250 research outputs found

    A generalization of the binary Preparata code

    Get PDF
    AbstractA classical binary Preparata code P2(m) is a nonlinear (2m+1,22(2m-1-m),6)-code, where m is odd. It has a linear representation over the ring Z4 [Hammons et al., The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319]. Here for any q=2l>2 and any m such that (m,q-1)=1 a nonlinear code Pq(m) over the field F=GF(q) with parameters (q(Δ+1),q2(Δ-m),d⩾3q), where Δ=(qm-1)/(q-1), is constructed. If d=3q this set of parameters generalizes that of P2(m). The equality d=3q is established in the following cases: (1) for a series of initial admissible values q and m such that qm<2100; (2) for m=3,4 and any admissible q, and (3) for admissible q and m such that there exists a number m1 with m1|m and d(Pq(m1))=3q. We apply the approach of [Nechaev and Kuzmin, Linearly presentable codes, Proceedings of the 1996 IEEE International Symposium Information Theory and Application Victoria, BC, Canada 1996, pp. 31–34] the code P is a Reed–Solomon representation of a linear over the Galois ring R=GR(q2,4) code P dual to a linear code K with parameters near to those of generalized linear Kerdock code over R

    Z4-linear Hadamard and extended perfect codes

    Full text link
    If N=2k>8N=2^k > 8 then there exist exactly [(k1)/2][(k-1)/2] pairwise nonequivalent Z4Z_4-linear Hadamard (N,2N,N/2)(N,2N,N/2)-codes and [(k+1)/2][(k+1)/2] pairwise nonequivalent Z4Z_4-linear extended perfect (N,2N/2N,4)(N,2^N/2N,4)-codes. A recurrent construction of Z4Z_4-linear Hadamard codes is given.Comment: 7p. WCC-200

    A linear construction for certain Kerdock and Preparata codes

    Full text link
    The Nordstrom-Robinson, Kerdock, and (slightly modified) Pre\- parata codes are shown to be linear over \ZZ_4, the integers mod 4\bmod~4. The Kerdock and Preparata codes are duals over \ZZ_4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over \ZZ_4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over \ZZ_4, but Hamming codes in general are not, nor is the Golay code.Comment: 5 page
    corecore