, Cannes, Franc

    X-ray Properties of the GigaHertz-Peaked and Compact Steep Spectrum Sources

    Full text link
    We present {\it Chandra} X-ray Observatory observations of Giga-Hertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. The {\it Chandra} sample contains 13 quasars and 3 galaxies with measured 2-10 keV X-ray luminosity within 1042104610^{42} - 10^{46} erg s1^{-1}. We detect all of the sources, five of which are observed in X-ray for the first time. We study the X-ray spectral properties of the sample. The measured absorption columns in the quasars are different than those in the galaxies in the sense that the quasars show no absorption (with limits 1021cm2\sim 10^{21} \rm cm^{-2}) while the galaxies have large absorption columns (>1022cm2> 10^{22} \rm cm^{-2}) consistent with previous findings. The median photon index of the sources with high S/N is Γ=1.84±0.24\Gamma=1.84 \pm0.24 and it is larger than the typical index of radio loud quasars. The arcsec resolution of {\it Chandra} telescope allows us to investigate X-ray extended emission, and look for diffuse components and X-ray jets. We found X-ray jets in two quasars (PKS 1127-145, B2 0738+32), an X-ray cluster surrounding a CSS quasar (z=1.1, 3C 186), detected a possible binary structure in 0941-080 galaxy and an extended diffuse emission in galaxy PKS B2 1345+12. We discuss our results in the context of X-ray emission processes and radio source evolution. We conclude that the X-ray emission in these sources is most likely unrelated to a relativistic jet, while the sources' radio-loudness may suggest a high radiative efficiency of the jet power in these sources.Comment: 15 pages, to be published in Ap

    Relations between concurrent hard X-ray sources in solar flares

    Get PDF
    Context: Solar flares release a large fraction of their energy into non-thermal electrons, but it is not clear where and how. Bremsstrahlung X-rays are observed from the corona and chromosphere. Aims: We aim to characterize the acceleration process by the coronal source and its leakage toward the footpoints in the chromosphere. The relations between the sources reflect the geometry and constrict the configuration of the flare. Methods: We studied solar flares of GOES class larger than M1 with three or more hard X-ray sources observed simultaneously in the course of the flare. The events were observed with the X-ray satellite RHESSI from February 2002 until July 2005. We used imaging spectroscopy methods to determine the spectral evolution of each source in each event. The images of all of the five events show two sources visible only at high energies (footpoints) and one source only visible at low energies (coronal or looptop source, in two cases situated over the limb). Results: We find soft-hard-soft behavior in both, coronal source and footpoints. The coronal source is nearly always softer than the footpoints. The footpoint spectra differ significantly only in one event out of five. Conclusions: The observations are consistent with acceleration in the coronal source and an intricate connection between the corona and chromosphere.Comment: accepted for publication in A&A, 11 pages, 9 figure

    Chandra Snapshot Observations of Low-Luminosity AGNs with a Compact Radio Source

    Full text link
    The results of Chandra snapshot observations of 11 LINERs (Low-Ionization Nuclear Emission-line Regions), three low-luminosity Seyfert galaxies, and one HII-LINER transition object are presented. Our sample consists of all the objects with a flat or inverted spectrum compact radio core in the VLA survey of 48 low-luminosity AGNs (LLAGNs) by Nagar et al. (2000). An X-ray nucleus is detected in all galaxies except one and their X-ray luminosities are in the range 5x10^38 to 8x10^41 erg/s. The X-ray spectra are generally steeper than expected from thermal bremsstrahlung emission from an advection-dominated accretion flow (ADAF). The X-ray to Halpha luminosity ratios for 11 out of 14 objects are in good agreement with the value characteristic of LLAGNs and more luminous AGNs, and indicate that their optical emission lines are predominantly powered by a LLAGN. For three objects, this ratio is less than expected. Comparing with properties in other wavelengths, we find that these three galaxies are most likely to be heavily obscured AGN. We use the ratio RX = \nu L\nu (5 GHz)/LX, where LX is the luminosity in the 2-10 keV band, as a measure of radio loudness. In contrast to the usual definition of radio loudness (RO = L\nu(5 GHz)/L\nu(B)), RX can be used for heavily obscured (NH >~ 10^23 cm^-2, AV>50 mag) nuclei. Further, with the high spatial resolution of Chandra, the nuclear X-ray emission of LLAGNs is often easier to measure than the nuclear optical emission. We investigate the values of RX for LLAGNs, luminous Seyfert galaxies, quasars and radio galaxies and confirm the suggestion that a large fraction of LLAGNs are radio loud.Comment: 15 pages, accepted for publication in Ap
    corecore