3,192 research outputs found

    Going higher in the First-order Quantifier Alternation Hierarchy on Words

    Full text link
    We investigate the quantifier alternation hierarchy in first-order logic on finite words. Levels in this hierarchy are defined by counting the number of quantifier alternations in formulas. We prove that one can decide membership of a regular language to the levels BΣ2\mathcal{B}\Sigma_2 (boolean combination of formulas having only 1 alternation) and Σ3\Sigma_3 (formulas having only 2 alternations beginning with an existential block). Our proof works by considering a deeper problem, called separation, which, once solved for lower levels, allows us to solve membership for higher levels

    Separating regular languages with two quantifier alternations

    Full text link
    We investigate a famous decision problem in automata theory: separation. Given a class of language C, the separation problem for C takes as input two regular languages and asks whether there exists a third one which belongs to C, includes the first one and is disjoint from the second. Typically, obtaining an algorithm for separation yields a deep understanding of the investigated class C. This explains why a lot of effort has been devoted to finding algorithms for the most prominent classes. Here, we are interested in classes within concatenation hierarchies. Such hierarchies are built using a generic construction process: one starts from an initial class called the basis and builds new levels by applying generic operations. The most famous one, the dot-depth hierarchy of Brzozowski and Cohen, classifies the languages definable in first-order logic. Moreover, it was shown by Thomas that it corresponds to the quantifier alternation hierarchy of first-order logic: each level in the dot-depth corresponds to the languages that can be defined with a prescribed number of quantifier blocks. Finding separation algorithms for all levels in this hierarchy is among the most famous open problems in automata theory. Our main theorem is generic: we show that separation is decidable for the level 3/2 of any concatenation hierarchy whose basis is finite. Furthermore, in the special case of the dot-depth, we push this result to the level 5/2. In logical terms, this solves separation for Σ3\Sigma_3: first-order sentences having at most three quantifier blocks starting with an existential one

    Languages of Dot-depth One over Infinite Words

    Full text link
    Over finite words, languages of dot-depth one are expressively complete for alternation-free first-order logic. This fragment is also known as the Boolean closure of existential first-order logic. Here, the atomic formulas comprise order, successor, minimum, and maximum predicates. Knast (1983) has shown that it is decidable whether a language has dot-depth one. We extend Knast's result to infinite words. In particular, we describe the class of languages definable in alternation-free first-order logic over infinite words, and we give an effective characterization of this fragment. This characterization has two components. The first component is identical to Knast's algebraic property for finite words and the second component is a topological property, namely being a Boolean combination of Cantor sets. As an intermediate step we consider finite and infinite words simultaneously. We then obtain the results for infinite words as well as for finite words as special cases. In particular, we give a new proof of Knast's Theorem on languages of dot-depth one over finite words.Comment: Presented at LICS 201

    Adding modular predicates to first-order fragments

    Full text link
    We investigate the decidability of the definability problem for fragments of first order logic over finite words enriched with modular predicates. Our approach aims toward the most generic statements that we could achieve, which successfully covers the quantifier alternation hierarchy of first order logic and some of its fragments. We obtain that deciding this problem for each level of the alternation hierarchy of both first order logic and its two-variable fragment when equipped with all regular numerical predicates is not harder than deciding it for the corresponding level equipped with only the linear order and the successor. For two-variable fragments we also treat the case of the signature containing only the order and modular predicates.Relying on some recent results, this proves the decidability for each level of the alternation hierarchy of the two-variable first order fragmentwhile in the case of the first order logic the question remains open for levels greater than two.The main ingredients of the proofs are syntactic transformations of first order formulas as well as the algebraic framework of finite categories

    Separation for dot-depth two

    Full text link
    The dot-depth hierarchy of Brzozowski and Cohen classifies the star-free languages of finite words. By a theorem of McNaughton and Papert, these are also the first-order definable languages. The dot-depth rose to prominence following the work of Thomas, who proved an exact correspondence with the quantifier alternation hierarchy of first-order logic: each level in the dot-depth hierarchy consists of all languages that can be defined with a prescribed number of quantifier blocks. One of the most famous open problems in automata theory is to settle whether the membership problem is decidable for each level: is it possible to decide whether an input regular language belongs to this level? Despite a significant research effort, membership by itself has only been solved for low levels. A recent breakthrough was achieved by replacing membership with a more general problem: separation. Given two input languages, one has to decide whether there exists a third language in the investigated level containing the first language and disjoint from the second. The motivation is that: (1) while more difficult, separation is more rewarding (2) it provides a more convenient framework (3) all recent membership algorithms are reductions to separation for lower levels. We present a separation algorithm for dot-depth two. While this is our most prominent application, our result is more general. We consider a family of hierarchies that includes the dot-depth: concatenation hierarchies. They are built via a generic construction process. One first chooses an initial class, the basis, which is the lowest level in the hierarchy. Further levels are built by applying generic operations. Our main theorem states that for any concatenation hierarchy whose basis is finite, separation is decidable for level one. In the special case of the dot-depth, this can be lifted to level two using previously known results
    • …
    corecore