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In this note we introduce a property of languages we call the alternation number. 
This property is used to deduce several facts about regular languages in particular. 
One of these facts is related to what might be called the "generalized dot height" 
of a regular language. The complexity of regular expressions is usually determined 
by their "star height" [E], although other complexity measures have also been consi-
dered [EK], In all of the papers we know of, a nontrivial argument is needed to 
establish that the complexity of 'regular expressions' must grow in order to name all 
regular sets. (Our definition of 'regular expression' allows an atomic name for each 
finite set, see below.) In the present note, we give a simple proof that the "dot height" 
(or depth of concatenation signs) of a regular expression also must grow. (The 
"dot-depth" considered in [BK] is unrelated to our dot height.) The dot height is 
related to the alternation number. We will show that if the alternation number of a 
regular language L is n, then any regular expression which denotes L contains 
(roughly) at least log« dots. 

Define a function / from the set of nonnegative integers N to collections of 
regular subsets of I* (for some fixed alphabet I ) as follows : 

/(0) = all finite languages; 

f(n+1) = /(«) U {L: L = L,+L2, L = L2, L=L*, £,€/(«)}. 

Thus a language is regular iff it belongs to f(n) for some n. We will show first that for 
each n, there is a language in f(n + l)—f(n). The truth of this fact follows easily 
from the well-known star-height hierarchy theorem (see [DS] for one proof). The argu-
ment given here shows that the hieararchy of regular languages depends also on the 
operation of concatenation. As a corollary we will obtain the dot height hierarchy. 
Lastly, we mention an automaton characterization of the alternation number. 

First we assume that I has at least two letters, say a and b. A language L admits 
alternations of size n if: for each 0 (or, equivalently, for infinitely many 
there is a word w in L of the form 

w(k) = u0x0...x0u1x1...x1u2...unxn^.x„u„+1 
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where 
1. «„, «J, ..., wn+1 are arbitrary words in Z*; 
2. x, are letters in I , and for each /<», x, and xi+1 are distinct; 
3. there are k consecutive occurences of the letters xh i=0, 1, . . . , n. (We will 

say that a word of the form w(k) has "n alternations of length at least £".) We say 
a language admits alternations of size 0 if it admits no alternations. For example, 
finite languages admit no alternations, {a}*, {¿}* admits alternations of size 1, as 
does L • {a}* • L' • {¿>}* • L", for any nonempty languages L, L' and L". Note that if L 
admits alternations of length n +1, then L also admits alternations of length n. 

Definition. The alternation number of L, a(L), is n if L admits alternations of 
size n but not of sizen+1. Let a(L)=«> if for each n, L admits alternations of size«. 

Proposition 1. Assume a(JL)=x, and a(K)—y, where x, >'€NU Then 

a(L + K) = m&x(x,y);x+ySa(L-Ky, if a{L*) > 0, (1.1) 

then a(L*)=co. 

a(L-K) ^ x+y+l; (1.2) 

(Of course, n < » and n+°°=°° , for all n€N.) 

Proof. We prove only the last part of 1.1. If a(L*)>0, for each k, there is a 
word w in L* which has 1 alternation of length at least k. But then ww has at least 3 
alternations of length at least k, and www has at least 5 alternations of length at least 
k, etc. Thus a(£*)=<~. 

The proof of 1.2 is longer. Assume that L • K admits alternations of size s. We 
will show s^a(K)+a(L)+l. For each k>0 there is a word in L • K of the form 

w(k) = u0x0...x0u1x1...xiu2...usxs...xsus+1 

as described above. We may factor each word w(fc) as l(k) • v(k), with l(k)£L 
and v(k)£K. Suppose that i{k) is the greatest integer /, — 1 s / s s , such that 

U0Xo." "i 

is an initial segment of l(k) (i(k)= — 1 if there is no such initial segment). Thus at 
least one of the integers between — 1 and s is the value of i(k) for infinitely many k; 
let n be the maximum of these integers, so that for infinitely many values of k, i(k)=n. 
(If n— — 1 or n=s, then we may easily show that s — a n d s^a(L), 
respectively, so that from now on, we assume 

For infinitely many values of k (say k£l) we may write 

l(k) = u04-.unxkJ'(k), 

where l'(k)l"(k)=un+14+i. 
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Case 1... For infinitely many values of k, say k in / ' , l'(k) is an initial segment 
of un+1. Then, for k in / ' . we may write 

so that s—{n + \)^a{K)\ also, n^a{L), so that s—i^a(K)+a(L), as claimed. 

Case 2. Otherwise. Then, for infinitely many k, un+1 is an initial segment of 
l'(k). Hence, for these values of k there is a number h(k) for which 

v(k) = h„+2... us^us+1. 

We now have two further subcases. 

Case 2a. The numbers h(k) are unbounded. Then, we may write 

v(k) = wwn+2x*„n... 

for infinitely many k, which shows that s—(n + l)^a(K)', clearly, n^a(L), so that 
again, s—l^a(L)+a(K). 

Case 2b. Otherwise. In this case, the numbers k—h(k) are unbounded, so that 
for infinitely many k, 

Since the numbers k—h(k) are unbounded, ?i + 1 s.a(L); clearly, s—(n+2)Sa(K), 
so that s— 1 ^=a(L)+a(K), completing the proof. 

Lemma 2. For each n£N define 

g(n) = max {a (L): Ldf(n) and a(L)<°o}. 

Then g (0 )=g( l )=0 ; g(2)=l and for «>0, g(n)=2<-n~1)-I. 

Proof. All languages in/(0) are finite, so that g(0)=0; the sum and product of 
finite languages are finite, and a{L*) is either 0 or so that g ( l ) = 0 also. Clearly 
g(2) is at least 1 and by Proposition 1, g(2) is at most 1. Assume g(n)=2"~1 — \. 
If L£f(n +1) and then using the proposition, the largest a(L) can be is 
2g(n)+1 = 2[2"-1 —1] + 1 =2" —1. But it is easy to see that <g(n +1) is not less than 
2g(»)+1 also, completing the induction. 

Theorem 3. For each positive w(EN, there is a language in /(«)—/(« — 1). 

Proof. Let L be a language in f(n) with a(L)—g(n). Then, if «>1, L is not in 
f(n — 1), since g(n — l)<g(n). The statement is trivial for n=1. 

What about the case that I is a singleton, say {a}, so that I * may be identified 
with N? In this case, if L is an ifinite regular set, there is a finite set F and a fixed in-
teger n and numbers k\, ..., kt such that 

L — jFU{a*1}• {a"}*U{a*2}• {a"}*U... U {a"'}• {a"}* = F U { a k \ ..., a"}• {a"}*. 

Hence all regular subsets of N are in /(3). 
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In order to avoid the trivial cases, we assume that the regular expressions (over 
Z) are built from the atomic letters (i.e. a symbol for each finite subset of Z*) and the 
function symbols + , •, and * in the usual way. (Thus, a finite set of words may be 
denoted by a regular expression with none of the function signs + , •, *.) Let |a| 
be the language denoted by the regular expression a. If a is a regular expression, 
let the 'dot height of a', dh (a), be 0, when a is an atomic letter; dh (<*+/?) = 
=max (dh (a), dh (ft)); dh (a*)=dh (a), and lastly, 

dh (a • ft) = 1 + max (dh (a), dh (ft)). 

Let R(n) denote the family of regular expressions a with dh (a)</7. 

Proposition 4. Suppose that n >0, that L is a language denoted by a, a£R(n) 
and that a(L)<°°. Then 

a(L)^g(n). 

Proof. By induction on n. If n = ! and L is denoted by a regular expression a 
having no dot symbols, then either a is an atomic symbol or has the form 

ft + a, or ft* 

for some other regular expressions ft, a with dot height 0. By induction on the structure 
of a, one sees that either a(L)=<=° or a (L)=0=g( l ) . 

Now assume that the proposition holds for n and that L is a language denoted 
by a regular expression in R(n + 1)—R(n) and a(L)<°°. If a is of the form ft + a 
or ft*, it is easily seen by induction on the structure of a that a(L)^g(n +1). If a 
is of the form ft • a then dh (ft), dh (<r)<«. Thus, by the induction hypothesis, 
a(\ft\) and a(|<x|) are at most g(n), and by proposition 1, a(L) is at most 2g(«) + 1 = 
=g(n + 1), completing the proof. 

Corollary 5. (The 'dot height' hierarchy). For each «>0, there is an infinite 
regular language L not denoted by a regular expression in R{n). 

Proof Any regular language L with g(«)<a(Z,)«=°° will do, by Proposition 2. 

The alternation number of a regular language may be described by certain pro-
perties of a finite automaton which accepts it. Let M=(Q, i, F) be a finite Z-auto-
maton (with state set Q, initial state i and final states F; we denote the action of a word 
u in X* on the state q by q • u). A state q in Q is "accessible" if q=i-u, for some word 
u in E*. If x is a letter in Z, we call a state q x-stable if q • u — q, where u is some posi-
tive power of x (i.e. u=x or xx or xxx, etc.); q is stable if q is x-stable for some letter 
x. The "behavior ofq", \q\, is the set {u£Z*: q-u£F}. 

We now define by induction the notion of an "«-state", for OS/;. 

Definition, a) The state q will be called "a 0-state via the letter x" if 
1. is nonempty; 

.2. q is x-stable. 
b) q is an "n-t-1 state via x" if 

1. q is x-stable; 
2. there is some word v such that q • v is an «-state via y, for some letter y^x; 
A state is an "«-state" if it is an «-state via x, for some letter x. 
The easy proof of the next fact is omitted. 
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Lemma 6. Let M = ( 2 , /', F) be an automaton which accepts the language L. 
Then, for I ^ h , L admits alternations of size « iff there is some accessible «-state 
in Q. 

Corollary 7. Let M=(Q, i, F) be an automaton which accepts the language L. 
Then, for n >0, a(L)=n iff Q contains an accessible «-state but no accessible 
fc-state with k>n. If Q has m states, then a{L)=<=° iff there is an accessible w-state 
in Q. 

Proof. We need only prove that if the cardinality of Q is m, and Q has an acces-
sible «¡-state, say q0, then a(Z,)=°°. But, there is a sequence of words u0, u1, ..., um 
such that if f ° r ' = 0 , 1, ...,m, then qt is an rn—i state via x.-, with 
x^xi+1; since the states qt cannot all be distinct, let s and t, t>0, be least such that 
qs = qs+t. It is easy to see that qs is also an n—s+kt state, for all k>0; hence 
a(L)=<x>. 

Corollary 8. There is an algorithm to determine, given a regular language L, 
what the alternation number of L is. 

Proof. Suppose one is given an accessible finite automaton with « states which 
accepts L. First one finds all the 0-states, by considering only paths of length ^n, 
then 1-states, etc. until one knows all the «-states. Then one applies the previous 
Corollary. 

Questions: Is there an algorithm to determine, given a regular language L, the 
least n such that L€/(«)? Is there an algorithm to determine the dot height of a regu-
lar language? 
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