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ABSTRACT 

It is possible for a linear block code to provide more protection against 

errors for selected mess~ge positions than is guaranteed by the minimum 

distance of the code. Codes having this property are called Linear Unequal 

Error Protection (LUEP) codes. In this report the optimal encoding of LUEP 

codes is discussed and bounds on the length of a code that ensures a given 

unequal error protection are derived. A number of constructions of LUEP codes 

are given. Cyclic UEP codes together with Majority Logic Decodi~g of certain 

classes of these are treated. A list of LUEP codes of m~nimal, len~tb and 

a list of cyclic UEP codes are included. 

AMS Subject Classification: 94B05, 94B60. 
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PREFACE 

In data transmission and processing a desired level of error'control is 

guaranteed by using error-correcting codes. Most block codes considered 

in the literature have the property that their correcting capabilities 

are described in terms of the correct reception of the entire message. 

These codes can successfully be applied in those cases where all positions 

in a message word require equal protection against errors. 

However, many applications exist in which some mess'age positions are more 

important than other ones. For example in transmitting numerical data, 

errors in the sign or in the high-order digits are more serious than are 

errors in the low-order digits. As another example consider the translllission 

of message words from different sources simultaneously in only one codeword, 

while the different sources have mutually different demands concerning· 

the protection against errors. 

Accordingly there is an interest 1n codes which protect some positions in 

a message word against a larger number of errors than other ortes. Such codes 

are called Unequal Error Protection codes (abbreviated: UEP codes). Masnick 

and Wolf (1967) introduced the concept of Unequal Error Protection" But, 

in contrast with what one would expect, they considered error protection 

of each single position in a codeword. In this report we consider error 

protection of single positions in the message words, following the formal 

definitions of Dunning and Robbins (1978). 

In Chapter I we introduce the concept of Linear Unequal Error Protection 

codes (LUEP codes) and define a vector, the so-called separation vector, 

by which the error-correcting capability of a LUEP code is measured. In 

Section 1.2 we consider a special form of a generator matrix ·for ai.UEP 

code, the so-called canonical form, introduced by Boyarinovand Katsma~. 

(1981). 

The error-correcting capability of a LUEP code, measured by the separation 

vector, depends upon the choice of a generator matrix which is used for the 

encoding of the message set. But fortunately every code'has a so-called 

optimal generator matrix, whose separation vector is componentwise 

larger than or equal to the separation vector of any other·generator matrix 

of the code. Chapter 2 provides a necessary and sufficient condition for 

a generator matrix to be optimal. It is also shown that a generator matrix 

of a code which has the smallest number of nonzero entries is optimal. The 

results in Chapter 2 are fEom Dunning and Robbins (1978). 
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An interesting and basic problem is to find a LUEP code with a given 

dimension and separation vector such that its length is minimal and 

hence its information rate is maximal. In Chapter 3 we derive a number of 

bounds on the length of LUEP codes. For the special case where all 

message positions are equally protected, some of our bounds reduce to 

the well-known Singleton, Plotkin, and Griesmer Bounds. Some earlier work 

on bounds was done by Katsman (J980); he derived Corollary (3.3.14) for 

the binary case. Our bounds give better results than the bound of Katsman 

(1980) does (cf. Section 3.4). The Theorems (3.3.2), (3.3.6), the binary 

version of (3.3.12), the Corollaries (3.3.7), (3.3.8), and formula (35) for 

linear UEP codes were already reported in van Gila (1981). Appendix A 

provides a table of all binary LUEP codes with maximal separation.veetor 

and length less than or equal to 15. 

In Chapter 4 we construct a number of LUEP codes. Section 4.1 provides 

some infinite families of LUEP codes which have minimal length and 

maximal separation vector. Section 4.2 contains a number of constructions 

which build LUEP codes from (LUEP) codes of smaller length, such as 

the direct sum and direct product construction, the lulu+vl construction, 

and concatenation. 

Chapter 5 deals with cyclic UEP codes. In Section 5.1 we give an optimal 

generator matrix for a cyclic UEP code and observe how itserrtir­

correcting capability depends on the weight distribution of its cyclic 

subcodes. In Section 5.2 we consider classes of cyclic UEP codes which 

can be decoded by Majority Logic Decoding Methods. Earlier results 

(Theorem (5.2. I) and (5.2.8» on cycl ic UEP codes were obtained. by 

Dyn 'kin and Togonidze (1976). Appendix B provides a table. of.aU binary 

cyclic UEP codes of length less than or equal to 39. 
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the finite field (Galois field) of q elements. 

the ring of polynomials in x over F • 
q n 

the residue class ring F [x] modulo (x -I). 
q 

the word length of a code. 

the dimension of a code. 

the minimum distance of a code. 

the separation vector of a code. 

the Hamming weight of the vector 

min { wt(!:.) I c E C }. 

{ wt(.£) I c € C }. 

{ c € C I wt <.£) .s p }. 

the generator matrix of a code. 

the ith row of the matrix G. 

the jth column of the matrix G. 

the set of rows of the matrix G. 

n { X c R(G) I C(p} c <X> }. 

c. 

the separation vector of the matrix G. 

the linear span of the set X. 

a linear code of wordlength n, dimension k, and 

minimum distance d. 

a linear code of word length n, dimension k , and 

separation vector !.. 

cf. page 10. 

cf. page 10. 

a minimal ideal 10 F [x]1 (xn_l). 
q 

a generator matrix of M •• 
l. 

the cyclotomic coset modulo n containing i. 

the largest integer less than or equal to x. 

the smallest integer larger than or equal to x~ 

a is a divisor of b. 

the k by k unit matrix. 
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1. INTRODUCTION 

In this chapter ~ give an introduction to the concept of Linear Unequal 

Error Protection Codes. The reader is assum(!d to be familiar. with the 

basic principles of linear algebra, finite fields, and error-correc.ting 

codes. For ail extensive treatment we refer to Mad~illiams and Sloane '(1918)' 

and van Lint (1982). In Section 1.1 we define "Unequal Erro·r. Pro.tection" 

and in Section 1.2 we derive a special form of the generator matrix for 

a linear UEP code, the so-called canonical form. 

1.1 Definition of Linear Unequal Error Protection COdes 

Let q be a prime power and let :F q = GF{q) be the Galois field of order q. 

A linear [n,k] code C of length n and dimension k over F is a It-dimensional 
q 

linear subspace of pn • A.generatbr matrix G of this code isa k byn 

matrix \hose rows fo! a basis of C. The bijection from J!'k. onto c which 
k q '. . 

maps any element!!! s F of the message set onto a codeword c "'mG is 
q 

called an encoding of C by means of the generator matrix G. For !€ Y4 ' 
wt(~) denotes the (Hamming) weight of ~, i.e. the number of nonzero 

components in ~. 

Dunning and Robbins () 978) have introduced the following formal definition. 

(I. I. ) Definition: For a linear [n,k] code C 

separation vector ~(G) = (s(G)l' •••.. ,s(G)k) 

to a generator matrix G of C, is defined by 

over the alphabet P the 
q 

s(G)i := min { wt(~) 

of length k, lVith respect 

• m. f. 0 } 
1 

(i=I, •.•• k). 

This 

and 

This 

k 
means that for any a, f3 t:F ,a rf B , the sets {mG I m € F ,m.- a } 

q - - q 1 

{ mG I m E Fk , m. = B } are at distance s(G). apart (i-I, ... ,k). 
- - q 1· 1 

observation implies the following error-correcting capabilit;y of 

a code when we use it on a q-ary symmetric channel. 
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(I. 1.2) Theorem: For a linear [n,kJ code Cover F • ,.,uich uses the matrix 

G f · . q • f h • th or ~ts encodl.ng, we can guarantee the correct recept10n 0 t e 1. 

digit of the message word if the error pattern has a Hamming weight less 

than or equal to GS(G)C1)/2J by using maximumlikdihooddecodirtg. 

From Definition (1.1.1) it is immediately clear that the minimUJD distance 

of the code equals 

d = min { s (G). 1 i = I, ... , k }. 
1 

(2 ) 

Hence by Theorem (1.1.2) we can guarantee correct reception of the 

complete message if the error pattern has a weight less than or equal to 

~d-I)/2J • 
The following definition is an immediate consequence of Theorem.(I.l.2). 

(1.1.3) Definition: If a linear code C has a generator matrixG such 

that the components of the separation vector ~(G) are not mutually equal, 

then the code C is called a Linear Unequal Error Protection. Code (LUEP code). 

One can easily decode LUEP codes by using Syndrome Decoding (cf. MacWilliams 

and Sloane (1978». This decoding method reaches the correctioncapa:bility 

given by Theorem (1.1.2), because of the following fact. For a fi~ed 

coset R of a linear code C, encoded by means of a generator matrixG, 

let U be the set of coset leaders of R. For any E € R, E+U contains 

all codewords which are closest to E. i.e. at a distance d(,!,C), the 

distance between E and C, from E' If i€ { 1, ••• ,k} is such that the weight 

of the elements of U is less than of equal to ~s(G)i-t)/2J ,then the ith 

digits of the messages corresponding to the elements of r+U are mutually 

equal. Hence if r is the received word, Syndrome Decoding correctly 

d the . t'h d" f h repro uces 1 ~g1t 0 t e message sent. 

In Section 5.2 we treat a Majority Logic Decoding method for certain 

classes of cyclic UEP codes. 
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1.2 The canonical form of a generator matrix 

By simultaneously permuting the message positions in the message words 

and the rows of a generator matris G, we may obtain a generator matTix G 

for the code such that s(G) is nonincreasing, i.e. s(G). ~ s(G)'+l for 
- - 1 - 1 

i = 1, ••• ,k-I. From now on we assume that the meuage positions and the 

rows in generator matrices are ordered such that the corresponding 

separation vectors are nonincreasing. 

Boyarinov and Katsman (1981) have introduced a special form of a genera.tor 

matrix, called a canonical form. 

(1.2. J) Definition: A generator matrix G of a linear [n,k] code, whose 

nonincreasing separation vector ~(G) has z distinct components. 

s. > S. > •••••• > s. with multiplicities resp. k
1
,k2,·, .••• ·.,kz·, 1} 12 l Z 

is called canonical if G contains a lower triangular partitioned matrix 

of order k by k having z unit matrices of order k) x k l , kZ x k2"~"" 

k x k on its diagonal. That is, after a proper permutation of the z z 
columns of G we get a matrix of the following form, 

-

lk 0 
J 

0 0 

GZ I lk , 
2 

0 0 

I I I I 
I I 
I 

I I 

G z-l,1 G 
z-1,2 Ik 0 

z-I 

G. I G I z, 2:,2 
-

G 
z ,z-I Ik 

z 

For k E E we define a partial order in JRk by 

X5l.. :~ x. ~ y. for i ., I ••.. ,k. 
1 1 

p 

where ~,x.. to JR k. We say that x is a maximum of the set A c R kif' for 

all ~ E A, ~ ~ !. 
Any generator matrix G of a code can be transformed into a canonical 

generator matrix G of the code such that s(G ) ~ _s(G) by a number 
can - can 

(3) 
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of elementary transformations on the rows of G, Le. permutation and 

addition of rows and multiplication of rows by scalars. This is a 

consequence of the following theorem. 

(1.2.2) Theorem: For k,n E::N, 

a k by n matrix Gover F let 

i ,j E: {I, ••• , k}, i ,. j, a E: :IF \ {O} and 
q 

.th q 
G' be a k by n matrix obtained by replacing 

the 1 row of G by the sum of .th . h .th f the 1 row and a tl.mes t e J row 0 . G. 

Then the separation vector ~(G') satisfies 

s(G') == s(G) v v 
for v ,. j f s(G). 
if s(G). < s (G). 

s(G'). ;::: s(G)~ J 1 

if s(G). = s(G). 
J J J 1 

== s(G). if s(G). > s (G) .• 
1 J 1 

(4) 

.(5) 

(6) 

(7) 

Proof: For a set X E: F
n 

J <X> denotes the linear span of X and wt(X] is 
q 

the minimum weight in X, i.e. min { wt(~) I ~ E: X } . For a matrix A, 

R(A) denotes the set of rows of A and A. denotes the 
1* 

For v F i,j we have s(G') := wt[G' + <R(G')\{G' }>] == 
v v* v* 

ith row ofA. 

wt[G + {/3(G. + aGo ) I /3 E F } + <R(G)\{G. ,G }>] = 
v* 1* J * q 1* v* 

= wt[G + {/3G. I /3 E: IF } + <R(G)\{G. ,G }>J = wt[G + <R(G)\{G }>] = 
v* 1. * q 1 * v* v* v* 

= s (G) • 
v 

s(G'). := wtEG! + <R(G')\{G! }>] = wt[G. + aGo + <R(G)\{G. }>:J = 
1 1.* 1* 1.* J* 1* 

== wt[G. + <R(G)\{G. }>] = s(G) .• 
1.* 1.* 1 

s(G').:= wt[G~ + <R(G')\{G! }>] = 
J J* J* 

= wt[G. + {/3(G. + aGo ) I /3 e F } + <R(G)\{GJ ,G. }>J • 
J * 1.* J * q .* J* 

For s(G). < s(G). we have that wt[G. + <R(G)\{G. ,G. }>] = 
J 1 J* 1* J* 

wtCG. + {/3(G. + aGo ) I /3 E F.\{O}} + <R(G)\{G. ,G. }>] 
J* 1.* J.* q 1* J* 

and hence s(C'). = s(G). , Le. formula (5). 
J J 

In a similar way we obtain formula (6) and (7). 

s(G) •. , 
J 

;::: s(G). 
1; 

o 
From this theorem it is immediately clear that we can transform an 

arbitrary generator matrix G of a code into a canonical generator matrix 

G such that s(G ) ~ s(G) by applying a sequence of elementary can - can -
transformations on C. This theorem also shows (by formula (7J) that 

if we want to transform a generator matrix G into a systematic generator 

matrix G , we cannot guarantee that s (C );::: ~ (G) .• syst - syst 



(1.2.3) Example: For q a 2, 

G 

1 0 000 1 1 1 ) 0 
1 100 0 J 000 I 
o 0 1 001 100 J 
000 J 0 J 0 lOt 
o 0 0 0 1 100 1 I 

-5-

(8l 

has separation vector ~(G) - (5,4.4,4,4). It is impossible to transform 

G into a systematic generator matrix G t such that s(G . t) 2!. (5,4,4,4,4). sys - ays 
Actually,a 5 x 10 binary systematic generator matrix with a separation 

vector of at least (5,4,4,4,4) does not exist (cf. van.Gils (1981). 

J.3 Notes 

One can generalize Definition (1.1.1) for nonlinear codes. Consider a code 

C over the alphabet P containing qk codewords. Let the message set pk 

be encoded according t~ the bijection n t mapping pk onto C. The separ~tion 
q 

vector ~(n) of C with respect to the encoding function 11 is defined by 

s(n)i :- min { wt(l1(m)-n(m'» I m,m' c Ji'k ,m • .; m~ } 
q .·1 1 

(9} 

for i = l, ... ,k. Of course Theorem (1.J.2) also holds for nonlinear UEF 

codes. 

Dunning and Robbins (1978) have also considered the Lee Metric. 

Boyarinov and Katsman (1981') have introduced the canonical form of a 

generator matrix. 
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2. OPT~ ENCODING OF LINEAR UNEQUAL ERROR PROTECTION CODES 

The separation vector defined by formula (1) depends upon the choice of a 

generator matrix for the code. In this chapter we show that a linear 

code C has an optimal generator matrix G*, i.e. !(G*) ~ . .!(G) for all 

generator matrices G of C. In Section 2.1 we give a necessary and sufficient 

condition for a generator matrix to be optimal. In Section 2.2 ~e show 

that for a linear code a generator matrix with the smallest number of 

nonzero entries is optimal. The results in this chapter are from Dunning 

and Robbins (1978). 

2.1 A necessary and sufficient condition for a ge.nerator matrix to. be optimal 

(2.1.1) Definition: For a linear code C a generator matrix G is called 

optimal, whenever .!(G) is the maximum of the set of noninerea~dng 

separation vectors .!(A) , where A is a generator matrix of C. 

For a linear Cn,k] code we define WT(C) : .. { wt(S) I ,£ € C },i.e. 

the set of all possible weights of codewords in C. For p € WT(C), C(p) := 

{ c E C I wt(,£) :s; p } is the set of codewords in C having a weight of 

at most p. For a generator matris G of C let R(G) :- {G1* •••••• ,Gk*} 

denote the set of rows of G and let R(G)(p) : .. n { X c R(G) t C(p) c <X~} be 

the smallest subset of R(G) such that C(p) is contained in its linear 

span. The relation between .!(G) and R(G)(p) is given in the following 

lemma. 

(2.1.2) Lemma: A generator matrix G of a linear [n,k] code C satisfies 

s (G). :s; p ~> G . E R (G)( p ) 
1. 1. * 

for each i E {I, •.. ,k} and p € wr(C). 

Proof: Let i E {l, ...• k} and p E lIT(C). If G. E R(G)(p) then e(p) ¢ 
1.* 

<R(G)\{G i *}> and hence C(p) n C\<R(G)\{Gi*}>"~' which implies that 

(lO) 
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s(G).*:= wt[C\<R(G)\{G. }>] ~ p. On the other hand, if G.* , R(G)(p) 
1. 1.* ; l. 

then C(l') c: <R(G)\{Gi *}> and hence s(G)i := wt(C\<R(G)\tGb!>J ;;;: 

~ wt[C\C(p)] > p. 

The following theorem provides a necessary and sufficient condition 

for a generator matrix to be optimal for its rowspace. 

o 

(2.1.3) Theorem: A generator matrix G of a linear (n,k] code C is optimal 

if and only if for any P t WT(C) a subset X c: R(G) of the rows of G exists 

such that <C(p» = <X>. 

Proof: 

Sufficiency: Suppose a generator matrix G of C satisfies the condition in 

the theorem. Assume that G is not optimal, i.e. a generator matrix A exists 

such that ~(G) ~ ~(A). Let i be minimal such that s(G)i < s(A)i and set 

p := s(A)C1., Since seA») ~ •••• ~,S(A)i ~ 1', wehave'C(p) c: <A(i+I)*""'\:*> 

and thus also <C(p» c <A(i+I)*""'~*>' On the other hand we have that 

p ~ s(G). ;;;: ••.• ~ s(G)k' which by Lemma (2.1.2) implies that G. , ••• ,Gk t 
1. l.* * 

R(G)(p). Combining these observations with the fact that <C(p» - <R(G)(p» 

we pbtain <Gi*, ••• ,Gk*> c: <R(G)(p» = <C(p» c: <A(i+l)*""'~*>' which is 
a contradiction. Hence our assumption was wrong and so G is optimal. 

Necessity: Suppose G is an optimal generator matrix for the code C. 

Let p € WT(C) and let A be a generator matrix of C such that <C(p» ::: 

= <A(k-p+I)*""'~*>' where p :- dim<C(p». By Definition (1.1.1) we 

that S(A)I ••••• s(A)k_p > p and hence s(G)1 ;;;: .•••• ~ s(G)k_p > p, since 

G is optimal. Again applying Lemma (2.1.2) yields that R(G)(p) c: 

{G(k_p+I)*, ••• ,Gk*} and hence <C(p» = <G(k_p+l)*, •.• ,Gk*>, since 

<e(p» c: <R(G)(p» and dim<GCk_p+I)*, .•. ,Gk*> = p. 
o 

(2.1.4) Corollary: Any linear code has an optimal generator matrix. 

Hence the following definition makes sense. 

have 

(2.1.5) Definition: The separation vector of a linear code is defined as 

the separation vector of an optimal generator matrix of the code. 

We shall use the notation [n,k,~J for a linear code of length n, 

dimension k.and separation vector ~. For i = I, ••• k, ~si-I)/2J is called 
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h . 1 1 f h .th , , t e protect1on eve 0 t e 1 message pos1t10n. 

2.2 Minimal weight generator matrices 

Optimal generator matrices which are easy to compute, given the rowspace, 

are the so-called minimal weight generator matrices. 

(2.2.1) Definition: For a linear [n,kJ code Cover F a generator 

matrix G is called a minimal weight generator matrix 1f li.=~ wt(Gi *) 

is a minimum of the set 

{ 2i=~ wt(Ai *) I A is a generator matrix of C }. 

We shall show that a minimal weight generator matrix is optimal. First 

we show that it is easy to compute the separation vector of these matrices. 

(2.2.2) Lemma: If G is a minimal weight generator matrix of a k-dimensional 

code, then 

wt (G . ) = s (G) . 
1.* 1 

(II) 

for i :: I, .. ,k. 

Proof: Let G be a generator matrix of a k-dimensional code such that 

wt(G. ) ~ s(G). for some i € {l, •••• k}. Since s(G). $ wt(G. ) we have the 
1* 1. 1. 1* 

strict inequality,s(G)i < wt(Gi *). 

Let v € C\<R(G)\{G. }> be such that wt(v) :: s(G) .• Then we have that 
1* - 1 

\. kl wt(G. ) > \. kl .~. wt(G. ) + wt{v). 
LJ= J* LJ"" .Jrl. J* -

Gt , ••• ,G(, I) ,v.G(. I) , ••• ,Gk are linearly independent and so they form 
* 1- * - 1+ * * 

the rows of a generator matrix for C. Hence G is not a minimal weight 

generator matrix, This proves the lemma. 
o 
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(2.2.3) ~: A minimal weight generator matrix G of a k-dimensional 

linear code C satisfies 

<C(p}> :8 <{ G. 
1.* 

for any p € WT(C). 

i € {I, •• o,k} , wt(G. ) S P }> 
1.* 

(12) 

Proof: That LHS ~RHS is trivial. On the other hand let £ € C(p). The 

message ~ such that c = mG satisfies m. = 0 for all j satisfying s(G). > p, 
J J 

which by Lemma (2.2.2) is equivalent to wt(G. } > p. Hence c; € RHS. The RHS 
J* 

of formula (12) is a linear space, so <C(p» c RHS. 
o 

(2.2.4) Theorem: A minimal weight generator matrix is optimal. 

Proof: Combine Theorem (2.1.3) and the Lemmas (2.2.2) and (2.2.3). 
o 

Besides a proper permutation of the rows any minimal weight generator 

matrix of a k-dimensional linear code C can be constructed by the following 

algorithm. 

2.3 No-tes 

l. Set i := k. 

2. Choose ~ E C\<G(i+l)*, ••• ,Gk*> such that 

wt (~) = wt [ C\ < G ( i + 1) *' . . . , Gk * > ] • 

3. Set G. := v. 
1* 

4. If i > 1 then decrease i by 1 and go to step 2, otherwise stop. 

The results of this chapter are from Dunning and Robbins (1978). They 

also show that a linear code has an optimal encoding (linear or nonlinear) 

and that no nonlinear encoding is better, i.e. has a larger separation 

vector, than an optimal linear encoding. They also give an example of 

a nonlinear code which has no optimal encoding. 

If we replace the Hamming metric by the Lee metric, all lemmas and theore~s 

in this chapter remain valid (cf. Dunning and Robbins (1978». 
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3. BOUNDS ON THE LENGTH OF LINEAR UNEQUAL ERROR PROTECTION CODES 

A basic problem is to find linear UEP codes with a given dimension and 

separation vector such that their length is minimal and hence their 

information rate is maximal. In Section 3.1 we give two formal definitions 

of functions we want to consider together with their properties. In 

Section 3.2 resp. 3.3 we give upper resp. lower bounds for these functions. 

Appendix A gives function values for binary LUEP codes of length less 

than or equal to 15. 

3.1 Definitions and properties 

k O. I. I) Definition: For any k E :N, S E:N and prime power q we define 

n (s) as the length of the shortest linear code over F of 
q - q 

dimension k with a separation vector of at least s. 

and 

nex(s) as the length of the shortest linear code over F of 
q - q 

dimension k with separation vector (exactly) ~. 

An [nq(~),k,~J code is called length-optimal. It is called optimal, if 

an [n (s),k,tJ with t ~ _s, t ; s does not exist. 
q - -

(3.1.2) Properties: 

functions n (.) and 
q 

ex 
n S n (s). 

q q -

s :,; t => n (5) - q -

For any k E :N, ~,! € :N
k and prime power q the 

n
ex(.) have the following properties. 
q 

:,; n (t), 
q-

i:> nex(s) ex 
s ::; t :s; n (t). q - q -

ex To lustrate (15), observe that n2 (5,4,4) = 8 (cf. Appendix A) and 

n;x(5.4,3) = 9, which can be seen by easy verification. 

(13) 

(14) 

( 15) 
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3.2 Upper bounds 

The following theorem provides a trivial upper bound for n (.) and nex(.) q q 
and an easy way to construct linear UEP codes. 

k (3.2. I) Theorem: For any prime power q, k € ll, V € ll, s € II and 

< ••••• < k = k we have 
v 

(16) 

The same inequality holds for n (.) (Replace nex(.) in (16) by n (.» •. 
q q q 

Proof: For u = O,I, ••• ,v-l let G be -----ex- u 
[n (sk +I •• · •• ,sk ),k l-k J code 

q u u+l u+ u 

(sk +l'·.··,sk ). Then 
u u+l 

r-

GO ° 
0 G

J 
G := 

° -

a generator matrix of a 

over F with separation vector 
q 

o 

. rv- J ex J' ~s the generator matrix of a [Lu=O n (sk +l ••.••• sk ),k code wlth 

separation vector s. 
q u u+J 

k (3.2.3) Corollary: For any prime power q, k € Wand S € W we have 

( 17) 

o 

(I8) 

Proof: Apply Theorem (3.2.1) with v = k and for i 

and G. the J x s. all-one matrix. 
1 ~ 

1, ... k, k. = i 
1. 

Hence for any ~ € Wk it is possible to construct a k-dimenslonal code 

over F with separation vector s. 
q 

o 
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3.3 Lower bounds 

We start with a trivial lower bound on n (.). 
q 

(3.3.1) Theorem: For any k E E. prime power q and nonincreasing k-vector 

SEE k, n (s) satisfies the inequality 
q-

(J 9) 

Proof: By deleting a column from a k by n (s) matrix G with separation vector 
q-

~(G) ~ (sl' ••••• sk) we obtain a k by nq(~)-I matrix G' with separation 

vector ~(G~) ~ (s)-I,sZ-J, ••••• sk-I). 
o 

(3.3.2) Theorem: For q = 2 and any k € :N, (8 J' .... 'Sk) E 'N
k 

we have 

n2 (sl,sZ, ... ,sk) ~ nzc2tl;lj.2tZ;Ij, ..... ztk;lj) - I. (ZO) 

ex The same inequality holds When we replace nZ(') by nZ (.). 

Proof: By adding an overall parity-check to a binary [n :: nZ(sl' ••••• sk),kJ 

code with a separation vector of at least (s) ••••• ,sk)' we obtain an 

[n+l,k] code with a separation vector of at least 

(2 ~sl+1)/2J2 ~s2+1)/2J ... ,2 ~sk+I)/~). 

(3.3.3) Example: n
Z

(5,4,3) = 8, n
2

(6,4,4) :: 9 (cf. Appendix A). 

(3.3.4) Theorem: For a linear [n,k] code over F with nonincreasing 
q n 

separation vector s the weight distribution (A.). 0 must satisfy the 
~ ~= 

inequality 

o 

k A. 2: q 
~ 

k-j 
q (2)) 

for all j I •••• ,k. 

Proof: For any j E {l, •••• k} a codeword corresponding to a message 

:-:-;k such that m. t- 0 for some i E {lJ ••• ,j} has a weight of at least 
q ~ 0 

s .• 
J 
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The weight distribution (A.). On of a linear [n,k,!J code also has to 
1. 1.-

satisfy the following conditions. 

and 

(ii): ~. nO p {i;n)A. ~ 0 for m = O,I, ••• ,n, 
1..1.= m 1. 

k ... q 

where p (x;n) are the so-called Krawtchouk polynomials defined by 
m 

L m J' k-J' (X) (n-x) p (x' n) : =. ( -I) (q- J ) • • 
m' J""O J m-J 

for m ... 0, I p" ,n and x E 1R (eL MacWilliams and Sloane (1978), Ch. 5 

Theorem 6). 

(22) 

Combining the conditions (i) and (ii) with formula (21) we obtain a set 

of inequalities for the weight distribution of a code and hence a 

necessary condition on the existence of certain linear UEP codes. In 

many cases we can even add more conditions on (A.). On. 
1. 1= 

9 (3.3.5) Example: The weight distribution (A.). 0 of a [9,5,(4,4,4,3,3)] 
1. 1= 

binary code has to satisfy 

... 2, A. t :N for i ... 4, ••• ,9, 
1. 

and formula (22) for m = 1,2,6,7, i.e. 

A - A -3A -SA - 7A -45678 9A9 ~ -15 

-A - A 4 5 +2A7+10AS+ 9A9 2: - 9 

-A4- A5+2A6 - 7A8+21Ag 2: -25 

-A + A 4 5 -2A7+10AS- 9A9 ~ - 9. 

It is easy to verify that this has no solution and hence a [9,5,(4,4,4,3,3)J 

binary code does not exist. 

(3.3.6) Theorem: For any k t :N, any prime power q and any nonincreasing 
k k-vector s €:N we have 

(23) 
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Proof: By deleting the column ~ := (O,O, •••. ,O,l)T and the kth row of an 

optimal canonical generator matrix of a linear [n=nq(sl"",sk),kJ code 

over F with a separation vector of at least !, we obtain a generator matrix 
q 

of an [n-1,k-I] code with a separation vector of at least (sl,s2, ••• tSk_I)' 

o 
(3.3.7) Corollary: For any k,j € :N, I ~ j 5 k, prime power q and nonincreasing 

k k-vector s E:N we have 

(24) 

(3.3.8) Corollary: For any k E :N, prime power q and nonincreasing k-vector 

s € :N k we have 

(25) 

For 51 '" 52 = ••• = sk Corollary (3.3.8) reduces to the Singleton Bound 

(cf. MacWilliams and Sloane (1978), Ch. I Theorem I). By this last 

corollary we see that in a Maximum-Distance-Separable Code all information 

positions have the maximal protection level which is possible, i.e. ~n-k+I)/2J. 

(3.3.9) Example: 

n 2(6,6,4,4,4) ~ n2(6,6,4,4) + I = 12. 

n 2(6,6,4,4,4) ~ n2 (6,6) + 3 = 12. 

Actually n2(6,6,4,4,4) = 12 (cf. Appendix A). 

k 
(3.3. 10) Theorem: For k, v E :N and a nonincreasing k-vector s €:N such 

I k ex 
that sv-l > 5

V 
and . s. ~ n (5) - 1 we must have 

~=v ~ q-

(26) 

k t k ex Proof: Let k,v E Nand! E}II be such that sv-l > sand t. s. S n (s~ v pav 1 q 
and let G be a minimal weight generator matrix of an [n=nex(s),k,s] code 

q - -
over:lf . Since I. k s. :s: n - I, G has a column containing zero elements 

q 1"'V 1 

in the last k - v + I positions. Deleting this column from G we obtain 

an (n-I) by k matrix Gt
, whose separation vector satisfies !(G') ~ 

~ (s,-I ••.• ,s 1- 1,s , ••• sk)' since S I > s . ; v- v v- v o 

- ) 
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(3.3.11) Example: A binary linear code with separation vector (6,4,4,3,3,3,3) 

has a lengnh of at least 13. Hence by Theorem (3.3.10), n~x(6,4,4,3,3,3,3) ~ 

~ n
2

(5,3,3,3.3,3,3) + 1 ~ 14 (cf. Appendix A). 

(3. 3. 12) Theorem: For any k e: 'ti, pr 1.me power q and any nonincreas ing 

k-vec tor s € 'tik we have 

for any i € {I, •.. ,k}, where 

s. - ~q-I)Si/qJ for j < i 
J 

S. := 
J 

r/ql for j > i. 

Proof: Let C be a linear [n=n:ex(s) ,k,s] code over F and let G be a 
q - - q 

minimal weight generator matrix for C. By Lemma(2.2.2), wt(G. ) = S. 1.* 1. 
for all i = l, •.• ,k. 

Fix i € {I, ... ,k}. Without loss of generality the first s. columns of G 

(27) 

(28) 

th 1. th 
have a 1 in the i row. Deleting these first s. columns and the i row 

.... 1 ..... 

from G, we obtain a (k-I) by (n-s.) matrix, G. Clearly G has rank (k-l), 
1 ... 

otherwise there would be a nonzero linear combination of rows of G which 

equals Q, and hence the corresponding linear combination of rows of G 

would have a distance less than s. to aGo for some a E F \{O], a 
1 1.* q 

contradiction. Hence G is a generator matrix of an [n-s.,k-I] 
..... 1 

code with 

a separation vector s := s(G) =: (sl.···.8. l's. 1 •••• '~k). 
- - 1- 1.+ 

Let j € {I, .•. ,k}, j ;: i and let m € If'k be such that m. =: 
q 1. 

O. m. ;: 0 and 
J 

C := mG = (£1 1£2)' where £) has length si' satisfies wt(£2) = 

m. ; 0, we have that 
J 

wt(c l ) + S. ~ s .• - ] ] 

s .. Since 
J 

Furthermore, for some a € JFq \{O} at least fwt(£I)/(q-J)lcomponents of 

o£1 equal I, and hence 

On the other hand we have that 

+ $ .. 
] 

(29) 

(30) 
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wt(G. -ac) ~ max {s.,s.}, 
~* - ~ J 

(31 ) 

Combining (29), (30) and (31) gives formula (28~and hence (27) holds. 
o 

(3.3.13) Lemma: For any kEN, prime power q and any nonincreasing k-vector 

s € :N k a linear [n (s) ,k] code with a nonincreasing separation vector !!..* 
* q-

such that s ~ s ~ 511 exists. (1 is the all-one vector of length k). 

Proof: Let G be a minimal weight generator matrix of an [nan (s),k] code. 
-- q-
If s(G)l > s) then replace a nonzero element in the first row of G by zero, 

to obtain a matrix G' whose separation vector satisfies !!..(G') ~ !!.. and 

s (G\ = s 1 - 1. We can repeat this procedure until we obtain 4n k x n 
. * . ( *) matr1x G w1th s $ !!.. G $ sil' 

Combining (3.3.12) and (3.3.13) gives the following corollary. 

(3.3.14) Corollary: For any kEN, prime power q and nonincreasing 
k k-vector sEN , n (s) satisfies the inequalities q-

nq(sl"",Sk) ~ sl + nq(r/ql.···.rk/ql), 

nq(si to·· .sk) ~ Ii=~ Is/qi-II· 

o 

(32) 

(33) 

Proof: According to Lemma (3.3.13), n (8) = nex(s') for some s ~ s' $ sl_1 
-- q- q - -
and hence by Theorem (3.3.12) we have that n (s) = nex(s') ~ st} + 

- q - q-
+ nq (is2lql,· .. , rk/qi) ~ sl + nq(r2/~'"'' rk/ql', Repeating this 
gives formula (33). 

o 

For 51 = 8 2 = •.. = sk Corollary (3.3.14) reduces to the Griesmer Bound 

(cf. MacWilliams and Sloane (1978), Ch. 17 Theorem 24). Deleting the r 1 
brackets in formula (33) we obtain an analog of the Plotkin Bound 

~f. MacWilliams and Sloane (J978). Ch. 2 Theorem I) for linear UEP codes. 

Lemma (3.3.13) also implies the following corollary. 

(3.3.15) Corollary: For any kEN, prime power q and any nonincreasing 
k 

k-vec tor ~ E:N we have 
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n (s) = min { nex(sl) 
q - q -

(34) 

This corollary allows us to use the bounds on nex(.) to obtain bounds on 
q 

n (.). q . 

(3.3.16) Examples: 

(i): What is the minimum length of a binary linear code with a separation 

vector of at least (5,4,3,3,3,3)1 

By Theorem (3.3.15) we have 

n2(5,4,3,3,3,3) = min { n;x(!.) I (5,4,3,3,3,3) :5: !. S (5,5,5,5,5,5) }. 
ex ) By (3.3.12), n2 (!.) ~ 3 + n2(4,3,2,2,2) • 12 for (5,4,3.3,3,3 S s S 

S (5,4,4,4,4,3). 
ex By (3.3.1), n2 (5,4,4,4,4,4) ~ 1+ n2(4,3,3,3,3,3) = 12. 
ex ) By (3.3.12), n
2 

(!.) ~ 5 + n
2

(3,2,2,2,2) = 12 for (5,5,3,3,3,3 S s S 

S (5,5,5,5,5,5). 

(For values of n2(.) see Appendix A) 

Hence n2 (5,4,3,3,3,3) ~ 12. A [12,6,(5,5,4,4,4,4)J code exists, so 

n2(5,4,3,3,3,3) = 12. 

(ii):What is the minimum length of a binary linear code with a separation 

vector of at least (6,6,6,5,5)1 

By Theorem (3.3.15) we have 

n2(6,6,6,5,5) = min { n~x(!.) I (6,6,6,5,5) s!. S (6,6,6,6,6) }. 

By (3.3.10), n~x(6,6,6,5.5) ~ I + n2(5,5,5,5,5) = 14. 

By (3.3.10), n;x(6,6,6,6,5) ~ 1 + n
2

(5,5,5,5,5) = 14. 

n;x(6,6,6,6,6) = 14 (cf. Helgert and Stinaff (1973». 

Hence n2(6,6,6,5,5) = 14. 

The separation vectors of all optimal binary linear UEP codes of length 

less than or equal to IS are listed in Table A.I of Appendix A. 

3.4 Notes 

Katsman (1980) has shown Corollary (3.3.14) for q = 2. In many cases 

a combination of Corollary (3.3.15) and the bounds on nex (.) give better 
q 

results than Corollary (3.3.14). For instance, compare the results of 

Corollary (3.3.14) for n2 (5,4,3,3,3,3) and n2 (6,6,6,5,5) with those 

obtained in Example (3.3.16): 
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(3.3.14): nZ(5,4,3,3,3,3) ~ 5 + nZ(Z,Z,Z,Z,Z) I I ,

nZ(6,6,6,5,5) ~ 6 + nZ(3,3,3,3) 13.

(3.3.15): nZ(5,4,3,3,3,3) ~ IZ,

nZ(6,6,6,5,5) ~ 14.

Another interesting fact is to observe that Theorem (3.3.IZ) gives better

results than the bound of Katsman (cf. Katsman (1980», i.e. Theorem ~~.3.IZ)

for i = 1 and q = Z. For example, Theorem (3.3.IZ) gives

exnZ (6,6,3,3,3,3,3) ~ 6 + nZ(3,Z,Z,Z,2,Z) 14 for i

and

n~x(6,6,3,3,3t3,3) ~ 3 + n
2

(5,5,Z,Z,Z,Z) = 15 for i = 7.

A nonlinear (n,qk,~) UEP code also satisfies

I k i-I
n ~ . I s./q .

~= ~
(35)

This can be proven by generalizing the proof of the Plotkin bound for

nonlinear codes (cf. MacWilliams and Sloane (1978), Ch. 2 Theorem I).

The Theorems (3.3.Z), (3.3.6), the binary version of (3.3.12),

the Corollaries (3.3.7), (3.3.8), and formula (35) for linear UEP codes

were already reported in van GUs (1981).
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4. CONSTRUCTIONS OF LINEAR UNEQUAL ERROR PROTECTION CODES

In this chapter we give some constructions of LUEP codes. In Section 4.1

we construct certain families of (length-) optimal LUEP codes and in

Section 4.2 we describe methods for combining codes to obtain LUEP codes

of larger length.

4.1 Certain families of codes

By trying to construct LUEP codes with the parameters given in Table A.I

(cf. Appendix A), that are binary optimal LUEP codes of small length,

the following classes of binary codes came up ( the empty entries should

be read as zeros).

(4. 1.1) Construction: For k E: :N,

~ k+3 ~

[

11. •.• 1111 ].
I I I I I I

I I I I

1S a generator matrix of an optimal binary [k+IO,3,(k+6,6,4)] code.

(36)

o

Proof: It is easy to check that the code has separation vector (k+6,6,4).

Furthermore by formula (32) and Table A.I·we have n
2

(k+6,6,4) ~ k+6+n
2

(3,2)

= k+IO and n2(~) > k+10 for ~ ~ (k+6,6,4), s ". (k+6,6,4) (by ~ ~ t we

mean, as before, s. ~ t. for all i).
1 1

(4. I .2) Construction: For k E: lN,

_-L

[

I I •••• 1I I 1I I I I I ]
II11 111I
I I I I

is a generator matrix of an optimal binary [k+13,3,(k+8,8,4)] code.

(37)
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~: It is easy to check that the code has separation vector (k+8,8,4). 

Furthermore by formula (32) and Table A.I we have n2(k+8,8,4) ~ k+8+n2(4,2) 

== k+13 and n2(!) > k+13 for s ;!: (k+8,8,4), !. ~ (k+8,8,4). 

(4.1.3) Construction: For k € :N, 

It k • 

[

11 •••• 1111111 11 ] 
1111 11 )) 
II 1111 II 

(38) 

~s a generator matrix of an optimal binary [k+14,3,(k+8,S,8)J code. 

Proof: It is easy to check the parameters of the code. Furthermore by 

formula (32) and Table A.I we have n2(k+8,S,S) ~ k+8+n2(4,4) == k+14 and 

n2 (!.) > k+14 for s ~ (k+8.8,8), ! ~ (k+S,8,8). 

(4.1.4) Construction: For n,k E :N. n ~ k+l, the k by n matrix 

[ 
III .... I 

ii (39) 

is a generator matrix of an optimal binary [n,k.(n-k+I,2,2, •••• ,2)J code. 

Proof: It is easy to check that the parameters of the code are correct. 

Furthermore by formula (32) we have that the length of a k-dimensional 

binary code with separation vector (n-k+I,2,2, ••••• 2) is at least n, 

and with a separation vector larger than (n-k+l,2,2, ••••• 2) is at least 

n+J (by! > ! we mean ! ~ ! and ! ~ !). 

(4. J .5) Construction: For n,k E :N, n ~ 2k+l. the k by n matrix 

111. ••• 11111. ..... 111 

(40) 

is a generator matrix of an binary optimal [n,k.(n-k,4.4, •••• ,4)J code • 
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~: It is easy to check that the parameters of the code are correct. 

By formula (32) we have that the length of a k-dimensional binary code 

with separation vector (n-k,4,4, •••. ,4) 1S at least n, and with a 

separation "ector larger than (n-k,4,4, •••• ,4) is at leas"tn+1. .. _ 

[] 

(4.1.6) Construction: for k E :N, 

11. •••• 1 

(41) [ 
is a generator matrix of an optimal binary [2k-l,k,(k-I,3,3, •••• ,3)J code. 

Proof: It is easy to verify that the parameters of the code are correct. 

By formula (32) we have that the length of a k-dimensional binary code with 

separation vector (k-I,3,3, •••• ,3) is at least 2k-l. 

Applying formula (32) for a k-vector ~ such that 51 ~ k and si ~ 3 for 

i = 2, ... ,k shows that n2(~) ~ 2k. 

Applying Theorem (3.3.12) and formula (32) for a k-vector s such that 

51 = k-l, 52 ~ 4, 9 i ~ 3 for i = 3, ... ,k-l, and sk ~ 3 shows that 

~ 3 + k-2 + k-l = 2k. 

Furthermore it is easy to check that a binary [2k-J ,k, (k-I ,4,4, •••• ,4)J 

code does not exist. 

Finally. the length of a k-dimensional binary code with a separation vector 

of at least (k-l,5,4, .••• ,4) is at least 2k. 

These observations show that the code in (4.1.6) is optimal. 
o 
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(4. 1.7) Construction: For k € lN, 

- , 1 J 1 J I. ... I 
J 1 1 , 1 J. ••• I 
I I 
I I 

\-1 . . . . 
12k- 2 

I I 
I 1 

(42) 

1 1 
Ik- 1 . . . . 

J 1 
'-

is a generator matrix of a binary [4k,2k,(k+2,k+2,4,4, •••• ,4)J code. 

For k = 2,3 the codes in (4.1.7) are optimal (cf. Table A.I), but in general 

they are not. 

(4.1.8) Construction: For k € :N ,k ~ 3, 

, -' 
111. ••• 1 111 •••• 1 
III I 111 .... 1 

(43) 

is a generator matrix of a length-optimal binary [4k+J,k+2,(2k,2k,5,5, •••• ,5)J 

code. 

Proof: It is easy to check that the code has the given parameters. 

By formula (33) the length of a code with dimension k+2 and separation 

vector (2k,2k,5,5, ••..• 5) is at least 4k+l. 
n 

(4.1.9) Construction: For k,m € lN, 

k-l 
r- n-:-:-t 1 I 1 Ill. ••• 1 

I 1 1 I 1 ••• 1 II.. J 
I J 
I ] 

I . . . . m 
J I 

I , I k+m 
I I Ik 

J 
. . 
I I' , -

(44) 
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is a generator matrix of an optimal binary [3k+2m+3,k+m+2,(k+m+2,2k+2,4,4, •• ,4)J 

code. 

Proof: It is easy to verify that the code has the given parameters. 

Furthermore by formula (33) we have that the length of a (k+m+2)-dimensional 

binary code with separation vector (k+m+Z,Zk+Z,4,4, •• ,4) is at least 

3k+2m+l, and with a separation vector larger than (k+m+Z,2k+2,4,4".,4) 

is at least lk+Zm+4. 
o 

4.2 Combining codes 

In this section we consider constructions which combine (LUEP) codes to 

obtain LUEP codes of larger length, such as the direct sum and direct 

product construction, the lulu+vl construction, and concatenation. 

(4.Z.1) Construction: For k,m,n € lN, and a nonincreasing k-vector S E mk 

such that sl S n/2 let G) be an optimal generator matrix of a binary 

[n,k,~J code CI , and for i = O,I ••.•• 2m-l let Ai be an m by n matrix 

whose columns are all equal to the binary representation of i, i.e. 

Iu=7 (A i )uv2U- J 
= i for all v = l, ••. ,n. Then the (m+k) by n2m matrix 

(45) 

III m-l I m J is a generator matrix of a binary [n2 .m+k,(n2 1 2 ~) code C2 ' 

If C1 is optimal, so is CZ' 

~: It is easy to check that the parameters of the code Cz are correct. 

Suppose that C
1 

is optimal. Then by formula (3Z) the length of a (k+m)­

dimensional binary code with separation vector (nzm-l12m~) is at least 
m m n(Z -1)+n2(sl, ••• ,sk) = nZ and with a separation vector larger than 
m-ll m m (nZ 2~) is at least n2 +1. o 

(4.Z.2) Examples: 

(i): If in (4.2.1) we take m = 1 and for Gla generator matrix of a binary 

[2t-I,Zt~t-I,(3,3, •••• ,3)J Hamming code, then GZ is a generator matrix 
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t+1 t t . of an optimal [2 -2,2 -t,(2 -1.6,6, •••• ,6)J b1nary code. 

(ii): If in (4.2.1) we take m = 1 and for G) an optimal generator matrix of 

an optimal binary [7,5,(3,2,2,2,2)J code, then we obtain an optimal 

[14.6,(7,6,4,4,4,4)J code. 

(4.2.3) The direct sum construction: If for i = 
linear code, then the direct sum { (~11~2) I ~l 

(i) 1,2, C. is an [n.,k.,s J 
1 1. 1-

(I)I (2) . 
[nl+n2,kl+k2'(~ ~ )] l1near code. 

€ CI , ~2 E C2 } is an 

(0 (4.2.4) Theuiu+vl construction: If for i = 1,2, C. 15 an [n,k.,s ] linear 
. . 1 1 -

code with an optimal generator matris G., then 
1 

is a generator matrix of a [2n,k
l 
+k2 ,~J code C, where 

s. ~ { 26 ~ 1) , max { 
( I ) (2) } } for i = m1n s. Sk 1 1 1 

and 2 

~ 
(2 ) 

for 1 = sk +i s. 
I 

1 

(~ is not necessarily nonincreasing 1n this case). 

that 

wt(~) ~ 2s ~ I) if m~l) f. 0, (2) = ,2., m 
1. 1 

wt(!!!G) ~ { 
(I) (2) 

} if m~1) ~ 0, !!! (2) '" ,2., max s. , sk 
1. 

2 
1. 

and for j = 1 •••• ,k2 that 

wt(~) ;:: 
(2) . f (l) = ,2., m~2) :f:: 0, S. 1 m 
J J 

wt (!!!G) ~ max { 
(2) (I) 

} if !!! ( I) " ,2.. m~2) '" 0. s . , sk 
J I J 

This proves formula (47) • 

(46) 

I, ... ,k
l

, 

(47) 

1 , ••• ,k2 

o 
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(4.2.5) Example: If in (4.2.5) C
I 

is the binary [13,12J even-weight code 

and C2 is a binary [13,6,(5,5,5,5,4,4)] code, then s(G). ~ 4 for i = 1, ••• ,12 
- 1. 

and i = 17,18, and s(G). ;:: 5 for i = 13,14,15,16. Now C isa[26,18,(5,5,5,5,4, •• 
- 1 

•. ,4,4)] code. The length of an 18-dimensional binary code with a separation 

vector of at least (5,5,5.5,4,4, •••• ,4) is at least 25 (by Corollary (3.3.14». 

(4.2.6) Construction: If for i = 1,2, X. is a k. x nl-matrix over F 
1. 1. q 

and (~Iy), where ~ is a kl-vector, is the separation vector of the matrix 
TI T T (XI Xz) , and Y 1.S a k I x n2-matrix over IF q with separation vector ~, then 

XJ Y 

] (48) 

Xz 

is a generator matrix 
(I) (2) 

of an [nJ+nz,kl+k2'(~ I~ )] code, where 

s 
( 1 ) 

~ u + w and s 
(2) 

2! v • (49) 

Proof: Trivial. 
o 

(4.2.7) Example: If G1 is a 5 x 12 binary matrix such that ~(Gl) 

and G2 is a 2 x 3 binary matrix such that ~(G2) = (Z,Z), then 

= (5,5",5,5,4) 

o 

is a generator matrix of a length-optimal (cf. Table A.I) binary 

[15,5,(7,7,5,5,4) J code. 

(4.2.8) The direct product construction: By taking the direct product 
(I) 

Ch. 18 Section 2) of an [n l ,kl'~ ] (cf. MacWilliams and Sloane (1978), 
(2) 

code and an Cn2,k2 ,.:s ] code, both over the same 
( 1 ) (2) 

Cn]nZ,k)k2,! fl)E ~ ] code, where fl)R denotes 

field, we obtain an 

the Kronecker product 

over E. This is shown by the following two theorems. 

(4.2.9) Theorem: For the matrices A and B over a common finite field F 

the separation vector of the Kronecker product of A and B, A fl)F B, equals 

the Kronecker product of the separation vectors of A and B, i.e. 
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~(A OF B) = ~(A) 0)1 ~(B). (50) 

Proof: Let A be a k) by n l matrix and let B be a k2 by n2 matrix. Let 

(itj) € {It •.• tkl} X {It ••. k2}' For any kl by k2 matrix Mover F such that 

M .. ~ 0 we have wt«MB),*) ~ s(B)., and hence 
~J ~ J 

n l T 
t J wt«A MB) ) ~ s(A).s(B) .. Lu= u* 1 J 

k) k2 
For!!!l E F .!!!:z E F such that mli ,. 0, m2j 
wt(m2B) = s(B). we have that (mT

1m2) .. ~ 0 and 

~ 0 and. wt(mJA) = s(A)., - ~ 

- J -- 1J 

n) T T I 1 wt«A m
t 

m2B) ) = s(A).s(B) .• 
u= - - u* 1 J 

From these observations it follows that ~(A 0
F

B) = ~(A) 0E.!.(B). 
o 

(4.2.10) Theorem: For generator matrices A and B over a common finite field F, 

A ®F B is an optimal generator matrix for its rowspace if and only if A and 

B are both optimal generator matrices for their rowspaces. 

Proof: Suppose A and B are optimal generator matrices-for their rowspaces. 
----:><" 

Let A and B be minimal weight generator matrices for the rowspaces of A and 
"" 

B. Hence !(A) == ~(!) = (wt(AI*)~ •••. ,wt(~ *» and !.(B) = !.(B) = 

~(B) = !.(B) = (wt(B1*), .... ,wt(Bk *». Furhermore we have that 
2 

k 1 kz A "" k I" k2 "" L· I wt«A 0JF B). ) = (\. I wt{A. )}(\. t wt(B. ». 1= 1* L1= ~* Ll= ~* 

From this it follows that A ®JF B is a minimal weight generator matrix for 

its :owsp~ce and so by Theorem (2.2.4) it is optimal. Since !(A ®F B) = 
== ~(A ®JF B), A ®F B is also optimal for its rowspace. 

On the other hand suppose that A is not optimal. Then for an optimal 

generator matrix A' of the rows pace of A we have that !.(A') ~ ~(A) and 

!(A') + !(A). This implies that !.(A' ®F B) ~ ~(A ®F B) and 

~(A' ®F B) :f.: !(A ®F B). i.e. A ®F B is not optimal for its rowspace. 
o 

(4.2.11) Concatenation: Let C be an [N,K,~=(Sl"",SK)] linear code over 

GF(qk) with an optimal generator matrix Gc and let D be an Cn,k,d] linear 

code over GF(q) with generator matrix GD, 

The encoding procedure of the concatenation of these codes is as follows. 



-27-

(1 ) (l) I I (K) (K) Let ~ = (m
t 

, ••• ,~ •••••••••• m
l 

, ... ,~ ) be a Kk-tuple over GF(q). 

This Kk-tuple is equivalent with a K-tuple M = (M(l), ..... ,M(K) ) over 
k .. . ( I ) - (N) ( 1 ) (K) 

GF(q ), Wh1Ch 1S encoded ~nto (A , ......... ,A ):= (~f , .... .,M )GC' 

Now we regard A(i) as a k-tuple (a;i) , •.. ,a~i» over GF(q) and encode it 
. (i) (i) (i) (i) . 
lnto (c l , ..... ,cn ) := (a

1 
, ... ,akC)GO (1 = 1, ... ,N). 

If m is a q-ary Kk-tuple such that m.]) ~ 0, then M. ~ 0 and hence 
- 1] 

! := ~GC satisfies wt(!) ~ Sj' which in turn implies that wt(£) ~ Sjd. 

Hence we have shown the following theorem. 

(4.2.12) Theorem: The concatenation of an [N,K,~=(SI"",SK)J outer code 
k over GF(q ) and an [n,k,d] inner code over GF(q) is an [Nn,Kk,~J linear 

code over GF(q), where 

s (. l)k . 2: dS. (51 ) r +1. J 

for i = l •...• k and j = 1, •.• ,K. 

(4.2.13) Examples: Let a be a primitive element of GF(4) and D be the 

binary [3,2,2J even-weight code. 

(i): For the optimal [7,3,(5,4,4)] code Cover GF(4) with generator matrix 

[ ~ 
o 
t 

o 

o 
o 0 

o 

the concatenated code of C and D is a [21,6,(10,10,8,8,8,8)] binary 

code. The maximal minimum distance of a binary [21,6] code equals 8 

(cf. Helgert and Stinaff (1973». 

(ii): For the optimal [8,4,(5,4,4,4)J code Cover GF(4) with generator matrix 

0 0 0 I 

0 0 
2 0 0 a a 

0 0 a 0 a2 0 

0 0 0 0 
2 a IX 

the concatenated code of C and D is a [24,8,(10,IO,8,8,8,8,8,8)J 

binary code. 
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k (4.2.14) Theorem: For k,K,n,N,d E Nt N 2: 2 + 1 the concatenation of the 

[N,2,(n-I,2k») outer code over GF(2k ) with generator matrix 

[ I 

2 
il 

3 a o 
0] (52) 
I , 

where a is a primitive element of GF(2k), and an [n,k,dJ inner code over 

GF(2) gives an [Nn,2k,~J binary code, where 

and 

s. 2: (N-I)d for i 
~ 

for i k+ I, ••• ,2k. 

If n = (2k
-l)d/2

k
- 1 (i.e. equality In the Plotkin Bound), then equality 

holds in (53) and the concatenated code is optimal. 

(53) 

Proof: We find formula (53) by applying Theorem (4.2.12). By Corollary 

(3.3.14) a 2k-dimensional binary code with a separation vector of at least ~, 

where s. = (N-J)d for i = J, ••• ,k and s~ = 2kd for i • k+I, ... ,2k, has 
1 ~ 

a length of at least 

(54) 

k k-I 
If n = (2 -1)d/2 then equality must hold in formula (54) and hence ~n (53). 

This also shows that the concatenated code is optimal. 

(4.2.15) Example: Take the [11,2,(IO,8)J code over GF(8) as the outer code 

and the [7,3,4J simplex code over GF(2) as the inner code to obtain an 

optimal [77,6,(40,40,40,32,32,32)] binary code. In general all concatenated 

codes constructed in Theorem (4.2.14) with the inner code being a simplex 

code are optimal LUEP codes, because simplex codes satisfy the Plotkin 

Bound with equality. 
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4.3 Notes 

The Theorems (4.2.9) and (4.2.10) are from Dunning and Robbins (1978). 

Other methods for combining codes can be found in Zinov'ev and Zyablov (1979), 

and Boyarinov and Katsman (1981). 
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5. CYCLIC UNEQUAL ERROR PROTECTION CODES 

In this chapter we consider cyclic UEP codes and try to find the separation 

vector of these codes. In Section 5.1 we give an optimal generator matrix 

fot a cyclic UEP code and we show how the separation vector can be determined 

from the weight distributions of the cyclic subcodes. Section 5.2 shows that 

certain classes of cyclic UEP codes can easily be decoded by using 

Majority Logic Decoding Methods. 

5.1 The separation vector of a cyclic UEP code 

A cyclic [n,kJ code over:IF is the direct sum of the minimal ideals in 
q 

:IF [x]/(xn-l) contained in it (cf. MacWilliams and Sloane (1978), Ch. 7 and 8). 
q 

(5.1.1) Theorem: For a cyclic code C which is the direct sum of the minimal 

ideals with generator matrices resp. M1,MZ, ••• ,Mv ' 

r 

G := 

M v 

is an optimal generator matrix. 

(55) 

Proof: For P E WT(C), <C(p» is a cyclic code. Hence <C(p» is the sum of 

a number of minimal ideals of :IF [xJ/(xn-l). By applying Theorem (2.1.3) 
q 

we get the theorem. 
o 

The following corollaries are immediate consequences of Lemma (2.1.2) and 

the above proof. 

(5.1.2) Corollary: For a minimal ideal in F [x]/(xn-l) all components 
q 

of the separation vector are mutually equal. 



-31-

(5.1.3) Corollary: For a cyclic code C with an optimal generator matrix G 

defined by formula (55) the ith and jth component of the separation vector 

~ = ~(G) are equal if the ith and jth row of G are in the same minimal 

ideal of F [x]/ (xn-l). 
q 

If the generator polynomial of a cyclic code C has minimal weight, i.e. 

its weight equals the minimum distance d of the code, then all components 

of the separation vector are mutually equal, because C = <C(d» (cf. Theorem 

(2.1.3». If this is not the case, we can compute the separation vector 

of a cyclic code by comparing the weight distributions of its cyclic 

subcodes. 

(5.1.4) Theorem: For i = I,Z let M. 
1 

with minimum distance d. and 
1 

be a minimal ideal in F [x] I (xn -1 ) 
(i) n q 

distribution (A. ). 0 such that 
J J= 

M
J 

:f 142 and d t ~ d2; let 

weight 
n (A.). 0 be the weight 

J J= 
distribution of their direct sum 

M
J 

"M2. Then the components of the separation vector of 1011 $ M2 are all 

equal to the minimum distance d of MI EP 142 if d < d2 or if d .. d2 and 

A~2) < Ad; they take two different values if d = d2 and A~2) = Ad' 

namely d2 and min { j I Ai2) < Aj }. 

Proof: If d < dz or if d = d2 and A~2) < Ad then a sum of an element in 

M1\{Q} and one in M2\{Q} exists such that its weight equals d. For d = dZ 
and A~Z) .. Ad' if AjZ) < Aj then a sum of an element in MI\{Q} and one 

in l'.J
2
\{O} exists such that its weight equals j; if A~2) .. A. it does not. 

- J J 
Combining these observations with Theorem (5.1.1) and Corollary (5.1.3) 

proves the theoreni. 0 

(5.1.5) Examples: 

(i): Let a E GF(2 10) rd be a primitive 33 root of unity and let C be 

the binary cylic [33,23J code with nonzeros {ai liE CtJUCluCOuC3}' 

where C. denotes the cyclotomic coset modulo 33 over GF(Z) containing 1. 
1 

Let M. denote the minimal ideal in F Z [x]/(x33_1) having nonzeros 

{ a
j t j € Ci }. Then C = NIIEPrtJEPitJOEPM3 and G := [M;IIM;IM~IM;]T 

is an optimal generator matrix of C, where M. denotes a generator 
1 

matrix of M. (i:: 0,1,3.11). s = s(G). 
1 - -

Table 5.1 provides the minimum distances of all cyclic subcodes of C 

(taken from Peterson and Weldon (1972), Appendix D). 
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nonzeros m1.n. nonzeros min. 

0 I 3 II dist. 0 I 3 II dist. 

x 33 x x 10 

x 12 x x 6 

x 6 x x x 3 

x 22 x x x 10 

x x II x x x 3 

x x 3 x x x 6 

x x II x x x x 3 

x x 6 

Table 5.1: The minimum distances of the 

cyclic subcodes of C. 

I 

The code C has minimum distance 3 and C and MO$M3 both contain 

II codewords of weight 3. Combining this with Theorem (5.1.4) and 

Table 5.1 we find that sl3 = sl4 = .... = s23 = 3 and sl's2' •••• ,sI2 > 3. 

C contains no codewords of weight 4 and 165 codewords of weight 5. 

From Table 5.1 we see that the codewords of weight 5 in C can only 

occur in the cyclic subcodes (I): 14
0

$M3 , (2): MO$11j$M3' (3): MO$M3$!!II' 

and (4): ';'10$i'1]$1\13$/o1I]' However, (1),(2), and (3) contain no codewords 

of weight 5, as one can easily check. Hence a codeword £ in C of 

weight 5 is the sum.£ = £0+'£\+£3+'£11 of nonzero elements .£i € Mi 

(i = 0,1,3,]1). This shows that sl = s2 = = sl2 = 5 (by 

Corollary (5.1.3) and Theorem (5.1.4». 

So the code C provides a protection level 2 to twelve message positions 

and a protection level to the remaining eleven positions. 

(ii): Let a € GF(2 12 ) be a primitive 35 th root of unity and let C be the 

binary cyclic [35,22J code with nonzeros { a
i 

I i € C5uC7uCluCI5 }. 

Then C - M $",1 $M $'" and G .- [MTIMTIMTIMT JT. an optimal generator - 5 1 7 ] ," 15 • - 5 7 I 15 1.S 

matrix of C. ~ = ~(G). The minimum distances of the cyclic subcodes 

of C are listed in Table 5.2 (cf. Peterson and Weldon (1972), Appendix D). 

The cyclic subcodes ;41,;>1 15 and 1'1]$:-1]5 have minimum distances resp. 

8,20, and 4. Hence by Theorem (5.1.4) we have that s8 = s9 8 22 4. 

The number of codewords of weight 4 in C resp. ,:1]$!:J
15 

both equal 35 

and all weights in C are even, hence s],s2, ... ,s7 ~ 6. The minimum 

distance of i4]$M
7 

equals 6, hence s4 = s5 = s6 = 8 7 = 6. 
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nonzeros min. I nonzeros I min. I 
157 15 dist. 1 5 7 15 dist. 

x 8 x x 10 

x 20 x x 14 

x 14 x x x 6 

x 20 x x x 4 

x x 8 x x x 4 

x x 6 x x x to 

x x 4 x x x x 4 

x x 14 

table 5.2: The minimum distances of the 

cyclic subcodes of C. 

The number of codewords of weight 6 in MI~U7$lJI5 equals 490, while 

C contains 595 codewords of weight 6, hence 51 = 52 - 53 = 6. 

So seven components of the separation vector of C equal 6, fifteen 

of them equal 4. 

5.2 Majority Logic Decoding of cyclic UEP codes 

In this section we discuss certain classes of cyclic UEP codes which can 

be decoded by Majority Logic Decoding. It is easy to implement this method 

and it is very useful whenever the number of orthogonal checks on a message 

digit equals (or is not much less than) the separation component corresponding 

to that message position. We restrict ourselves to binary codes. 

Fix n E :N, n odd, and let TO' T E:N be such that TO < T < n and TO iT in. 

Let Pi (x), i = 0, J, ••• ,w be irreducible polynomials in F2 [~] such that 

PO(x) has exponent TO (i.e. the minimal j such that po(x)lxJ +l) and 

w 
(xn+l) = )lC p.(x). 

i=O 1. 

Let v ~ w be such that none of the polynomials p.(x}, i "" J,2, ••• ,v-1 has 
1 

an exponent which divides T and let C be the code with check polynomial 

v-I 
h(x) = JC p. (x). 

i=O 1. 
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TI TilT T Then by Theorem (5. 1.1) G : = (MO M] ..... Mv_ I) , where for i = 0, I , ••• , v- I 

the rows of M. are the cyclic shifts of (xn+I)/p.(X), is an 
1 1 

optimal 

generator matrix for C. 

Let k. denote the degree of p.(x) for i = O,I, .•• ,v-l. The [n,kO] cyclic 
1 1 

subcode with check polynomial PO(x) consi~ts of n/TO repetitions of the 

[TO,k
O

] code with generator polynomial (x O+I)/PO(X). Let this [TO,kO] 

code have an orthogonal check set of size 0 on any code position (cf. 

Cameron and van Lint (1980), Ch. II). For kO = lone has that TO = 1 and 

o = O. Then the following theorem provides a lower bound on the kO 

separation components corresponding to MO in terms of T,TO' and o. 

(5.2.1) Theorem: The first kO components of the separation vector of the 

code defined above are larger than or equal to T(o+I)/TO' 

Proof: With a message ~ = (mO,m]""'~_I) E: F~ resp. a codeword 

£ = (cO'c
l

' ••••• ,cn_ I ). E: lF~ we associate the polynomials m(x) := L~:~ 
\,n-] 1 

r~sp. c(x) := Li=O cix . By C i{q(x)} we denote the coefficient of 
1 mod n . x n 

x in the polynomlal q(x) mod (x +1). 

Note the following: 
n 

(1): For j E: {O,I, ... ,T-J} and q(x) E: F2 [x]/(x +1) we have that 

\,(n/T)-I 
L' 0 C . . T{ q (x)} = 

n T C .{(x +l)q(x)/(x +I)}. 
1= J+1 

X xJ 

(ii): For 1 = 1,2, ... ,v-l and u,J E: :N we have that 

n T n C . {«x +l)/(x +I»«x +I)/p.(x»} 
xJ+uTO 1 

since p.(X)(XT+I)1 (xn+l). 
1 

0, 

TO-I i TO 
(iii): For A(X) = Li=O \x := (x +l)/PO(x), j E {O,I, ••• TO-l} and 

u E {O,l, ••• ,(T/TO)-I} we have that 

n T n 
Cxj+uTO{«x +I)/(x +]»«x +])/PO(x»} = Aj • 

since niT is odd. 

m.X 
1 

(56) 

(57) 

(58) 

i 

Combining (i),(ii), and (iii) with the fact that A
TO

- k +1 

we get for j = O,I, .•• ,TO-I and u = O,I, ••. ,(T/TO)-I tRat 

o 
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k -I = \,(n/T)-l c {\,V-I \' s 
Li=O xiT+uTu+j Ls=O Lt=O 

t n 
~ +t x (x +I)/ps(x)} 

k -I 
\,v-I \' s 

= Ls=O Lt=O 

s-) 

\' (n/T)-) { t n (} n L' C 'T T ,x (x +I)/p x) ks_1+t 1=0 x1 +u O+J S 

k -1 n T n 
= \' 0 mt C j-t+uT{«x ~l)/(x tl»«x +l)/PO(.»} 

Lt=O x 0 

where k_1 := O. 

Hence we have that 

k -I 

It~j+1 mtAj-t+TO 

holds for j = O,I, .•• ,TO-l and u '" O,I •.•.• (T/TO)-I. 

(59) 

For j E {O,I, •.• ,TO-I} the [TO,kO] code, A, with generator polynomial A(X) 

has an orthogonal check set of size 0 on position j. Unlike the usual 
(j) (j) (j) 

defini tion we define these checks to be subsets AI ,A
2 

, •••• ,Ao of 

{O,I, ••• ,TO-I} which satisfy the following three conditions. 

A(j) n A(j) '" B f ~ YJ or r T s, r s (60) 

IS 
U A;j) c {O,I, ••• ,TO-l}\{j}, 

r=l 
(61 ) 

y, '" I (') YP for all Z € A and all r € {I, ••• ,o}, 
J pEA j 

r 

(62) 

We define the weight of a check A(j) as the number of elements in A(j). 
r r 

In an analog way as we have shown formula (59), we can show that the 

equality 
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'1>n=0/T)-1 \ c = ,j A m 
i lpEA(j) iT+uTO+p It=O t j-t 

r 

holds for j = O,I, .•• ,TO-I, u = O,I, .•. ,(T/TO)-I, and r = 1, ••• ;0, by 

combining the formulas (56),(57),(59), and (62). 
(j) (j) 

Because AI , •••• ,Ao satisfy (60) and (61), formulas (59) and (63) 

(63) 

provide T(O+I)/TO orthogo~al checks on I~=o Atmj _t • 

The kO linear functions Ii=o Atmj _t ' j = O,I, ••• ,kO-l are linearly 

independent, since AO = 1. Hence the kO message positions corresponding 

to MO have a separation component of at least T(o+I)/TO' 

(5.2.2) Example: n = 63, T = 21, TO 

6 
hex) := )( p. (x), 

i=O 1 

3 
:: X +x+l. 

where p.(x), i :: 1, ••. ,6 are the six irreducible factors of x63~1 with 

o 

1 

exponents equal to 63. We have that A(x) = l+x+x2+x4, which is the generator 

polynomial of a [7,3J code with three orthogonal checks {I,S}, {Z,3}, and 

{4,6} on code position O. By Theorem (5.2.1) the [63,39] code with check 

polynomial hex) has a separation vector with three components larger than 

or equal to 12. This code has minimum distance 4. A [63,39J BCR code has 

minimum distance 9. 

Now consider two irreducible polynomials p(x) and q(x) in F2 [xJ/(xn+l) 

with degrees resp. k and k and exponents 
p q 

resp. T and T such that 
p q 

T and T are relatively prime. Let C p q p and C be resp. [T ,k ] and [T ,k J q p p q q 
codes with check polynomials resp. p(x) and q(x). Furthermore let C 

p 
that have an orthogonal check set of size 0 on any code position such 

p 
any check has the same even weight, i.e. any code symbol equals the sum 

of 2w other ones for some fixed integer w. 

Define C to be the binary cyclic [T T ,k +k J code with check polynomial 
* p q p q 

p(x)q(x) and C the binary cyclic [T T ,k +k +)] code with check polynomial 
p q p q 

(x+l)p(x)q(x). The following theorem provides a lower bound on the separation 

vec tor sand s * of resp. C and C* if their encoding is defined by the 
T T T * T T T T generator matrices resp. G = (M 1M) and G = (M 1M IMO) , where M tM , 
p q p q n p q 

and MO are generator matrices of the minimal ideals in F 2 [xJ/(x +1) 

with check polynomials resp. p(x)tq(x), and (x+I). 
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(5.2.3) Theorem: 

(i): The separation vector s of the code C defined above satisfies 

s. ;;:: T IS + I 
1. q P 

s. ~ T IS 
1. q P 

if C is an even-weight code, 
q 

otherwise, 

for i = It ••• ,k • 
p 

(ii): The separation vector s* of the code C* defined above satisfies 

Proof: 

* s. ;;:: T 15 
l. q P 

for i = ], •.• k • 
P 

(64) 

(65) 

(i): Without loss of generality we consider the first message digit mO' 

Let Gp and Gq := [1.1 11.2 1 ••• I1.T ] be systematic generator matrices of 

C resp. C • Without loss of g~nerality the first column of G equals 
p q T P 
~ := (1,0,0,. .. ,0)" 

Since C has an orthogonal check set of size IS on any code position 
p p 

such that any check has the same even weight, Say 2w, we have 2wo 
. (I) (2) (2w) l' = P mutually dl.fferent columns a. ,a. , •.• ,a. , 1, ••• ,0 of 

~ 1 ~ P 
G such that 

p 

a~l) + a~2) 
-1 -1 

+ •••••• + a~2w) 
-1 = ~ 

for i = 1, .•. ,0 The matrix 
p 

G := 

G 
p 

G 
q 

is an optimal generator matrix of C. Because g.c.d.(T ,T ) • 1, 
P q 

(66) 

(67) 

any pair (i) ,where x and yare columns of resp. G and G , occurs 
- - p q 

exactly once as a column of G. By combining this fact with formula 

(66), we get that for any i E {l, •••• o } and any j € {l, ••• T } 
P q 

the equali ty 
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[ a~l)J [a~2)J 
-~ + -~ + 
y. y. 
-J -J 

(68 ) 

holds. 

Formula (68) implies T 6 orthogonal checks on the message digit mO' 
q p 

If C is an even-weight code, 
q 

+ •••••••• + C(T -1)T 
q P 

is an additional check for mO' orthogonal to the T 0 previous ones. 
q p 

(ii): Immediate consequence of (i). 
o 

If in addition C also has an orthogonal check set of size 0 on any q q 
code position such that any check has the same even weight, then we. have 

the following lower bound for s. 

(5.2.4) Theorem: 
T 

(i): If wt«x q+l)iq(x» ~s even and T 6 + I ~ T (6 + 1), then the q p p q 
separation vector ~ of the [T T ,k +k ] code with check polynomial 

p q p q 
p(x)q(x) satisfies 

s. ;?: T 0 + 1 
~ q p 

for i 1, ... ,k • 
p 

(69) 

for ~ = k + 1, ••• k +k • p p q s. <! T (6 + I) 
~ P q 

T 
(ii): If wt«x q+l)/q(x» is odd and T 0 ~ T (6 + 1), then the 

q p p q 
separation vector ~ of the [T T ,k +k ] code with check polynomial 

p q p q 
p(x)q(x) satisfies 

s. ;?: T 6 for i l, •.• ,k, 
~ q p p 

(70) 

s. 2: T (0 + 1 ) for i k + I, ... ,k +k • 
1 P q P P q 
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Proof: 

(i): For i = I, ••• ,k formula (69) was shown in Theorem (5.2.3). 
p 

Without loss of generality we consider the message digit ~ • 
p 

For j = O,I, •.• ,T -1, ~ equals 
p Kp 

k -I 
"" c + \' p 

'T £i=O J q 
m.G, 'T 

1. 1,] q 
(71) 

where G is the matrix of (67). If an error of weight less than or 

equal to L (Tp (Oq+I)-I)/2J occurs, then the message digits mO""'~-I 
are correctly decodable, since T 0 + \ ~ T (0 + I). If we fill P 

q p p q . 
in these values of mO""'~ _I in formula (71), then the Tp(Oq + 1) 

checks on ~ obtained from fhe formulas (68) and (71) are mutually 

orthogonal. P Hence sk +\ ~ T (6 + 1). 
p P q 

(ii): Analoguos to (i). 

3 43 2 (5.2.5) Example: Take p(x) := x +x+l, q(x) := x +x +x +x+l. T 
p 

The [7,3] code C . with check polynomial p(x) has an orthogonal 
p 

IJ 

.. 7t T '" 5. q 
check set 

of size 6 = 3 on any code position, where all checks have weight 2 (for 
p 

example, for the O-position we have the checks {1,5}, {2,3}, and {4,6}). 

The [5,4] code C with check polynomial q(x) has an orthogonal check set 
q 

of size 0 "" I on any code position, where the check has weight 4 (for 
q 

example, for the a-position we have the check {1,2,3,4}). By Theorem (5.2.4) 

the [35,7] code C with check polynomial p(x)q(x) has a separation vector 

s which satisfies s ~ (16,16,16,14,14,14,14). 

pabcdefpghifjkpelbkmnpjchnaopmblogd 

I I I I I ' I . 1 I 1 I 1 1 I t III I III I 
III I 111 1 jIll 1 J I I I I I 1 1 
III I III 1 il} I I I I I } 1 ) I 

1 I ! I I II III III 1 I 11 I 
1 1 I I 11 11 11 I I I 1 1 

I I I 1 ~L:II 1!lj 
I I 1 1 

I 1 I I 1\' \ I I 
ABeD EFAB DGEF BCDG FABC GEFA CDGE 

Fig. 5.1: Generator matrix of the [35,7]code 

with check polynomial (X
3+x+l) (x4+x3+x2+x+l). 
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Fig. 5.1 shows an optimal generator matrix for C, together with the checks on 

mu and m3• The message bit mO is equal to the following sixteen orthogonal 

checks. 

a: c 1 + c26 f: c6 + cII k: c l3 
+ c I8 

b: c
2 

+ c ll g: cs + c33 1: c l6 + c31 
c: c3 

+ c
Z3 h: c9 

+ cZ4 m: c l9 
+ c

29 
(72) 

d: c4 + c34 i: cIa + c
30 n: c zo + c Z5 

e: Cs + cIS j: c l2 
+ c

22 0: c2l 
+ c

32 

p: Co + c7 
+ c

14 
+ c

21 + C
ZS

. 

The message bit m3 1S equal to the following fourteen "orthogonal" checks. 

A: c i 
+ Cs + e

ZZ + c
29 Co + mO 

B: Cz + c
9 

+ c
16 + c23 C

s + m) 
c: c3 

+ c
il 

+ c
Z4 

+ C31 cIa + m) + m
l 

D: C4 + c II + cIS + C32 cIS +mu + ml (73) 

E: c6 
+ c

l3 
+ c

2l 
+ c

34 c20 
+ m

Z 
F: c

7 
+ c

l4 
+ c ZI 

+ c
28 c 25 + mO + m

1 
G: c il 

+ c
l9 

+ c
l6 

+ c33 c30 + mO + m
l + mZ' 

Actually the separation vector of C equals (16,16,16,14,14,14,14), as one 

can easily check. 

* The [35,8J code C with check polynomial (x+l)p(x)q(x) has a separation 

* vector equal to (15,15,IS,7,7,7,7,7). For C, a,b, •••• ,o are fifteen_orthogonal 

checks on mO; A,B, •••• ,G are seven orthogonal checks on m
3

• For the message 

bit rn7 we have the following seven checks. 

Co + c7 
+ c

I4 
+ c21 + c18 + rnO 

c 1 
+ c

8 + c I5 + c22 + e 29 + rnO + m, 

c2 + c
9 

+ c
16 + c

Z3 
+ c

30 + mO + m
l 

+ m2 
c3 + clO + c l7 

+ c
l4 

+ c3I 
+ m

l 
+ m

2 
(74) 

C4 + c 11 + c
I8 

+ c
2S 

+ e 32 + mO + m
1 

Cs + c l2 
+ c

19 
+ c

26 
+ e 33 

+ m
1 

c6 
+ c

l3 
+ c

10 
+ cZ7 + c34 + ffi1 · 
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We can extend Theorem (5.2.3) to codes with a check polynomial which is a 

product of more than two irreducible polynomials in F 2 [x]. 

(5.2.6) Theorem: For i == I, ••• ,v let p.(x) be an irreducible polynomial in 
1 

k. and exponent T. such that g.c.d.(T.,'r.) ==1 for all 
1. 1. 1. J 

F 2 [xJ of degree 

i , j, i :f j , and let the [T. ,k.] binary code with check polynomial p. (x) 
1 1. 1. 

have an orthogonal check set of size o. such that all checks have the same 
1. v v 

even weight. Then the code C of 
v 

length n = T( T. and dimension \'. I k. with 
i-I 1 '1.- 1. 

check polynomial ;rc p.(x) 
i=1 1. 

s. ~ no./T. 
J 1. 1. 

has a separation vector s which satisfies 

. \,i-l ri 
for 1. == l, ••• ,v and J == (Lu=J ku)+I,·····'Lu=1 ku' 

Proof: Analogous to Theorem (5.2.3). 

(75) 

o 

In many cases we can do much better than formula (75) by adding other checks, 

e.g. checks like the ones in formula (71). This will be shown in the next 

example. 

(5.2.7) Example: Take p(x) 2 4 3 2 := x +x+l, rex) :- x +x +x +x+l. 

T == 7 T == 3 T == 5. P , q , r 
Let C be the [105,9J code with check polynomial p(x)q(x)r(x). C has an 

. TI T T T optimal generator matr1.X G := (M M 1M ) , where M ,M , and M are repetitions 
p q r p q r 

of resp. 

l-111O 100] 
P == 0111010 , Q 

00 III 0 I 
[

1101 
OJ lJ , R = [~:~~o~ . 

00110 
0001 I 

The [7,3] code with generator matrix P has three orthogonal checks {i,5}, 

{2,3}, and {4,6} of weight 2 on code position O. The [3,2] code with 

generator matrix Q has one check {1,2} of weight 2 on code position O. 

The [5,4] code with generator matrix R has one check {1,2,3,4} of weight 4 

on code position O. Hence 0 == 3,0 = 1, and or == I. 
T T T T P q 

Any vector (~ ,Z ,~) , where ~,Z' and z are columns of resp. P,Q, and R, 

occurs exactly once as a column of G. Now for any i E {I, •• ,T } and 
q 
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r 
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(76) 

This implies T T Q = 45 orthogonal checks on mO' These checks do not contain q r p 
the fifteen code digits { c. I j :: 0 mod 7}, which correspond to the columns 

J 
of G given in Fig. 5.2. 

o ..... N ("') --r 1.1'\ IC r-- OC) --r 0 - r-- OC) 0'\ f- column numbers 
N--r1C0C)("')1.I'\r--0'\-r--0'\ N--r 

1 • 

I . I . . . I I . 
. I . 1 I . . 

I . 1 . . I I . 
I . ) . 

a a abc c c c a b b b b c a 

Fig. 5.2: Columns G*j of G where J - 0 mod 7. 

From Fig. 5.2 it is easy to see that 

a: 

b: 

c: 

Co + c 21 + c 42 + c49 + c ga 
c i + c

l4 
+ c

63 
+ c

70 
+ c

91 
c

28 
+ c35 + c

S6 
+ c7l + c

S4 

From now on points (.) in 

matrices should be read 

as zeros (0). 

(77) 

are three additional orthogonal checks on m
O

' which are orthogonal to the 

45 checks implied by formula (76). Hence we have 48 orthogonal checks on mO' 

Analogously we can find 48 orthogonal checks on m) and m2• 

For any i E {), ••• , T } and any j E { I , ••• ,T } we have 
p r 
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T = ~3 := (0,0,0,1,0,0,0,0,0) , (78) 

This implies T Toe 35 orthogonal checks on m3' These checks do not contain 
p r q . 

the code digits { c. I j :: 0 mod 3 }, which correspond to the columns of G 
J 

given in,Fig, 5.3. 

J • . . I I . 

• • 1 1 , 

• I 

. I I , . I I , I , • • 1 I • 

• I 1 • 1 • 1 • . I I . I . I • . 

1 • I . . • I I • . I • ) I . 1 • 

I . I . . . I . I • • • 1 

abc dd e a f g f c d b a abc e f g g e d b b d f a e e f g 8 c c 

Fig. 5.3: Columns G . of G where j 
*J 

From Fig. 5.3 it ~s easy to see that 

a: Co + c
9 

+ c
l2 

+ c
36 

+ c93 
b: cIS + c21 + c 39 

+ c
45 

+ c n 
c: c

30 
+ c

42 
+ c4S + c66 + c69 

d: cSI 
+ c

63 
+ c75 + c

84 
+ c 102 

e: c
I5 

+ c33 + c54 + cSI + ca7 
f: c3 + c57 + c90 + c96 + c99 
g: c6 + c24 + c27 + c60 + c7S 

o mod 3. 

(79) 

are seven additional orthogonal checks on m3, which are orthogonal to the 

35 checks implies by formula (78). Hence we have 42 orthogonal checks on m3' 

Analogously we can find 42 checks on m4' 

For any i E {1,.,.,T } and any j € {I, .•• ,T } we have 
p q 
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T 
= (0,0,0,0,0,1,0,0,0). (SO) 

This implies T T 6 = 21 orthogonal checks on mS' These checks do not contain 
p q r 

the 21 code digits {cj I j = ° mod 5 }. Since 8 1,s2,.",s5 2 42, 

c. + l. 0
4 

m.G .. 
J 1.= 1. 1.J 

(Sl ) 

for j E (0,5,10, ••.. ,100) build 21 additional checks on mS (cf. the proof 

of Theorem (5.2.4», Hence we have 42 "orthogonal" checks on m5' Analogously 

we can find 42 checks on m6 ,m7, and mS' 

We have shown that the [105,9J code with check polynomial 
3 2 432 • (x +x+l)(x +x+l)(x +x +x +x+l) has a separat1.on vector of at least 

(4S,4S,4S,42,42,42,42,42,42). Actually equality holds, as one can easily 

check. Su we have derived a Majority Logic Decoding Scheme for the code that 

reaches the actual separation vector. 

For a binary cyclic code whose check polynomial is the product of (x+l) and 

two primitive polynomials we have the following theorem. 

(5.2.8) Theorem: For the primitive polynomials p(x),q(x) E F2 [xjof degrees 

k resp. k such that k > k and g.c.d.(k ,k ) = 1 the binary cyclic 
p q p q p q 

k k 
[(2 P-l)(2 q-I),k +k +1] code with check polynomial (x+l)p(x)q(x) has a 

p q 
separation vector s which satisfies 

k k -1 f (2 q-I)(2 P -I) for i = I •••• ,k 
p 

s. = 1. k k -1 
(2 P-I)(2 q -1) for i k +I ••••• k +k +1. p P q 

k 

(82 ) 

Proof: The [2 P-1,k J cyclic code C with primitive check polynomial p(x) of 
P P k 

degree kp is a simplex code (i .e. all elements of F 2 p\{o} occur as columns 

in a generator matrix of C ). Hence we have an orthogonal check set of size 
k -I P 

o := (2 P -1) on any code position, where all weights of the checks equal 2. 
P k 

The same holds for the [2 q-l,k ] code C with primitive check polynomial q(x); 
k -I q q 

o := (2 q -1). Since g.c.d.(k ,k ) = I, we may apply Theorem (5.2,3)(ii) 
q p q 

to the first k message bits as well as to the message bits ~ ""'~ +k -I' 
p p p q 
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Furthermore 

k k -\ 
wt«xn+I)/p(x) + I~:~ xi) == (2 q-I)(2 p -1) and 

k k -) 
wt«xn+l)/q(x) + rn- l xi) = (2 P-l)(2 q -I), i=O 

k k 
where n := (2 P- 1)(2 q-l). 

These observations imply formula (82). 

(5.2.9) Examples: 

(i); Take k = 3, k = 2, p(x) 3 = x +x+ I, q (x) 2 = x +x+). 
p q 

1 . 1 . I . 1 . · . I I . I . . 1 . . I · 
) . I . . 1 I . . I . I 

G := 
I J 1 1 I I 1 . . . . . . · . I I . 1 . 1 . J . . I I . 

is an optimal generator matrix for the [2),6] cyclic code C with 

check polynomial (x+l)p(x)q(x). ~(G) = (9,9,9,7,7,7). 

mO,m3; and mS have the following checks. 

+ c
19 

c
2 

+ c
l7 

= c
3 

+ c
9 

+ CIS = cia + c l6 = c il + c20 

C
4 

+ c
I3 

== cs 
= e l2 + CIS' 

C2 + c l6 = c4 + c)l = c5 
clO + c 17 = c 13 + c 20 ' 

ms = Co + c] + c2 + mo + m2 
c6 + c7 + Cs + mt + m2 

= c l2 + c l3 + c 14 + mo + mj 

CIS + c l9 + czo + mo + ml' 

+ c4 + Cs + nu 
+ clO + c il + m2 
= CIS + c I6 +c 17 + ml 

o 

The generator matrix G' for this code, whose rows are the cyclic 

shifts of the generator polynomial, has a separation vector ~(G') == 

(7,7,7,7,7.7). 
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A binary [21,6J code has a m~n~mum distance of at most 8 ( cf. Helgert 

and Stinaff (1973». 

4 3 (ii): Take k 4, k = 3, p(x) := (x +x+I), q(x) := (x +x+I). The [105,8J 
p q 

code with check polynomial (x+l)p(x)q(x) has separation vector 

(49,49,49,49,45,45,45,45). 

We can also extend Theorem (5.2.9) to the following one. 

(5.2.10) Theorem: For the primitive polynomials Pi(x) € F 2 [xJ, i = 

of degrees resp. k., i = l, .•. ,v such that. k > k > ••• > k and 

I, ... f V 

~ I 2 v 
g.c.d.(k.,k.) = 1 for all i,j, i i: j,thebinary cyclic 

~ J 
v k. 

[IT (2 ~-t), 1+ f ;_~ k. J co.de with check 
i=l ~- ~ 

separation vector s which satisfies 

k.-l v k k. 
s. = (2 J -1)]lC (2 u_ I)/(2 J- 1) 
~ 

u=1 

'-I . 
for i = L~=l ku +I, .••.• ,L~=I ku and j 

v 
polynomial (x+I)1l: p,(x) has a 

i=1 ~ 

] , ... ,v. 

Proof: Analogous to the proof of Theorem (5.2.8). 

Table B.I in Appendix B contains the separation vectors of all binary 

cyclic UEP codes of length less than or equal to 39. 

5.3 Notes 

(83) 

o 

Theorem (5.1.1) is from Dunning and Robbins (1978). It is easy to prove the 

Corollaries (5.1.2) and (5.1.3) without the results of Chapter 2, by only 

using the special configuration of the generator matris G in formula (55). 

Theorem (5.2.1) is from Dyn'kin and Togonidze (1976). They also mention 

Theorem (5.2.8) without a proof. 
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APPENDIX A: BINARY OPTIMAL LINEAR UEP CODES OF LENGTH LESS THAN 

OR EQUAL TO 15 

n k d(n,k) separation vector 

4 2 2 32 
5 2 3 42 
5 3 2 322 
6 2 4 52 
6 2 3 422 
6 4 2 3222 
7 2 4 62, 54 
7 3 4 522 
7 4 3 4222 
7 5 2 32222 
8 2 5 72. 64 
8 3 4 622, 544 
8 4 4 5222 
8 5 2 42222, 33332 
8 6 2 322222 
9 2 6 82, 74 
9 3 4 722, 644, 554 
9 4 4 6222, 5444 
9 5 3 52222, 44442, 43333 
9 6 2 422222, 333322 
9 7 2 3222222 

10 2 6 92, 84, 76 
10 3 5 822, 744, 664 
10 4 4 7222, 6444, 5544 
10 5 4 62222, 54444 
10 6 3 522222, 444422, 433332 
10 7 2 4222222, 3333222 
10 8 2 32222222 
11 2 7 10.2, 94, 86 
1 1 3 6 922, 844, 764 
I 1 4 5 8222, 7444, 6644 
11 5 4 72222, 64444, 55444 
I 1 6 4 622222, 544442, 533333 
1 J 7 3 5222222, 4444222, 4333322 
J I 8 2 42222222, 33332222 
I 1 9 2 322222222 
12 2 8 1 I • 2 , 1 0 • 4, 96 
12 3 6 10.22, 944, 864, 774, 766 
12 4 6 9222, 8444, 7644 
12 5 4 82222, 74444, 66444, 55554 
12 6 4 722222, 644444. 554444 
]2 7 4 6222222, 5444422, 5333332 
12 8 3 52222222, 44442222_ 43333222 
12 9 2 422222222, 333322222 
12 10 2 3222222222 

Table A. I : The separation vectors of the binary optimal LUEP codes 

of length less than or equal to 15 (Part I). 
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n k d(n,k) separation vector 

13 2 8 
13 3 7 
13 4 6 
13 5 5 
13 6 4 
13 7 4 
13 8 4 
13 9 3 
13 10 2 
13 II 2 
14 2 9 
14 3 8 
14 4 7 
14 5 6 
14 6 5 
14 7 4 
14 8 4 
14 9 4 
14 10 3 
14 II 2 
14 12 2 
15 2 10 
15 3 8 
IS 4 8 
15 5 7 
15 6 6 

15 7 5 
15 8 4 

IS 9 4 
15 10 4 
15 II 3 
15 12 2 
15 13 2 

I 2 • 2 , I I • 4 , I 0 • 6, 98 
I I .22, 10.44, 964, 884, 866 
10.22, 9444, 8644, 7744, 7666 
92222, 84444, 76444, 66664, 66555 
822222, 744444, 664444, 555544 
7222222, 6444442, 6333333, 5544442, 5444444 
62222222, 54444222, 53333322 
522222222, 444422222, 433332222 
4222222222, 3333222222 
32222222222 
13.2, 12.4, 11.6, 10.8 
12.22, I I .44, 10.64, 984, 966 
11.222, 10.444, 9644,8844,8666 
10.2222, 94444, 86444, 77444, 76666 (a) 
922222, 844444, 764444, 666644, 665552 
8222222, 7444444'(b), 6644442, 6544444, 5555444 (c) 
72222222, 64444422, 63333332, 55444422, 54444444 
622222222, 544442222, 533333222 
5222222222, 4444222222 
42222222222, 33332222222 
322222222222 
14.2, 13.4, 12.6, 11.8 
13.22, 12.44, I I .64, 10.84, 10.66, 988 
12.222, 11.444, 10.644, 9844 (d), 9666 
11.2222, 10.4444, 96444, 88444, 86666 
10.22222, 944444, 864444, 774444, 766662, 766644, 
765554 (e) 
9222222, 8444444, 7644444 (f), 6666444, 6655522 
82222222, 74444442, 66444422, 65444442, .••••••• (1), 
64444444, .•...... (2) 
722222222, 644444222, 633333322, 554444222, 544444444 
6222222222, 5444422222, 5333332222 
52222222222, 44442222222 
422222222222, 333322222222 
3222222222222 

Table A.I: The separation vectors of the binary optimal LUEP codes 

of length less than or equal to 15 (Part II). 

Any separation vector of a binary linear [n,k] code (4 S n s 15, 

2 s k s n-2) is less than or equal to one of the separation vectors 

in the row of Table A.1 corresponding to n,k. If a component of a 

separation vector consists of two digits it is followed by a point. 

Let d(n,k) denote the maximal minimum distance of a binary linear code 

of length n and dimension k (cf. Helgert and Stinaff (1973». 

The nontrivial codes in Table A.I are constructed in one of the following 

ways. 
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(i): Adding a parity check to another code in the table. 

(ii):Shortening or puncturing other codes in the table. 

(iii): Adding a column of weight one to a generator matrix of a LUEP code 

of length one less. 

(iv): The following construction: 

If the matrix G1 has separation vector ~(Gl)' then 

0 
0 

G2 := 
G1 

0 
I 1 o 0 ....... 0 

has separation vector ~(G2) = (~(GI),2). 
(v): The constructions in Section 4. I. 

(vi): (a). Construction (4.2.1) with m = 1 and G1 a generator matrix 

of a [7,4,3J Hamming code. 

(b). Construction (4.2.1) with m = I and GI a generator matrix 

of a [7,6,2] code. 

(c) .... 11111. ..... 

(d) • 

(e). 

••• 11 ••• 111 .•• 
••• 1.1 •• 1 •• 1.1 
•••• 1.1 •• 1 •• 11 
1 •• 1 ••• 11 ...... 
• 1 •• J.I ••• I ••• 

L··t ..•..... 111 

[

11111111. .... ] 
.1111. ••• 1111.. 
• 1 ••• 1 ••• 1 ••• 1 • 
•• 1 ••• ] ••• 1 ••• 1 

.. •• 11111 ... 111 

......... 111111 
1 ••• 11 ••• 1 •• 1 •• 
• 1 •• 1.1 ••• 1 •• 1 • 
•• 1.1 •• 1 ••• 1 •• 1 
••• 1 •••• 1 •• 1 •• 1 

(f) • • •••• 1 1 1 1 II I ••• 
••••• 111 ••.• 111 
1 •••• 1 •• 1 ••• 1 •• 
• 1 ••• 1 •• 1 •••• 1" 
•• 1 ••• 1 •• 1 •••• 1 
••• 1 •• 1 ••• 1 ••• 1 
•••• 1.1 •••• 1 •• 1 

is a generator matrix of a 

[14,7,(5,5,5,5,4,4,4)J code. 

is a generator matris of a 

[15,4,(9,8,4,4)J code • 

is a generator matrix of a 

[15,6,(7,6,5,5,5,4)J code • 

is a generator matrix of a 

[15,7,(7,6,4,4,4,4,4)J code • 
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Table A.I has two open places. 

(1): Does a [15,8,~] code with (6,5,3,3,3,3,3,3) S s S (6,5,4,4,4,3,3,3) 

exist? 

(2): Does a [15,8,(5,5,5,x,4,4,4,4)J code with x € {4,5} exist? 

1 ....... 1 ••• 1 •••• 

with G
1 

the matrix in (vi)(c) has separation vector (5,5,5,5,4,4,4,3). 

By adding a column of weight one to an optimal generator matrix 

of a [14,8,(5,4,4,4,4,4,4,4)J code, we obtain a 

[15,8,(5,5,4,4,4,4,4,4)J code. 
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APPENDIX B: A TABLE OF ALL aINARY CYCLIC UEP CODES OF LENGTH LESS THAN 

OR EQUAL TO 39 

Table B.I contains the parameters of all binary cyclic UEP codes of length 

less than or equal to 39. In this table for each code of length n the 

exponents i,j,k, ••• of a primitive nth root of unity a are given such 
i j k 

that a ,a ,a "., are nonzeros of the code. For example the first row 

of the table denotes a binary cyclic [15,7,(5,5,3,3,3,3,3)J code with 

nonzeros { a i liE CSU Co U C3 }, where Ci (i = 5,0,3) denotes the 

cyclotomic coset modulo 15 containing i, The order of the nonzeros 

corresponds to the order of the components in the separation vector. I.e. 

if the order of the nonzeros is i,j,k, •• , then the separation vector equals 

~ «Mi lMI I~ \ ... », where Mx (x = i, j , k, •• ,) denotes a generator matrix 

of the minimal ideal in F~(xJ~Xn+l) with nonzeros { aY I y € C }. In 
T r T x 

the above example ~«M5IMOIM3» = (5,5,3,3,3,3,3). 

The last column of the table contains the minimum length or a bound on the 

minimum length of a binary linear code with a separation vector of at least 

the one of the corresponding cyclic code. The separation components (and 

the corresponding nonzeros) larger than the minimum distance of the code 

are underlined. 
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length dim. nonzeros separation vector s n(!.) 

15 7 1,0,3 1z.1,3,3,3,3,3 14 

9 l, 0, 3 4,4,4,4,3,3,3,3,3 14 

9 Q, 1 ,7 ~,4,4,4,4,4,4,4,4 15 

II Q, 1,5,7 ~,2,2,2,2,2,2.2,2,2,2 15 

13 .2., 1,3,7 1,2,2,2,2,2,2,2,2,2,2,2,2 15 

21 6 1,0,7 9,9,9,7,7,7 ~ 20 

7 .2.. 1 2.,8,8,8,8,8,8 21 

8 1,3,9 8,8,6,6,6,6,6,6 20 

9 1,0,3,9 7,7,3,3,3,3,3,3,3 18 

9 .2., 1 ,7 1,6,6,6,6,6,6,6,6 19 

10 .2., 1 ,9 2.,4,4,4,4,4,4,4,4,4 20 

II 1. 1,9 6,6,4,4,4,4,4,4,4,4,4 19 

12 1, 1,9 6,6,6,4,4,4,4,4,4,4,4,4 2: 20 

12 1,0,1,3 6,6,5,5,5,5,5,5,5,5,5,5 21 

13 .2.,1,5 2,4,4,4,4,4,4,4,4,4,4,4,4 21 

13 l,O,3,9 4,4,4,4,4,4,3,3,3,3,3,3,3 2: 18 

15 .2.. 1 .5,7 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 21 

17 1, 1,5,7 4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2 21 

25 21 .2., 1 ~,2,2,2,2,2,2,2,2,2.2,2,2,2,2,2.2,2.2,2,2 15 

27 7 .2.,3 2.,6,6,6,6,6,6 19 

19 .2., I 2.,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 27 

20 2" I 6,6,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 27 

21 0,9,1 3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 24 

25 .2., I ,3 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2 27 

31 II .2..,1,15 l..!., 10,10,10,10,10,10,10,10,10,10 ~ 30 

16 .2.,1,3,15 2,,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 ~ 29 

Table B. 1: All binary cyclic UEP codes of length less than or equal to 39 

(Part I). 
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length dim. nonzeros separation vector s n(~) 

33 12 ..!l~3 12,12,6,6,6,6,6,6,6,6,6,6 ~ 29 

13 Q, ) , I I ..!l, 10, )0, 10, 10,10, la, 10,10,10, )0, 10,10 ~ 32 

13 ..!l,0,3 ~,3,3,3,3,3,3,3,3,3,3,3 ~ 28 

. 21 Q, 1,5 ..!l,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ~ 32 

23 Q, 1 ,5, J 1 ..!l,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2 33 

23 ..!..t..!l,0,3 5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3;3,3,3, 

3,3 ;:: 32 

31 Q,I,3,5 1,2,2,2,2,2,2,2,2,2,2,2,2.2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,2,2 33 

35 7 2.,7 16,16,16,14,14,14,14 ~ 34 

8 2.,0,7 15,15,15,7,7,7,7,7 ;:: 32 

1 1 1,0,5,15 7,7,7,7,5,5,5,5,5,5,5 22 

13 Q,l ~,8,8,8,8,8,S,8,8,8,8,8,8 ;:;: 33 

15 1, I 12,12,12,8,8,8,8,8,8,8,8,8,8,8,8 ;:: 33 

16 Q, 1 t 15 ~,4,4,4,4,4,4,4,4,4,4,4,4,4,4J4 ;:;: 32 

17 Q, 1,7 1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 ;:: 28 

18 2., 1 , 15 8,8,8,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ~ 29 

19 .9..,5,1,15 5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ;:: 26 

19 1. ) ,7 8,8,8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 ;:: 30 

19 2., 1,15 6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ;:: 27 

20 0,5,7,1 7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,6,6,6,6 ;:: 31 

22 5,7,1,15 616,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ~ 31 

25 Q, 1,3 2.,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 

4,4,4 ;:: 33 

28 Q.. I ,3,5 2.. 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 

4,4,4,4,4,4 35 

29 .9..,1,3,7 2.,2,2,~,2,2.2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2 35 

Table B. I : All binary cyclic UEP codes of length less than or equal to 39 

(Part II). 
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length .dim. nonzeros separation vector s n(~) 

35 31 Q, 1 ,3,5, 15 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,2,2,2 35 

31 1,1,3,7 4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,2,2,2 35 

32 0,5,1,3,7 3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,2,2,2,2 35 

39 13 Q,1 Q. 12, 12, 12, 12, 12, I 2 , 12, 12, 12, 12, 12, 12 ;;:: 37 

14 1.1,3 14,14,6,6,6,6,6,6,6,6,6,6,6,6 ;;:: 35 

15 Q, 1,13 1.1,10,10,10,10,10,10,10,10,10,10,10,10,10,10 <:: 36 

15 1.1,0,3 ~,3,3,3,3,3,3,3,3,3,3,3,3,3,3 <:: 33 

25 l,0,3 6,6 26,6,6,6,6,6 26,6 z6,6,3,3,3,3,3,3,3,3, 

3,3,3,3,3 <:: 35 

25 Q, I ,7 1.1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, 

4,4,4,4,4 39 

27 ~,O,3 6,6,6,6!6,6,6,6,6 16,6 z6,6 26,3,3,3,3,3,3, 

3,3,3,3,3,3,3 .2 37 

27 Q,I,7,J3 ~,2,2,2,2,2,2,2,2,2,2,2.2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2 39 

37 Q,I,3,7 l,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 39 

Table B.I: All binary cyclic UEP codes of length less than or equal to 39 

(Part III). 
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Linear Unequal Error Protection 
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