6 research outputs found

    Adaptive and extendable control of unmanned surface vehicle formations using distributed deep reinforcement learning

    Get PDF
    Future ocean exploration will be dominated by a large-scale deployment of marine robots such as unmanned surface vehicles (USVs). Without the involvement of human operators, USVs exploit oceans, especially the complex marine environments, in an unprecedented way with an increased mission efficiency. However, current autonomy level of USVs is still limited, and the majority of vessels are being remotely controlled. To address such an issue, artificial intelligence (AI) such as reinforcement learning can effectively equip USVs with high-level intelligence and consequently achieve full autonomous operation. Also, by adopting the concept of multi-agent intelligence, future trend of USV operations is to use them as a formation fleet. Current researches in USV formation control are largely based upon classical control theories such as PID, backstepping and model predictive control methods with the impact by using advanced AI technologies unclear. This paper, therefore, paves the way in this area by proposing a distributed deep reinforcement learning algorithm for USV formations. More importantly, using the proposed algorithm USV formations can learn two critical abilities, i.e. adaptability and extendibility that enable formations to arbitrarily increase the number of USVs or change formation shapes. The effectiveness of algorithms has been verified and validated through a number of computer-based simulations

    A Survey of Recent Machine Learning Solutions for Ship Collision Avoidance and Mission Planning

    Get PDF
    Machine Learning (ML) techniques have gained significant traction as a means of improving the autonomy of marine vehicles over the last few years. This article surveys the recent ML approaches utilised for ship collision avoidance (COLAV) and mission planning. Following an overview of the ever-expanding ML exploitation for maritime vehicles, key topics in the mission planning of ships are outlined. Notable papers with direct and indirect applications to the COLAV subject are technically reviewed and compared. Critiques, challenges, and future directions are also identified. The outcome clearly demonstrates the thriving research in this field, even though commercial marine ships incorporating machine intelligence able to perform autonomously under all operating conditions are still a long way off.Peer reviewe

    A Survey of Recent Machine Learning Solutions for Ship Collision Avoidance and Mission Planning

    Get PDF
    Machine Learning (ML) techniques have gained significant traction as a means of improving the autonomy of marine vehicles over the last few years. This article surveys the recent ML approaches utilised for ship collision avoidance (COLAV) and mission planning. Following an overview of the ever-expanding ML exploitation for maritime vehicles, key topics in the mission planning of ships are outlined. Notable papers with direct and indirect applications to the COLAV subject are technically reviewed and compared. Critiques, challenges, and future directions are also identified. The outcome clearly demonstrates the thriving research in this field, even though commercial marine ships incorporating machine intelligence able to perform autonomously under all operating conditions are still a long way off

    COLERGs-constrained safe reinforcement learning for realising MASS's risk-informed collision avoidance decision making

    Get PDF
    Maritime autonomous surface ship (MASS) represents a significant advancement in maritime technology, offering the potential for increased efficiency, reduced operational costs, and enhanced maritime traffic safety. However, MASS navigation in complex maritime traffic and congested water areas presents challenges, especially in Collision Avoidance Decision Making (CADM) during multi-ship encounter scenarios. Through a robust risk assessment design for time-sequential and joint-target ships (TSs) encounter scenarios, a novel risk and reliability critic-enhanced safe hierarchical reinforcement learning (RA-SHRL), constrained by the International Regulations for Preventing Collisions at Sea (COLREGs), is proposed to realize the autonomous navigation and CADM of MASS. Finally, experimental simulations are conducted against a time-sequenced obstacle avoidance scenario and a swarm obstacle avoidance scenario. The experimental results demonstrate that RA-SHRL generates safe, efficient, and reliable collision avoidance strategies in both time-sequential dynamic obstacles and mixed joint-TSs environments. Additionally, the RA-SHRL is capable of assessing risk and avoiding multiple joint-TSs. Compared with Deep Q-network (DQN) and Constrained Policy Optimization (CPO), the search efficiency of the algorithm proposed in this paper is improved by 40% and 12%, respectively. Moreover, it achieved a 91.3% success rate of collision avoidance during training. The methodology could also benefit other autonomous systems in dynamic environments

    深層強化学習による東京湾フェリーの避航方法について

    Get PDF
    東京海洋大学修士学位論文 2022年度(2022年9月) 海運ロジスティクス 修士 第3881号指導教員: 田丸人意全文公表年月日: 2022-12-22東京海洋大学202

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    corecore