28 research outputs found

    The Weight Distributions of a Class of Cyclic Codes with Three Nonzeros over F3

    Full text link
    Cyclic codes have efficient encoding and decoding algorithms. The decoding error probability and the undetected error probability are usually bounded by or given from the weight distributions of the codes. Most researches are about the determination of the weight distributions of cyclic codes with few nonzeros, by using quadratic form and exponential sum but limited to low moments. In this paper, we focus on the application of higher moments of the exponential sum to determine the weight distributions of a class of ternary cyclic codes with three nonzeros, combining with not only quadratic form but also MacWilliams' identities. Another application of this paper is to emphasize the computer algebra system Magma for the investigation of the higher moments. In the end, the result is verified by one example using Matlab.Comment: 10 pages, 3 table

    On linear unequal error protection codes

    Get PDF

    Recent progress on weight distributions of cyclic codes over finite fields

    Get PDF
    Cyclic codes are an interesting type of linear codes and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. In coding theory it is often desirable to know the weight distribution of a cyclic code to estimate the error correcting capability and error probability. In this paper, we present the recent progress on the weight distributions of cyclic codes over finite fields, which had been determined by exponential sums. The cyclic codes with few weights which are very useful are discussed and their existence conditions are listed. Furthermore, we discuss the more general case of constacyclic codes and give some equivalences to characterize their weight distributions

    Two classes of reducible cyclic codes with large minimum symbol-pair distances

    Full text link
    The high-density data storage technology aims to design high-capacity storage at a relatively low cost. In order to achieve this goal, symbol-pair codes were proposed by Cassuto and Blaum \cite{CB10,CB11} to handle channels that output pairs of overlapping symbols. Such a channel is called symbol-pair read channel, which introduce new concept called symbol-pair weight and minimum symbol-pair distance. In this paper, we consider the parameters of two classes of reducible cyclic codes under the symbol-pair metric. Based on the theory of cyclotomic numbers and Gaussian period over finite fields, we show the possible symbol-pair weights of these codes. Their minimum symbol-pair distances are twice the minimum Hamming distances under some conditions. Moreover, we obtain some three symbol-pair weight codes and determine their symbol-pair weight distribution. A class of MDS symbol-pair codes is also established. Among other results, we determine the values of some generalized cyclotomic numbers
    corecore