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ABSTRACT

It is possible for a linear block code to provide more pfatéctiOn against
errors for selected message positions than is guaranteed by the minimum
distance of the code. Codes having this property are called Lineaflﬁneﬁuél
Error Protection (LUEP) codes. In this report the optimal encbding 6£,LUEP‘
codes is discussed and bounds on the length of a code that ensures a given
unequal error protection are derived. A number of constructioﬁs*qf‘LUE? codes
are given. Cyclic UEP codes together with Majority Logic Decoding\pf'certain
classes of these are treated. A list of LUEP codes of minimal,lahgth,and

a list of cyclic UEP codes are included.

AMS Subject Classification: 94B05, 94B60.



PREFACE

In data transmission and processing a desired level of error“contxoiAis
guaranteed by using error—correcting codes. Most block codes consideréd

in the literature have the property that their correcting capabilitieé

are described in terms of the correct reception of the entire message.
These codes can successfully be applied in those cases where all positions
in a message word require equal protection against errors. ' «..
However, many applications exist in which some message positions ate more
important than other ones. For example in transmitting numerical data,
errors in the sign or in the high-order digitsAare more serious»than éfe
errors in the low-order digits. As another example conmsider the transmission
of message words from different sources simultanéously in only.oné codeword,
while the different sources have mutually different demands cohcerﬁing:

the protection against errors. \
Accordingly there is an interest in codes which protect some positions in

a message word against a larger number of errors than other ones. Such codes
are called Unequal Error Protection codes (abbreviated: UEP codes);“Hasnick
and Wolf (1967) introduced the concept of UneqﬁalVError Protectionﬁfﬁﬁt,‘

in contrast with what one would expect, they considered error protéction

of each single position in a codeword. In this report we consider error ,
protection of single positions in the message words, following the formal
definitions of Dunning and Robbins (1978). :

In Chapter | we introduce the concept of Linear Unequal Erxror Pretectibn.
codes (LUEP codes) and define a vector, the so-called separaticn vector,

by which the error*correcting capability of a LUEP code is measured; In
Section 1.2 we consider a special form of a generator matrlx for a- LUEP
code, .the so-called canonical form, introduced by Boyar1nov and Katsmaa
(1981),

The error-correcting capability of a LUEP code, measured by the separation
vector, depends upon the choice of a genefator matrix which is used for the
encoding of the message set. But fortunately every code'has“a;so-called
optimal generator matrix, whose separation vector is componentwise

larger than or equal to the separation vector of any othér*géneratot matrix
of the code. Chapter 2 provides a necessary and sufficient condltlon for »
a generator matrix to be optimal, It is also shown that a generater matrlx
of a code which has the smallest number of nonzero entries is optimal. The.

results in Chapter 2 are from Dunning and Robbins (1978).



An interesting and basic problem is to find a LUEP code with a given
dimension and separation vector such that its length is minimal and

hence its information rate is maximal. In Chapter 3 we derive a number of
bounds on the length of LUEP codes. For the special case where all
message positions are equally protected, some of our boundsyreduceAto

the well-known Singleton, Plotkin, and Griesmer Bounds. Some earlier work t
on bounds was done by Katsman (1980); he derived Corollary (3.3.14) for
the binary case., Our bounds give better results than the bound of Katsman
{1980) does (cf. Section 3.4). The Theorems {3.3.2), (3.3.6),:the‘binary
version of (3.3.12), the Corollaries (3.3.7), {3.3.8), and formila (35) for
linear UEP codes were already reported in van Gils (i981),rAppendix;A
provides a table of all binary LUEP codes with maximal separation vector
and length less than or equal to 15, | \

In Chapter 4 we construct a number of LUEP codes. Sectlon 4,1 provx&es
some infinite families of LUEP codes which have mlnimal length and
maximal separation vector. Section 4.2 contains a number of<constructions
which build LUEP codes from (LUEP) codes of smaller length, such as

the direct sum and direct product construction, the ]ulu*vl construction,
and concatenation. o
Chapter 5 deals with cyclic UEP codes. In Section 5.1 we give an optimai~;
generator matrix for a cyclic'UEP code and observe how its error-
correcting capability depends on the weight distribution of its cyciiel'
subcodes. In Section 5.2 we consider classes of cyclic UEP codes which
can be decoded by Majority Logic Decoding Methods.'Earliefvresulés
(Theorem (5.2.1) and (5.2.8)) on cyclic UEP codes were obtained by
Dyn'kin and Togonidze (1976). Appendix B provides a table of hll binary
cyclic UEP codes of length less than or equal tok39. R
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the finite field (Galois field) of q elements.
the ring of polynomials in x over F_. o

the residue class rihg lzl[x] modulo (X ~1). '
the wordlength of a code.

the dimension of a code.

the minimum distance of a code.

the separation vector of a code.

the Hamming weight of the vector c.

min { wt(c) | ceCl.

{wt(e) | cec ).

{cec|wt() <pl.

the generator matrix of a code.

the ith row of the matrix G..

the jth column of the matrix G.

the set of rows of the matrix G.

n { X< R@G) | Clp) c <x> }.

the separation vector of the matrix G.

"the linear span of the set X.

a linear code of wordlength n, dimension k, and
minimum distance d.

a linear code of wordlength‘n, dimension k , and
separation vector s.

cf. page 10,

cf. page 10,

a minimal ideal in Fq[x]f(xn~1).

a generator matrix of Mi'

the cyclotomic coset modulo n containing i.
the largest integer less than or equal t¢ x.
the smallest integer larger than or equal to x.
a is a divisor of b. ’

the k by k unit matrix.
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INTRODUCTION

In this chapter we give an introduction to the concept of Liﬁear Unequal‘
Error Protection Codes. The reader is assumed to be familiar. with the
basic principles of linear algebra, finite fields,and~error*cbfrectiug
codes. For an extensive treatment we refer to MacWilliams and S1Ganef(I9?83‘
and van Lint (1982). In Section 1.1 we define "Unequal Err&r_?roteéfioﬁﬁ :
and in Section 1.2 we derive a special form of the geherator mat;:ixjfor

a linear UEP code, the sp~ca11ed canonical form.

Definition of Linear Unequal Error Protection Codes"

Let g be a prime power and let F‘ = GF{q) be the'Galois field of order q.
A linear [n,k] code C of length n and dimension k over‘Fq is a k-dimensional
linear subspace of Fq A generator matrix G of this code tf ak by n
matrix whose rows form a basis of C. The bijection from E& onto C whlch
maps any element m ¢ ZFE of the message set onto a codeword 5 2’55,13
called an encoding of € by means of the generatar~métrix G. thvﬁ'éfrg,
wt(x) denotes the (Hamming) weight of x, i.e. the,nuﬁber of’uonzeroV 
components in Xx. o

Dunning and Robbins (1978) have introduced the following formal definition.

(1.1.1) Definition: For alinear [n,k] code C over the alphabet‘Fq the
separation vector s(G) = (s(G)l,.....,s(G)k) of léngth k, with respect

to a generator matrix G of C, is defined by
s(G)i := min { wt(mG) | E~€‘F2 » m #0 } C (l)
{i=1,...,k).

This means that for any a, 8€F , « # B , the sets {‘uiG | in e»l“z > m ® g }

~and { oG | me Fq , m. = B} are at distance s(G) apart (i=l, ...,k).

i
This observation implies the following error*correctlng capabxllty of

a code when we use it on a q~ary symmetric channel.



{(1.1.2) Theorem: For a linear I{n,k] code C over qu, which uses the matrix
.t

G for its encoding, we can guarantee the correct reception of the i b

digit of the message word if the error pattern has a Hamming welght less

than or equal to lfs(G) *l)/%J by using maxxmumlxkellhooddecodxng

From Definition (l.1.1) it is immediately clear that the minimum distance~,,

of the code equals
d = min { S(G) 1= 1,...,k ). o B (2), 

Hence by Theorem (1.1.2) we can guarantee correct reception of the

complete message if the error pattern has a weight less than or equal to

| (- x)/zj

The following definition is an immediate consequence of Theorem (1 I 2}

(1.1.3) Definition: If a linear code C has a generator matrix .G such

that the components of the separation vector s(G) are not mutually equal,

then the code C is called a Linear Unequal Error Protectioﬁgcdgg,(LUEP céde).’

One can easily decode LUEP codes by using Syndrome Decoding (Cf.»Mécﬂiliiams
and Sloane (1978)). This decoding method reaches the correctionvéabability
given by Theorem (1.1.2), because of the following fact. For a fiﬁedi

coset R of a linear code C, encoded by means 6f a generator matrix-G,‘

let U be the set of coset leaders of R. For any r € R, r+lU contains

all codewords which are closest to r, i.e. at a distance d(r,C), the
distance between r and C, from r. If i€ { I,...,k} is such that the éeight'
of the elements of U is less than of equal to Ls(G) *I)/EJ ;- then the i gth
digits of the messages corresponding to the elements of r+U are mutually
equal. Hence if r is the received word, Syndrome Decoding correctly ‘
reproduces the ith digit of the message sent. ;

In Section 5.2 we treat a Majority Logic Decoding method for~cer§ain

classes of ecyclic UEP codes.



1.2 The canonical form of a generator matrix

By simultaneously permuting the message positions in the message words

and the rows of a generator matris G, we may obtain a generator matrix G
for the code such that s(G) is nonincreasing, i.e. §f§)i 2 gfﬁhi+l for
i=1,...,k-1. From now on we assume that the message positions and the
rows in generator matrices are ordered such that the correspcnding~ 
separation vectors are nonincreasing. ,
Boyarinov and Katsman (1981) have introduced a special form of a generator

matrix, called a canonical form,

(1.2.1) Definition: A generator matrix G of a linear [n,k]‘code, whose
nonincreasing separation vector s(G) has z distinct components
si1 >'si2 > iaeess > siz with multiplicities resp. kl’kz":"“’kz? |
is called canonical if G contains a lower triangular partitioned matrix
of order k by k having z unit matrices of order k] X kl’ k2 p 3 Rz;.;...,
kz X kz on its diagonal. That is, after a proper permutation of the

colums of G we get a matrix of the following form.

Ik 1] ] 4]
i -

G I 0 0

2,1 k2

| [ I ! , ‘ ‘

G G I 0

=1, 1| "2 Tk
Gz,l . GZ,Z | Gz,z*l Ikz

For k € N we define a partial order in Rk by
Xy ¥ X, < ys for i = 1,...,k,

k ~ : . k .-
where X,y ¢ R . We say that X is a maximum of the set A c R~ if for
all x € A, x < X,

Any generator matrix G of a code can be transformed into a canonical

generator matri_x G of the code Such‘that _S_(G ) = S(G) by a n’u{nber
can can —
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of elementary transformations on the rows of G, i.e. permutation and
addition of rows and multiplication of rows by scalars. This is a

consequence of the following theorem.

(1.2.2) Theorem: For k,n e N, i,j ¢ {l,...,k}, 1 # j, a € I"(i\{O} ‘and -
a k by n matrix G over Eﬁ let G' be a k by n matrix obtained by ‘reéplacing

the 1th row of G by the sum of the ith row and o times theljth row of G.

Then the separation vector s(G') satisfies

s(6'), = s(6)  for v # ] _ @
= 5(©);  if (@), < s(6); o e
s(6')4z s(6),  if s(G); = s(G), o o R {6)
=s(@; if s(@); > s(6);. V M

Proof: For a set X ¢ F: , <X> denotes the linear span of X and wt[XJ ig
the minimum weight in X, i.e. min { wt(x) | x € X } . For a matrix A,

R(A) denotes the set of rows of A and Ai* denotes the ith row»of‘A~, 

For v # i,j we have s(G') := wt[G) + <R(G')\{G;*}>] = '

welG o, + {B(Gy, + a6, ) | Be F )+ <RONG,,6 1=

welG  + {86, | B¢ F }+ <RONMG,,,6 121 = welG  + <R(G)\{G§*}§] =
s(G)v. : ‘ o
s(G‘)i 1= wt[Gi* + <R(G')\{Gi*}>]
= wt[Gi*+ <R(G)\{Gi*}>] = S(G)i'
s(G')j:= wt[Gj* + <R(G')\{G§*}>J
= wtlG,, + {B(G; + oG, ) | Be F } + <REME,,6,, 1T,

For s(G)j < s(G)i we have that Wt[Gj* + fR(G)\{Gi*,Gj*}?] = S(G)j’~
welGo, + 18(G;, + a6, ) | B e F A0} + <RONE,,,6,,1>1 2 s(6);

]

fl

i}

wt[Gi* + an* + <R(G)\{Gi*}>]°=

L}

*
and hence s(G')j = s(G)j , 1.e. formula (5).

In a similar way we obtain formula (6) and (7). ' ﬂg

From this theorem it is immediately clear that we can transform an
arbitrary generator matrix G of a code into a canonical generator matrix
GCan such that E(Gcan) 2 s(G) by applying a seqﬁence of elementary
transformations on G. This theorem alse shows (by formula (7)) that

if we want to transform a generator matrix G into a systematic genérator

matrix G we cannot guaran h 2 G).
s s g tee that E‘Gsyst) s(G).

yst



1.3

(1.2.3) Example: For q = 2,

- (8)

)
I
OO D
OO0
OO -
O DO
_-D OO0
—
SO O
S OO
— D D e
— . O

has separation vector s(G) = (5,4,4,4,4). It is impossible to transform
yst such that EﬂGsyst) 2'(5,4,4,4,4).

Actually, a 5 x 10 binary systematic generator matrix with a separation

G into a systematic generator matrix GS

vector of at least (5,4,4,4,4) does not exist (cf. van Gils (1981)).

Notes

One can generalize Definition (1.1.1) for nonlinear codes. Consider a code
C over the alphabet Ea containing qk codewords. Let the message setiF§
be encoded according to the bijection n , mapping m: onto C. The separation

vector s(n) of C with respect to the encoding function n is defined by
s(n)i := min { wt(n(m)-n(mn")) | m,m' ciFE > my # m% } N C))

for i = 1,...,k. Of course Theorem (1.1.2) also holds forvnonlinéat UEB
codes.

Dunning and Robbins (1978) have also considered‘the Lee Metric.
Boyarinov and Katsman (198!) have introduced the canonical form of'a

generator matrix,



2.

OPTIMAL ENCODING OF LINEAR UNEQUAL ERROR PROTECTION CODES

The separation vector defined by formula (1) depends upon the choice'of‘a
generator matrix for the code. In this chapter we show that a liﬁéar

code C has an optimal generator matrix G*, i.e. g(G*) 2 g(G) for all
generator matrices G of C. In Section 2.1 we give a necessary'and.sufficient 
condition for a generator matrix to be optimal. In Section 2.2 we show
that for a linear code a generator matrix with the smallest number of
nonzero entries is optimal. The results in this chapter are from Dunning -

and Robbins (1978).

A necessary and sufficient condition for a generator matrix’td,be optimal

(2.1.1) Definition: For a linear code C a generator matrix G is called
optimal, whenever s$(G) is the maximum of the set of nonincreasing

separation vectors s(A), where A is a generator matrix of C.

For a linear [n,k] code we define WI(C) := { wt(c) | ceCl, i.e.

the set of all possible weights of codewords in C. For p ¢ WT(C), clp) :=
{cecC | wt(c) < p } is the set of codewords in C having a weight of

at most p. For a generator matris G of C let R(G) :SV{GI*"""’GE*}

denote the set of rows of G and let R(G)(p) := n { X ¢ B(G) f C(p) = <Xp} be
the smallest subset of R(G) such that C(p) is contained in itg linear
span. The relation between s(G) and R(G)(p) is‘given in the following

lemma.

(2.1.2) Lemma: A generator matrix G of a linear [n,k] code C satisfiés
s(c)i $p & G, €RG)() :~V‘ o (10)

for each i € {1,...,k} and p € WI(C).

Proof: Let i € {I,...,k} and p € WI(C). If G, € R(G)(p) then €(p) ¢
<R(G)\{Gi*}> and hence C(p) n C\<R(G)\{Gi*}> # @, which implies that
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s(G)i*:= wt[C\<R(G)\{Gi*}?] < p. On the other hand, if Gi* ¢ R(G)(p)
then C(p) ¢ <R(G)\{Gi*}> and hence s(G)i f= wt[C\<R(G)\{Gi*;>J‘2

The following theorem provides a necessary and sufficient condition

for a generator matrix to be optimal for its rowspace.

(2.1.3) Theorem: A generator matrix G of a linear [n,k] code C is optimal
if and only if for any p € WI(C) a subset X c R(G) of the rows of G exists
such that <C(p)> = <X>,

Sufficiency: Suppose a generator matrix G of C satisfies the condition in
the theorem. Assume that G is not optimal, i.e. a generator matrix A exists
such that s$(G) # s(A). Let i be minimal such that s(G)i < s(A)i and set

p 1= S(A)i~la Since s(A)1 2....a,s(A)i > p, we. have:C{p) ¢ <A(i+l)*""’Ak*>
and thus also <C(p)> <« <A(i+1)*""’Ak*>‘ On the other hand we have that

o 2 s(G)i - S(G)k’ which by Lemma (2.1.2) implies that Gi*”"’Gk* €
R(G)(p). Combining these observations with the fact that <C(p)> = <R(G){p)>
we opbtain <Gi*,...,Gk*> c <R(G)(p)> = <C(p)> ¢ <A(i+l)*""’Ak*>’ which is
a contradiction. Hence our assumption was wrong and so G is optimal.
Necessity: Suppose G is an optimal generator matrix for the code C.

Let p € WI(C) and let A be a generator matrix of C such that <C(p)> =

= <A(k—p+l)*""’Ak*>’ where p := dim<C(p)>. By Definition (1.1.1) we have
that S(A)l""’s(A)k-p > p and hence s(G)l Zeweee2 s(G)k-p > p, since

G is optimal. Again applying Lemma (2.1.2) yields that R(G)(p) ¢

{G(k~p+1)*
<C{p)> < <R(G)(p)> and dim<G

,...,Gk*} and hence <C(p)> = <G(k~p+l)*""’gk*>’ since

G

(k=p+1)#? " 6™ T P u

(2.1.4) Corollary: Any linear code has an optimal generator matrix.
Hence the following definition makes sense.

(2.1.5) Definition: The separation vector of a linear code is defined as

the separation vector of an optimal generator matrix of the code.

We shall use the notation [n,k,s] for a linear code of length n,

dimension k,and separation vector s. For i = 1,...k, Esi~l)[%J is called



2.2

. .th o
the protection level of the i~ message position.

Minimal weight generator matrices

Optimal generator matrices which are easy to compute, given the rowspace,

are the so~called minimal weight generator matrices,

(2.2,1) Definition: For a linear [n,k] code C over'Fq a generator

. . . , L k
matrix G is called a minimal weight generator matrix if Xi=l wt(Gi*)

is a minimum of the set
k . .
{ Zi=l wt (A ) | A is a generator matrix of C }.

We shall show that a minimal weight generator matrix is optimal. First

we show that it is easy to compute the separation vector of these matrices.

(2.2.2) Lemma: If G is a minimal weight generator matrix of a k—~dimensional

code, then
wt(Gi*) = s(G)i (11)

for i = 1,..,k.

Proof: Let G be a generator matrix of a k-dimensional code such that

wt(Gi*} # s(G)i for some i ¢ {1,...,k}. Since s(G)i < wt(Gi*) we have the
strict inequality«s((;)i < wt(Gi*).
Let v € C\<R(G)\{Gi*}> be such that wt(v) = s(G)i. Then we have that

k
j=1,j#i

7.

k
i1 wt(Gj*) > z

wt (Gj*) + wt(v).

Gik’"”G(i—l}*’zfg(i+])*""’Gk* are linearly independent and sc they form

the rows of a generator matrix for C. Hence G is not a minimal weight

generator matrix. This proves the lemma.

{
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(2,2.3) Lemma: A minimal weight generator matrix G of a k—~dimensional

linear code C satisfies

<C(p)> = <{ 6, | i€ {1,...,k} , we(G; ) S p }> (12)
for any p ¢ WI(C).
Proof: That LHS > RHS is trivial. On the other hand let ¢ ¢ C(p). The
message m such that ¢ = mG satisfies mj = () for all j satisfying s(G)j > p,

which by Lemma (2.2.2) is equivalent to wt(Gj*) > p. Hence c¢ ¢ RHS, The RHS

of formula (12) is a linear space, so <C{p}> < RHS.

O
(2.2.4) Theorem: A minimal weight generator matrix is optimal.
Proof: Combine Theorem (2.1.3) and the Lemmas (2.2.2) and (2.2.3).

g

Besides a proper permutation of the rows any minimal weight generator
matrix of a k~dimensional linear code C can be constructed by the following

algorithm,

1. Set 1 = k.
2. Choose v ¢ C\<G
wt(v) = wt[C\<G
3. Set G, :=v.
i -
4, If 1 > 1 then decrease i by | and go to step 2, otherwise stop.

(i*l)*""’Gk*> such tha;

oty G-

Notes

The results of this chapter are from Dunning and Robbins (1978). They
also show that a linear code has an optimal encoding (linear or nonlinear)

and that no nonlinear encoding is better, i.e. has a larger separation

vector, than an optimal linear encoding. They also give an example of

a nonlinear code which has no optimal encoding.
If we replace the Hamming metric by the Lee metric, all lemmas and theorems

in this chapter remain valid (cf. Dunning and Robbins (1978)).
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BOUNDS ON THE LENGTH OF LINEAR UNEQUAL ERROR PROTECTION CODES

A basic problem is to find linear UEP codes with a given dimension and
separation vector such that their length is minimal and hence their
information rate is maximal. In Section 3.1 we give two formal definitions
of functions we want to consider together with their properties. In
Section 3.2 resp. 3.3 we give upper resp. lower bounds for these functions.
Appendix A gives function values for binary LUEP codes of length less

than or equal to 15.

Definitions and properties

(3.1.1) Definition: For any k € N, s eij and prime power g we define

nq(g} as the length of the shortest linear code over Fq of
dimension k with a separation vector of at least s.

and

nzx(g) as the length of the shortest linear code over Fq of

dimension k with separation vector (exactly) s.

An [nq(g),k,g} code is called length-optimal. It is called optimal, if

an [nq(g),k,g} with t 2 s, t # 5 does not exist.

(3.1.2) Properties: For any k ¢ N, s,t € lég and prime power g the

functions nq(.} and nzx(.) have the following properties.

0 (2) < 0 %), (13)
s =t ()< (t) (14)

®). (15)

ex

s =t # n?x(s) <n
= g =T g

To illustrate (15), observe that ngx(5,4,4) = 8 (cf. Appendix A} and

ex, . R . os .
nzx(b,é,B) = 9, which can be seen by easy verification.



~}]_

3.2 Upper bounds

The following theorem provides a trivial upper bound for nq(.) and n:x(.)

and an easy way to construct linear UEP codes.

(3.2.1) Theorem: For any primepowerq, k €¢ N, ve N, 8 € Nk and

k., =0 <‘k] < k

<.....< k =k we have
0 v

2

ex v~] e
nq (SI"""Sk) < u=0 n;?sk +175% 42775k ). (16)
u u u+l

The same inequality holds for nq(.) (Replace nzx(.) in (16) by nq(‘)),A

Proof: For u = 0,1,...,v-1 let Gu be a generator matrix of a

ex
fnq (Sku+l,....,sk

Y,k .~k ] code over ¥ _with separation vector
ut] utl u q

(sk $17 00098y ). Then
u utl
[~ 0 -
GO 0
0 G1
G := (17)
0
0 0 G
L v-1 ]
is the generator matrix of a [zv-l n"¥(s s ),k] code with
u=0 q ku+])o-wa, k L4

. ut+l
separation vector s,

0
(3.2.3) Corollary: For any prime power q, k ¢ N and s eiNk we have
ex k
n, (8) < Lioy 54 (18)
Proof: Apply Theorem (3.2.1) with v = k and for i = 1,...k, ki = i
and G, the ! x s, all-one matrix,
1 1 D

ko, . . , . /
Hence for any s ¢ N it is possible to construct a k-~dimensional code

over ¥ with separation vector s.
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3.3 Lower bounds
We start with a trivial lower bound on nq(.).

(3.3.1) Theorem: For any k ¢ N, prime power ¢ and nonincreasing k-vector

8 € Iik, nq(i) satisfies the inequality
= + - - s 08 s - 0
nq(g) 1 nq(s1 l,s2 1, »8) 1) (19)
Proof: By deleting a column from a k by nq(g) matrix G with separation vector

s{(G) = (si,....,sk) we obtain a k by nq(g)—l matrix G' with separation

1 - - -—
vector s(G}) 2 (s] l,sz 1,....,sk 1).

O
{3.3.2) Theorem: For q = 2 and any k ¢ N, (sl,....,sk) € l&&'wé have
s]+l s2+l Sk+l
nz{sl,sz,...,sk) 2 n2(2 ——-—2———J,2 —'-:,2“- ,...',2 —é—) -1, (20)

The same inequality holds when we replace nz(.) by nzx(.).

Proof: By adding an overall parity-check to a binary [n = ng(sl,....,sk),k]
code with a separation vector of at least (s],....,sk), we obtain an

[n+1,k] code with a separation vector of at least

(2 L(Sx”mj’z Eszﬂ)/Z—i,...,B ESRH)IZJ).

0
(3.3.3) Example: n2(5,4,3) = 8, n2(6,4,4) = § (cf. Appendix A).
(3.3.4) Theorem: For a linear [n,k] code over F with nonincreasing
separation vector s the weight distribution (Ai)i=g must satisfy the
inequality
k k~j
. , 2 - 2
leSj Al =4 4 (21)

for all j = 1,...,k.

Proof: For any j ¢ {l,...,k} a codeword corresponding to a message

m € Fz' such that m, # 0 for some 1 ¢ {},...,]} has a weight of at least sj.

g
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The weight distribution (Ai)ixg of a linear [n,k,ij code also has to
satisfy the following conditions.
n k

i=0 A = 9

{i): A0=1;A =0fori=1,...,sk’l;g i“'

i
and

(ii): 21=3 p (i3n)A; 2 0 for m = 0,1,...,m,
where pm(x;n) are the so-called Krawtchouk polynomials defined by

n) = § W ] k-j (%y %
puCsn) = Lo D@D () (3 (22)
form = 0,l,...,n and x ¢ R (cf. MacWilliams and Sloane (1978), Ch. 5
Theorem 6).

Combining the conditions (i) and (ii) with formula (21) we obtain a set
of inequalities for the weight distribution of a code and hence a
necessary condition on the existence of certain linear UEP codes. In

many cases we can even add more conditions on (Ai)i=g'

(3.3.5) Example: The weight distribution (Ai)i=g of a [9,5,(4,4,4,3,3)]

binary code has to satisfy

Ay = 1, A =4, =0, A, =2, A ¢ N for i =4,...,9,
Arhgthg = 15, AtAtAy = 14,

and formula (22) for m = 1,2,6,7, i.e.

AA- A5~3A6—5A7— ?A8~ 9A9 z ~15
—A&— AS +2A?+IOA8+ 9A9 2 -9
-A4- A5+2A6 - ?A8+21A9 2 ~25
~A4+ AS -ZA?+10A8— 9A9 z - 9.

It is easy to verify that this has no solution and hence a [9,5,(4,4,4,3,3)]

binary code does not exist.

(3.3.6) Theorem: For any k ¢ N, any prime power q and any nonincreasing

k
k~-vector s € N we have

nq(sl,sz,...,sk) > ]+ nq(s],sz,...,sk~l). (23)
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Proof: By deleting the column e = (0,0,....,0,1)T and the kth row of an
optimal canonical generator matrix of a linear [n=nq(sl,...,sk),k} code
over F_ with a separation vector of at least s, we obtain a generator matrix
of an [n-1,k-1] code with a separation vector of at least (81’82""’Sk-1)'

0
(3.3.7) Corollary: For any k,j € N, | £ j < k, prime power q and nonincreasing

k-vector s € Nk we have
nq(s},sz,...,sk) 2§+ nq(sl,sz,...,sk_j). (24)

(3.3.8) Corollary: For any k ¢ N, prime power q and nonincreasing k-vector

5 € Nk we have
nq(SI’SZ""’Sk) 25, + k ~ 1. (25)

For s, = 52 = e =5y Corollary (3.3.8) reduces to the Singleton Bound

(cf. MacWilliams and Sloane (i1978), Ch. I Theorem 11). By this last
corollary we see that in a Maximum-Distance-Separable Code all information

positions have the maximal protection level which is possible, i.e. kn-k+l)/gj.

(3.3.9) Example:
n2(6,6,4,&,&) > n2(6,6,4,4) + 1 = 12,

n2(6,6,4,5,&) b-: n2(6,6) + 3 =12,
Actually n2(6,6,4,&,4) = 12 (cf. Appendix A).

(3.3.10) Theorem: For k,v ¢ N and a nonincreasing k-vector s ¢ l#; such

. k
that s > s and z. s
v i=v

< nex(s) - 1 we must have
v-1 q -

i
tnex(s vees8, ) 2 n (5 =1 s -1,8 ,. s. ) + 1. (26)
q l’ !k - q 1 LA 4 v_] ’v’ "’k

Proof: Let k,v ¢ N and s ¢ N° be such that Sy-1 > 8, 2nd y k s; skn:x(gﬁ =1

and let G be a minimal weight generator matrix of an [n=n:x(§),k,§J code
over Fq . Since zi=§ s; =n -1, G has a columm containing zero elements
in the last k - v + 1 positions. Deleting this column from G we obtain
an (n~1) by k matrix G', whose separation vector satisfies s(G') 2

z (s}-l,...,s -},sv,...sk), since Sy-1 > Syr

v-1 | v 0



-}5..

(3.3.11) Example: A binary linear code with separation vector (6,4,4,3,3,3,3)
has a length of at least 13, Hence by Theorem (3.3.10), ngx(6,4,4,3,3,3,3) 2
b1 n2(5,3,3,3,3,3,3) + 1 2 14 (cf. Appendix A). '

(3.3.12) Theorem: For any k ¢ N, prime power q and any nonincreasing

k-vector s ¢ Nk we have
(sl,...,s ) 2 s, +n (st,...,s l’sl+i""sk) @27
for any i ¢ {1,...,k}, where

{§q~]>si/?J for j < i
§. := (28)

{éj/dw for j > i.

Proof: Let C be a linear [n=ﬂ:X(§),k,§J code over Fq} and let G be a
minimal weight generator matrix for C. By Lemma(2.2.2), wt(Gi*) =s;

for all 1 = 1,...,k.

Fix i ¢ {l,...,k}. Without loss of generality the first s; columns of G

. . .th
have a 1 in the 1th row. Deleting these fxrst s; columns and the it row

from G, we obtain a (k~1) by (n~s ) matrix, G Clearly G has rank (k-1),
otherwise there would be a nonzero linear combination of rows of G which
equals 0, and hence the corresponding linear combination of rows of G

would have a distance less than 5, to uGi* for some a ¢ Fq\{O}, a

-

contradiction. Hence G is a generator matrix of an [n~si,k*1] code with
a separation vector § := s(G) = (8 ""’gi—l’§i+l""’§ ).
Let j € {I,...,k}, j # i and let m ¢ Fq be such that m, = 0, m.J # 0 and

b

-

(cllcz), where c. has length Sis satisfies wt(ga) = aj. Since

g 1
s # 0, we have that

g |o

wt + 8. 2 s,. 29
() + 8, > s, | (29

Furthermore, for some a ¢ Ea'\{O} at least [;t(24)/(q"li1 components of

ac

< equal 1, and hence

wt (G, -uc) < s, - "wz:(g_])/(q-l)—} + 35, (30)

On the other hand we have that
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wt(Gi*~aE) > max {Si’sj}‘ 3n

Combining (29), (30) and (31) gives formula (28),and hence (27) holds.
0

(3.3.13) Lerma: For any k € N, prime power q and any nonincreasing k-vector
s € lik a linear [nq(g),k] code with a nonincreasing separation vector gf
such that s = Ef < s]l.exists. q] is the all-one vector of length k).
Proof: lLet G be a minimal weight generator matrix of an [n=nq(§},k] code.
If s(G)1 > s1 then replace a nonzero element in the first row of G by zero,
to obtain a matrix G' whose separation vector satisfies s(G') 2= s and

'
s(G)] 8,

. *
matrix G with s < §KG*) <

= 1. We can repeat this procedure until we obtain an k x n
= 0

Combining (3.3.12) and (3.3.13) gives the following corollary.

(3.3.14) Corollary: For any k ¢ N, prime power q and nonincreasing

k-vector s € lik, nq(g) satisfies the inequalities
nq(sl,..,,sk) 25+ nq([gzld],...,[gk!dl), (32)
B (85enes8) 2 Zin‘]‘ i;ifql" ] (33)

Proof: According to Lemma (3.3.13), n (s) = nq (s ) for some s £ 8' < SLL
and hence by Theorem (3.3.12) we have that n_(s) = nq (i ) =

' 1] ; : .
+ nq{[ngd],...,[;k/ql) 25+ nq({gzlél,...,lgk!dl}. Repeating this

gives formula (33).

¥

For s, = 52 = L, = Corollary (3.3.14) reduces to the Griesmer Bound
(cf. MacWilliams and Sloane (1978), Ch. 17 Theorem 24). Deleting the [~.1
brackets in formula (33) we obtain an analog of the Plotkin Bound

ef. MacWilliams and Sloane (1978), Ch. 2 Theorem 1) for linear UEP codes.
Lemma (3.3.13) also implies the following corollary.

{(3.3.15) Corollary: For any k ¢ N, prime power q and any nonincreasing

k-vector g € Nk we have
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nq(ﬁ) = min { u:x(g') | s <s' < sll_}. (34)

This corollary allows us to use the bounds on nzx(.) to obtain bounds on

nq(y)'

(3.3.16) Examples:

(i): What is the minimum length of a binary linear code with a separation
vector of at least (5,4,3,3,3,3)?
By Theorem (3.3.15) we have
n,(5,4,3,3,3,3) = min { ngx(i} | (5,4,3,3,3,3) <s < (5,5,5,5,5,5) }.
By (3.3.12), ngx(g) >3+ n2(4,3,2,2,2) = 12 for (5,4,3,3,3,3) < s <
2 (5,46,4,4,4,3).
By (3.3.1), ngx(ﬁ,d,d,a,é,&) 21+ n2(4,3,3,3,3,3) = 12,
By (3.3.12), ngx(g) 25+ n,(3,2,2,2,2) = 12 for (5,5,3,3,3,3) < s
< (5,5,5,5,5,5).
(For values of nz(.) see Appendix A)
Hence n2(5,4,3,3,3,3) 212, A[12,6,(5,5,4,4,4,4)] code exists, so
n,(5,4,3,3,3,3) = 12,

w
1A

(ii):What is the minimum length of a binary linear code with a separation
vector of at least (6,6,6,5,5)7
By Theorem (3.3.15) we have
n,(6,6,6,5,5) = min { n;"(s) | (6,6,6,5,5) < s s (6,6,6,6,6) .
By (3.3.10), n;x(6,6,6,5,5) 21 +1n,(5,5,5,5,5) = 14.
By (3.3.10), ngx(6,6,6,6,5) 21 +n,(5,5,5,5,5) = 14.
ngx(6,6,6,6,6) = 14 (cf. Helgert and Stinaff (1973)).
Hence n2(6,6,6,5,5) = 14,

The separation vectors of all optimal binary linear UEP codes of length

less than or equal to 15 are listed in Table A.l of Appendix A.

Notes

Katsman (1980) has shown Corollary (3.3.14) for q = 2. In many cases

a combination of Corollary (3.3.15) and the bounds on n:X(.) give better
results than Corollary (3.3.14). For instance, compare the results of
Corollary (3.3.14) for nz(S,&,3,3,3,3) and n2(6,6,6,5,5) with those
obtained in Example (3.3.16):
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1,
13,

(3.3.14): n2(5,4,3,3,3,3) 5+ n2(2,2,2,2,2)
n2(6,6,6,5,5) 2 6 + n2(3,3,3,3)

(3.3.15): n,(5,4,3,3,3,3) 2 12,
' n,(6,6,6,5,5) 2 14.

v

Another interesting fact is to observe that Theorem (3.3.12) gives better
results than the bound of Katsman (cf. Katsman (1980)), i.e, Theorem (3.3.12)

for 1 = 1 and q = 2. For example, Theorem (3.3.12) gives

ngx(6,6,3,3,3,3,3) 2 6 +1n,(3,2,2,2,2,2) = 14 for i = |
and
nsx(6,6,3,3,3,3,3) >3 +1n,(5,5,2,2,2,2) = 15 for i = 7,
A nonlinear (n,qk,g) UEP code also satisfies
k i-1
n Zi=] s;/a" . (35)

This can be proven by generalizing the proof of the Plotkin bound for

nonlinear codes (cf. MacWilliams and Sloane (|978),‘Ch. 2 Theorem 1).
The Theorems (3.3.2), (3.3.6), the binary version of (3.3.12),

the Corollaries (3.3.7), (3.3.8), and formula (35) for linear UEP codes

were already reported in van Gils (1981).
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CONSTRUCTIONS OF LINEAR UNEQUAL ERROR PROTECTION CODES

In this chapter we give some constructions of LUEP codes. In Section 4.1
we construct certain families of (length-) optimal LUEP codes and in

Section 4.2 we describe methods for combining codes to obtain LUEP codes

of larger length.

Certain families of codes

By trying to construct LUEP codes with the parameters given in Table A.l
(cf. Appendix A), that are binary optimal LUEP codes of small length,

the following classes of binary codes came up ( the empty entries should

be read as zeros).

(4.1.1) Construction: For k ¢ N,

k+

11....1111 ' B
111111 (36)

} | |
is a generator matrix of an optimal binary [k+10,3,(k+6,6,4)] code.

Proof: It is easy to check that the code has separation vector (k+6,6,4).
Furthermore by formula (32) and Table A.l we have nz(k+6,6,4) > k+6+n2(3,2)
= k+10 and n2(§) > k+10 for s 2 (k+6,6,4), s # (k+6,6,4) (by s 2t we

mean, as before, s 2 ti for all 1i).

O
(4.1.2) Construction: For k ¢ N,
-k,
11....111H11111 .
1111 1111 (37)

] 1 1 1

is a generator matrix of an optimal binary [k+13,3,(k+8,8,4)] code.
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Proof: It is easy to check that the code has separation vector (k+8,8,4),
Furthermore by formula (32) and Table A.! we have nz(k+8,8,4) > k+8+n2(4,2)
= k+13 and nz(i) > k+13 for s 2 (k+8,8,4), s # (k+8,8,4).

(4.1.3) Construction: For k ¢ N,

K _, ,
Fleoa o BRTTLY 11
11 111 (38)
It 1111 11
is a generator matrix of an optimal binary [k+14,3, (k+8,8,8)] code.
Proof: It is easy to check the parameters of the code. Furthermore by
formula (32) and Table A.] we have nz(k+8,8,8) 2 k+8+n2(4,4) = k+14 and
nz(g) > k+14 for s 2 (k+8,8,8), s # (k+8,8,8).

(4.1.4) Construction: For n,k ¢ N, n 2 k+1, the k by n matrix

It....1

(39)

— A e b e

is a generator matrix of an optimal binary [n,k,(n-k+1,2,2,....,2)] code.

Proof: It is easy to check that the parameters of the code are correct.
Furthermore by formula (32) we have that the length of a k-dimensional
binary code with separation vector (n~k+l,2,2,....,2) is at least n,
and with a separation vector larger than (n-k+!1,2,2,....,2) is at least

n+] (by s > t wemean s 2 t and s # t).
(4.1.5) Construction: For n,k ¢ W, n > 2k+!, the k by n matrix

[ I N i

(40)

is a generator matrix of an binary optimal [n,k, (n-k,4,4,....,4)] code.
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Proof: It is easy to check that the parameters of the code are correct.
By formula (32) we have that the length of a k-dimensional binary code
with separation vector (n-k,4,4,....,4) is at least n, and with a

separation vector larger than (n~k,4,4,....,4) is at least n+l. ..

f1
(4.1.6) Construction: for k ¢ N,
[1l.....1]
1
Tt | Te=r | 41

is a generator matrix of an optimal binary [2k-1,k,(k-1,3,3,....,3)] code.

Proof: It is easy to verify that the parameters of the code are correct.

By formula (32) we have that the length of a k~dimensional binary code with
separation vector (k~1,3,3,....,3) is at least 2k~-1.

Applying formula (32) for a k-vector s such that 8 2 k and s: 2 3 for
i=2,...,k shows that nz(f) z 2k.

Applying Theorem (3.3.12) and formula (32) for a k-vector s such that

= k~1, 5, 2 4, s; >3 fori=3,...,k=1, and 8 = 3 shows that

8 7 2

1

ex
n, (s) 23+ nz(sl—l,....,sk_l*l}

3+ s,=1 + n,([(s,-1/2]s.0, (s, =1D/2])

34 k-2 #+ n2(2,l,1,....,1)
k-2

3 + k-2 + k"l = Zk'

v

v

v

Furthermore it is easy to check that a binary [2k-1,k,(k-1,4,4,....,4)]
code does not exist.

Finally, the length of a k~dimensional binary code with a separation vector
of at least (k-1,5,4,....,4) is at least 2k.

These observations show that the code in (4.1.6) is optimal, -
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(4.1.7) Construction: For k ¢ IN,

ot | —
-
—
—
—
——
-
»
-

— S wd

Log=2 TN (42)

is a generator matrix of a binary [4k,2k,(k+2,k+2,4,4,....,4)] code.

For k = 2,3 the codes in (4.1.7) are optimal (cf. Table A.1), but in general

they are not.

(4.1.8) Construction: For k ¢ N,k 2 3,

111....1]111....1; ! i}
1l eaal 111....]

i 1
4 I . | 1 ! (43)

is a generator matrix of a length-optimal binary [4k+1,k+2,(2k,2k,5,5,....,5)]

code.

Proof: It is easy to check that the code has the given parameters.
By formula (33) the length of a code with dimension k+2 and separation

vector (2k,2k,5,5,....,53) is at least 4k+l.

{1
{4,1.9) Construction: For k,m ¢ I,
3 k-1
D! 11....1 ll.‘i
11 ] Pl...1 1.1
1 1
o
: : m
1 1
Ik+m : : 1 (44)
- L] k-
1 1
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is a generator matrix of an optimal binary [3k+2m+3,k+m+2, (k+m+2,2k+2,4,4,..,4)]

code.

Proof: It is easy to verify that the code has the given parameters.
Furthermore by formula (33) we have that the length of a (k+m+2)~dimensional
binary code with separation vector (k+m+2,2k+2,4,4,..,4) is at least
3k+2m+3, and with a separation vector larger than (k+m+2,2k+2,4,4,..,4)

is at least 3k+2m+4,

]

Combining codes

In this section we consider constructions which combine (LUEP) codes to
obtain LUEP codes of larger length, such as the direct sum and direct
product construction, the [u|u+v| construction, and concatenation.
(4.2.1) Construction: For k,m,n € W, and a nonincreasing k-vector s ¢ ]Nk
such that S < n/2 let G] be an optimal generator matrix of a binary
[n,k,g} code Cl, and for i = O,I,...,Zm-l let Ai be an m by n matrix
whose columns are all equal to the binary representation of i, i.e.

_m (A.) zu-l = i for all v = 1,...,n. Then the (m+k) by n2™ matrix
u=} 17uv

(45)

is a generator matrix of a binary [n2m,m+k,(n2m“{L|2?§)] code C,.

If Cl is optimal, so is CZ' \

Proof: It is easy to check that the parameters of the code 02 are correct.
Suppose that Cl is optimal. Then by formula (32) the length of a (k+m)~
dimensional binary code with separation vector (n2m~152?§) is at least
n(zm—])+n2(s],...,sk) = n2” and with a separation vector larger than

(n2m-1|2?§) is at least n2™+1, , N

(4.2.2) Examples:

(i): If in (4.2.1) we take m = 1 and for Gla generator matrix of a binary

[2t—l,2t%twl,(3,3,....,3)] Hamming code, then 82 is a generator matrix



— Dy

of an optimal [2t+1—2,2t—t,(2t-1,6,6,....,6)] binary code.

(ii): If in (4.2.1) we take m = | and for Gl an optimal generator matrix of
an optimal binary [7,5,(3,2,2,2,2)] code, then we obtain an optimal
[14,6,(7,6,4,4,4,4)] code.

(i),

(4.2.3) The direct sum construction: If for i = 1,2, Ci is an [ni’ki’§
linear code, then the direct sum { (c ]c ) | c € Ci» &y € C2 } is an

[nl+n k +k2,(s(l)ls(2)}3 linear code.

(4.2.4) The §u[u+v| construction: If for i = 1,2, Ci is an [n,ki,gﬁl)} linear

code with an optimal generator matris Gi’ then

! (46)

is a generator matrix of a [2n,kl+k ,s1 code C, where

2

(1) M@y g,

s 2 min { 2s; > max {s;77, K, =105k
and (47)
(2) -
Sk]+i > si for 1 = 1,...,k2

(s is not necessarily nonincreasing in this case).

Proof: For E(I) € qu N 2(2) € qu , m = (2(})12(2)) we have for i = I,...,k{
that

wt(@e) = 251" if mil) 40, 2? <o,

wt (mG) 2 max { sgl) , 3(2) }ooif mgl) # 0, m(z) # 0,

) h 1 k2 i — -

and for j = l,...,k2 that

Wt (mG) 2 sj(z) ir o <o, m§2) 40,

wt{mG) 2 max { sgz) . s£1> }oif gil) # 0, m;z) # 0.

]

This proves formula (47).
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(4.2.5) Example: If in (4.2.5) CI is the binary [13,12] even-weight code
and 02 is a binary [13,6,(5,5,5,5,4,4)] code, then gﬁc)i 24 fori=1,...,12
and 1 = 17,18, andg_(G)i 25 for 1 = 13,14,15,16. Now C is a [26,18,(5,5,5,5,4,..

«+3s4,4)] code. The length of an 18~dimensional binary code with a separation

vector of at least (5,3,5,5,4,4,....,4) is at least 25 (by Corollary (3.3.14)).

. {(4.2.8) Construction: If for i = 1,2, Xi is a ki X n‘*matrix over E}

and (gjx), where u is a k -vector, is the separation vector of the matrix

I
(XT[Xi)T, and Y is a k‘ X n -matrix over Hzl with separation vector w, then

2
X] Y
(48)
Xy
(1), (2)
is a generator matrix of an [n +n2,k +k2,(s }g’ )] code, where
‘g(l) >u+w and 3(2) 2 v. k (49)
Proof: Trivial.
0

(4.2.7) Example: If G] is a 5 x 12 binary matrix such that‘E(Gi) = (5,5,5,5,4)
and G2 is a 2 x 3 binary matrix such that gﬁGZ) = (2,2), then

is a generator matrix of a length-optimal (cf. Table A.1) binary
{15,5,(7,7,5,5,4) ] code.

(4.2.8) The direct product comstruction: By taking the direct product
(cf. MacWilliams and Sloane (1978), Ch. 18 Section 2) of an En],k],s ]

code and an % 2,3 2)] code, both over the same field, we obtain an
(1

{h]nz,k kz,s (Z)Z}COde, where gR denotes the Kronecker product

over R. This is shown by the following two theorems.

(4.2.9) Theorem: For the matrices A and B over a common finite field F
the separation vector of the Kronecker product of A and B, A QF B, equals

the Kronecker product of the separation vecteors of A and B, i.e.
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s(A® B) = s(4) ®m s(B). (50)

F
Proof: Let A be a kl by n1
(i,j) € {1,...,k1} x {],...kz}. For any kI
Mij # 0 we have wt((MB)i*) = s(B)j, and hence

matrix and let B be a kz by n, matrix. Let
by kz matrix M over ¥ such that

n

Tom)| WECATMB) ) 2 5(8) () .

k k
For m, ¢ E‘I » Iy € F 2 such that m, # 0, m, # 0 and wt(m A) = s(A)

-]
wt(m B) = s(B) we have that (me % 0 and

2)
n

Zuzli wt((A?El?EQB)u*) = S(A>is(B)j'

From these observations it follows that s(A @I,B) = s(A) ngiﬁB).
- O
(4.2.10) Theorem: For generator matrices A and B over a common finite field ¥,
A® B is an optimal generator matrix for its rowspace if and only if A and

¥
B are both optimal generator matrices for their rowspaces.

EEEE£= Suppose A and B are optimal generator matrices for their rowspaces.
Let A and g be minimal weight generator matrices for the rowspaces of A and
B. Hence gﬁA) = B(A) = (wt(A;*),....,wt(Ak )) and s(B) = s(B) =

s(B) = s(B) = (Wt(Bl*)"""Wt(BkZ*)) Fur&hermore we have that

k. k

172 N - kl ~ k2 -
Zm wt((A @, B), ) = (ZM Wt(Ai*>)(Zi=1 wE(B, ).

-~

From this it follows that A ®E‘B is a minimal weight generator matrix for
its rowspace and so by Theorem (2.2.4) it is optimal. Since s(A QF B) =
=s(A® B), AeF

Oun the other hand suppose that A is not optimal. Then for an optimal

B is also optimal for its rowspace.

generator matrix A' of the rowspace of A we have that s(A') 2 s(A) and
s(A') # s(A). This implies that s(A' @ B) 2 s(A ®_ B) and
s(A'® _ B) # s(A®_B), i.e. A®_ B is not optimal for its rowspace.

(4. 2 11) Concatenation: Let C be an [N,X, S~(SI,...,S )] linear code over

GF(q } with an optimal generator matrix G and let D be an [n,k,d] linear
code over GF(q) with generator matrix GD.

The encoding procedure of the concatenation of these codes is as follows.
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LR I S N ]

(1 (1)}

Let m = (m soe ey [m?K),...,méK)) be a Kk~tuple over GF(q).

This Kk-tuple is equivalent with a K-tuple M = (M(}),..... (K )) over

GF(q )}, which is encoded into (A( ) .......T;, (N)) (M(l),....., (K))G
Now we regard A( D as a k-tuple (a§ ),...,aé )) over GF(q) and encode it
into (cgl),..‘..,céi)) = (agi),..., il))G (i=1,...,N).

If m is a q-ary Kk-tuple such that (J) # 0, then M, # 0 and hence
A= gpc satisfies wt(A) 2 Sj’ which in turn implies ihat wt(c) 2 de.

Hence we have shown the following theorem.

(4.2.12) Theorem. The concatenation of an [N,K,5= (SI""’S )] outer code
over GF(q ) and an [n,k,d] inner code over GF(q) is an [Nn,Kk,s] 11near

code over GF(g), where

S(j~1)k+i > de (51)

for i = l,...,kand j = 1,...,K.

(4.2.13) Examples: Let o be a primitive element of GF(4) and D be the
binary [3,2,2] even-weight code.
(i): For the optimal [7,3,(5,4,4)] code C over GF(4) with generator matrix

.

the concatenated code of € and D is a [21,6,(10,10,8,8,8,8)] binary
code. The maximal minimum distance of a binary [21,6] code equals 8

(cf. Helgert and Stinaff (1973)).
(ii): For the optimal [8,4,(5,4,4,4)] code C over GF(4) with generator matrix

0 g 1 1 1 1 1

1 0 0 1 o az 0 0
1 01 a O a2 0
¢ 1t 1 a 0 € uz

the concatenated code of € and D is a {24,8,(10,10,8,8,8,8,8,8)]

binary code.
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(4.2.14) Theorem: For k,K,n,N,d ¢ N, N 2 2k 4+ | the concatenation of the

[N,2,(n~1,2k)} outer code over GF(Zk) with generator matrix

k (52)

where & is a primitive element of GF(ZR), and an [n,k,d] inner code over

GF(2) gives an [Nn,2k,s] binary code, where

s 2z (N-1)d for i 1,000 ,k,
and (53)

s, 2 de for i = k+l,...,2k.

1

i

If n = (Zk—l)d/Zk_] (i.e. equality in the Plotkin Bound), then equality

holds in (53) and the concatenated code is optimal.

Proof: We find formula (53) by applying Theorem (4.2.12). By Corollary
(3.3.14) a 2k-dimensional binary code with a separation vector of at least s,
where s, = {(N-1)d for i = §,...,k and s; = Ekd for i = k+1,...,2k, has

a length of at least
I e T(N-Ud/?ﬂ s 1) (’;1/21—1 > Na(2-1) /257", (54)

If n= (Zk--l)d/Zk-l then equality must hold in formula (54) and hence in (53).

This also shows that the concatenated code is optimal.

(4.2.15) Example: Take the [11,2,(10,8)] code over GF(8) as the outer code
and the [7,3,4] simplex code over GF(2) as the inner code to obtain an
optimal [77,6,(40,40,40,32,32,32)] binary code. In general all concatenated
codes constructed in Theorem (4.2.14) with the inner code being a simplex
code are optimal LUEP codes, because simplex codes satisfy the Plotkin

Bound with equality.
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4.3 Notes

The Theorems (4.2.9) and (4.2.10) are from Dunning and Robbins (1978).
Other methods for combining codes can be found in Zinov'ev and Zyablov (1979),

and Boyarinov and Katsman (1981).
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5. CYCLIC UNEQUAL ERROR PROTECTION CODES

In this chapter we consider cyclic UEP codes and try to find the separation
vector of these codes. In Section 5.1 we give an optimal generator matrix

for a cyclic UEP code and we show how the separation vector can be determined
from the weight distributions of the cyclic subeodes. Section 5.2 shows that
certain classes of cyclic UEP codes can easily be decoded by using

Majority Logic Decoding Methods.

.1 The separation vector of a cyclic UEP code

A cyclic [n,k] code over Fq is the direct sum of the minimal ideals in

Fq [x]/(xn—l) contained in it (cf. MacWilliams and Sloane (1978}, Ch. 7 and 8).

{(5.1.1) Theorem: For a cyclic code C which is the direct sum of the minimal

ideals with generator matrices resp. Ml’Mz”"’Mv’

(55)

is an optimal generator matrix.

Proof: For p ¢ WI({C)Y, <C{p)> 1is a cyclic code. Hence <C{p)> is the sum of
a number of minimal ideals of Fq [x]!(xn-I). By applying Theorem (2.1.3)

we get the theorem.

O

The following corollaries are immediate consequences of Lemma (2.1.2) and

the above proof.

(5.1.2) Corollary: For a minimal ideal in Iﬁ [x1/(x"=1) all components

of the separation vector are mutually equal.
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(5.1.3) Corollary: For a cyclic code C with an optimal generator matrix G
defined by formula (55) the ith and jth component of the separation vector
s = 5(G) are equal if the lth and jth row of G are in the same minimal

ideal ofin[x]/(x -1).

If the generator polynomial of a cyclic code C has minimal weight, i.e.

its weight equals the minimum distance d of the code, then all components

of the separation vector are mutually equal, because C = <C{(d)> (cf. Theorem
(2.1.3)). If this is not the case, we can compute the separation vector

of a cyclic code by comparing the weight distributions of its cyclic

subcodes.

(5.1.4) Theorem: For i = 1,2 let W be a minimal ideal in F_[x]/(x" -1)
with minimum distance d and welght distribution (A( )) g such that

# M and d

2, 1et (AJ) " be the weight d1str1but10n of thelr direct sum

M ® M . Then the components of the separation vector of M} & Y are all

e;ual io the minimum distance d of Mi @ M if d < d2 or if d = j and
éZ) < Ad’ they take two different values if d = d2 and A(2)< d’
namely d, and min {5 A(z) < Aj k.

Proof: If d < d2 or if d = d2 and Aéz) < Ad then a sum of an element in
Mi\{O} and one in Mz\{g} exists such that its weight equals d. For d = d,
and Aé ) . Ad’ if A§2) < Aj then a sum of an element in Ml\{Q} and one
in # \{O} exists such that its weight equals j; if A( ) - Aj it does not.
Comblnlng these observations with Theorem (5.1.1) and Corollary (5.1.3)
proves the theorem. 0

{(5.1.5) Examples:

(i): Let a ¢ GF(210) be a primitive 33rd root of unity and let C be
the binary cylic [33,23] code with nonzeros { ai |ie €, ,uC, uCquc, }s
where C denotes the cyclotomic coset modulo 33 over GF(2) contalnlng i.
Let Ml denote the minimal ideal in F, [x1/(x 3-!) havxng nonzeros
{al ]| je C, }. Then C = ¥ e emfam3 and G := [M !M IM ]M]
is an optlmal generator matrix of C, where Mi denoces_a génerator
matrix of Mi (i =0,1,3,11). s = s(G).
Table 5.1 provides the minimum distances of all cyclic subcodes of C

(taken from Peterson and Weldon (1972), Appendix D).
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nonzeros | min. nonzeros | min.
013 11| dist.| O 1 3 11 dist.
X 33 X X 10
X 12 X X
X 6 X X X
b 22 XX X 10
X X I X XX
X X 3 X X X 6
X X Tl X X X X 3
X X 6
Table 5.1: The minimum distances of the

cyclic subcodes of C,

The code C has minimum distance 3 and C and Mb$M3 both contain
11 codewords of weight 3. Combining this with Theorem (5.1.4) and
Table 5.1 we find that Si3 = 8y, T eeen 23

C contains no codewords of weight 4 and 165 codewords of weight 5.

=8 = 3 and S 38yseceesS 5 > 3.

From Table 5.1 we see that the codewords of weight 5 in C can only
1 i o p Y : H ;!
occur in the cyclic subcodes (1): 109M3, (2) MOGMIOM , (3) Mb$M3® 1’

and (4): MO®M16M3®M1]. However, (1),(2), and (3) contain no codewords

of weight 5, as one can easily check. Hence a codeword ¢ in C of
weight 5 is the sum ¢ = £0+£1+E3+£1] of nonzero elements c; € Mi
(1 = 0,1,3,11). This shows that S = 8, T.e.es. =8, 5 (by
Corollary (5.1.3) and Theorem (5.1.4)).
So the code C provides a protection level 2 to twelve message positions
and a protection level ! to the remaining eleven positions.

(i1): Let o € GF(212) be a primitive 35th root of unity and let C be the
binary cyclic [35,22] code with nonzeros { ai | i€ € uC,uC,uC ¢ }.
Then C = M_&/ oM &Y

577771715
matrix of C. s = s(G). The minimum distances of the cyclic subcodes

and G := EME‘M?IMT|MT5]T is an optimal generator

of C are listed in Table 5.2 (cf. Peterson and Weldon (1972), Appendix D).

The cyclic subcodes M],M and Mleﬂ have minimum distances resp.

15 15 |
8,20, and 4. Hence by Theorem (5.1.4) we have that 88 = 39 = ,,, = 522 = 4,
The number of codewords of weight 4 in C resp. H’QMIS both equal 35
gsteesSy 2 6. The minimum

equals 6, hence S, = Sg = Sg = 8, = 6.

and all weights in C are even, hence S8

distance of M]®M7



~33-

nonzeros | min. nonzeros | min.
57 15 |dist.| 157 15 | dist.
X 8 X X 10
X 20 X X 14
% i4 X X X 6
X 20 XX X 4
X X X XX 4
X X X XX 10
e X 4 X X X X 4
X X 14

Table 5.2: The minimum distances of the

cyclic subcodes of C.

The number of codewords of weight 6 in M1&376M equals 490, while

15

C contains 595 codewords of weight 6, hence S, =8, =8;3= 6.
So seven components of the separation vector of C equal 6, fifteen

of them equal 4.

5.2 Majority Logic Decoding of cyclic UEP codes

In this section we discuss certain classes of cyclic UEP codes which can

be decoded by Majority Logic Decoding. It is easy to implement this method

and it is very useful whenever the number of orthofonal checks on a message
digit equals (or is not much less than) the separation component corresponding
to that message position. We restrict ourselves to binary codes.

Fix n ¢ N, n odd, and let T T € N be such that T, < T <n and T |T]n.

0
Let P (x}), i = 0,1,...,w be 1rreduc1ble polynomials in E‘ [x] such that

po(x) has exponent T (i.e. the minimal j such that po(x)]x +1) and

(x"+1) *7_['1) (x).
i=0
Let v £ w be such that none of the polynomials pi(x), i=1,2,...,v-1 has
an exponent which divides T and let C be the code with check polynomial
v~1

hix) = J{ p; (x).
i=0
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Then by Theorem (5.1.1) G := (M§|MT| ..... IMS_I)T, where for i = 0,1,...,v~1

the rows of Mi are the cyclic shifts of (xn+l)/pi(x), is an optimal

generator matrix for C.

Let ki denote the degree of pi(x) for i = 0,1,...,v-1. The [n,ko] cyclic

subcode with check polynomial po(x) consi%gs of n/T0 repetitions of the

[TO,kO] code with generator polynomial (x +1)/p0(x). Let this [To,koj

code have an orthogonal check set of size § on any code position (cf.

Cameron andvan Lint (1980), Ch. 11). For ko = | one has that T0 = ] and

§ = 0. Then the following theorem provides a lower bound on the kO

separation components corresponding to MO in terms of T,TO, and §

(5.2.1) Theorem: The first ko components of the separation vector of the

code defined above are larger than or equal to T(5+1)/T0.

EEQEE With a message m = (mo,m seee st _ ]) € Fk resp. a codeword .
(co,c],..... - ]) € Eé we associate the polynomlals m(x) := z 0 m, X"

resp. c(x) := z i=0 i xl. By C ;{a(x)} we denote the coefficient of

xl mod n in the polynomlal q(x) mod (x +1).

Note the following:
(i): For j € {0,1,...,T~1} and q(x) € F2 [x]/(x"+1) we have that

p/m-! (@G0} = ¢ {6 Da@/ &), €

J+ iT X

(ii): For i = 1,2,...,v-]1 and u,j ¢ N we have that

© Souy LMD/ G+ (D 7p, ) = 0, s

since pi(x)(xT+l)|(xn+l).

Pii A To~!, i To je{0,1 T -1} and
(iii): For A(x) = Zi=0 (X0t (x +l)/p0(x), je sl Ty an
u € {O,l,...,(T/TO)—I} we have that

© fruzgl (67 +D/ D) (D /g (0D = Ay s

since n/T is odd.

Combining (i),(ii), and (iii) with the fact that AT kab] T e = A

we get for j = O,l,...,TO—l and u = 0,1,...,(T/T0)—l that

6)

7)

8)
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z(n/T)-l
1=0 1T+uTG+j
E(D/T)"l {Z kS xt( n+1)/ )1
(LTHUT i Es=0 Le=0 mk it X Pg
= (n/T)~1
Zs==0 Z t=0 mk oyt zl_g ¢ AT+uT *J{X (x *i)/p (x)}

k -1

10 C g /G (™D 1y ()

Etgg‘ e C jprar, (O 1)/ (&1 410) (1) oy G0 )

i

i k! j
zt=0 mtkj~t * t=j+1 mc}‘j~t+T0 t=0 tkj-t

[}

where‘k_I := 0,

Hence we have that

ZGVT)I

]
i=0 1T+uTO+J Zt=0 ktmj-t (59

holds for j = O,I,...,TO*I and u = O,l,...,(T/TG)~I.

For j € {O,I,...,To-l} the [TO,kOJ code, A, with generator polynomial A(x)
has an orthogonal check set of size 6 on position j. Unlike the usual
(), () ¢

definition we define these checks to be subsets a 2 """AS

{0,1,...,T O-l} which satisfy the following three conditions.

a3 0 a3 oy gor v 4s, C(60)
NERED |
v A e {o0,1,...,T ~1N{]}, (61)
r 0
r=1
y; = EpeA(j) Y, for all y € A and all r ¢ {1,...,8}. . (62)
r

()

We define the weight of a check A (J).

as the number of elements in Ar
In an analog way as we have shown formula (59), we can show that the

equality
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X(n/T) 1 Z L CiT+uT0+p = ;0 L. (63)
r

holds for j = 0,1,...,T0—1, u = 0,1,...,(T/T0)—1, and v = 1,...,8, by

combining the formulas (56),(57),(5%9), and (62).

 Because A?j),....,Aéj) satisfy (60) and §6l), formulas (59) and (63)

provide T(G+1)!T orthogonal checks on Zi=0 A m

tj-t’
The k0 linear functions Z by m -t j = O,l,...,ko-l are linearly
independent, since XO = 1. Hence the ko message positions corresponding
to MO have a separation component of at least T(6+1)/T0.
O
3
(5.2.2) Example: n = 63, T = 21, TO =7, po(x) = X +x+}.
6
hix}) := JC p: (%),
; i
i=0
. . , 63 .
where pi(x), i=1l,...,6 are the six irreducible factors of x ~+} with
exponents equal to 63. We have that A(x) = l+x+x2+x4, which is the generator

polynomial of a [7,3] code with three orthogonal checks {1,5}, {2,3}, and
{4,6} on code position 0. By Theorem (5.2.1) the [63,39] code with check
polynomial h(x) has a separation vector with three components larger than
or equal to 12. This code has minimum distance 4. A [63,39] BCH code has

minimum distance 9.

Now consider two irreducible polynomials p(x) and q(x) in'szx]/(xn+l)

with degrees resp. kp and kq and exponents resp. Tp and Tq such that

Tp and Tq are relatively prime. Let Cp and Cq be resp. [Tp,kp] and [Tq,kqj
codes with check polynomials resp. p(x) and q{x). Furthermore let Cp

have an orthogonal check set of size dp on any code position such that

any check has the same even weight, i.e. any code symbol equals the sum

of 2w other ones for some fixed integer w.

Define C to be the binary cyclic [T Tq sk_+k ] code with check polynomxal
p{x)q(x) and ol the binary cyclic ETqu kp+kq+l] code with check polynomial
(x+1)p(x)q(x). The following theorem provides a lower bound on the separation

vector s and Ef of resp. € and c* if their encoding is defined by the

generator matrices resp. G = (MEIME)T and G~ = (Mgiﬁszg)T, where Mp’Hq’
and MO are generator matrices of the minimal ideals in'Fz[x]/(xn+l)

with check polynomials resp. p{x),q(x), and (x+1).
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>(5.2.3) Theorem:

(i):

(ii):

Proof:

(i):

The separation vector s of the code C defined above satisfies

s. 2T 8 + 1 if C 1is an even-weight code,

1 qp q

(64)

s, 2T § otherwise,

1 q9p
for i = l,...,kp.
The separation vector Ef of the code C” defined above satisfies
s 2T § (65)

Without loss of generality we consider the first message digit my-
Let Gp and Gq 1= EXJJXQI"’lZT ]be systematic generator matrices of

C_ resp. C_. Without loss of generality the first column of Gp equals
gy = (1,0,0,...,0)?.
Since C_ has an orthogonal check set of size 5p on any code position

such that any check has the same even weight, say 2w, we have 2w§

P
mutuwally different columns gél),agz),...,gizw), i o= 1,...,5p of
G such that
P
(1 . @) (2w) | |
a; T va 4 a =g (66)
for 1 = 1,...,6p. The matrix
G G | e i .- G
e l P P
G := o (67)
G [G !G l'““"“’“‘"*“““’ G '
q q q q

is an optimal generator matrix of C. Because g.c.d.(T_,T ) = 1,

. [x P 4
any pair v swhere x and y are columns of resp. Gp and Gq, occurs
exactly once as a column of G. By combining this fact with formula
(66), we get that for any i ¢ {l,...,ép} and any j ¢ {l,...Tq}
the equality



(ii):

Y B

a; + 15 S S = | = |Zo (68)
. . 0
holds.

Formula (68) implies qup orthogonal checks on the message digit -

If Cq is an even-weight code,

my = ¢yt e, * Cop Foeceeean t C(T -D)T
P q P

is an additional check for m

o> Orthogonal to the Tqﬁp previous ones.

Immediate consequence of (i).

If in addition Cq also has an orthogonal check set of size Gq on any

code position such that any check has the same even weight, then we have

the following lower bound for s.

(5.2.4) Theorem:

(i):

(ii}):

T
If wt((x q'*Pl)/q(x)) is even and Tqép + 1z TP(Bq + 1), then the
separation vector s of the [Tqu,kp*kq] code with check polynomial

p(x)q(x) satisfies

s. 2T & +1 for i = t,...,k_,
1 qp P
(69)

L}

5. 2T (8§ + 1) for i = k +1,...k +k _.
1 P g P P 4

T
If wt({x q+1)/q(x)) is odd and Tqép 2 Tp(éq + 1}, then the
separation vector s of the [T T ,kp+kq] code with check polynomial

p(x)q{x) satisfies

i Tqép for i = I,...,kp,

w
[\

(70)

w0
[\

T (8§ + 1 f i =k +!,...,k +k .
p(q ) or 1 p " 7p g



Proof:
(i): For i = i,...,kp formula (69) was shown in Theorem (5.2.3).
Without loss of generality we consider the message digit m -
P

For j = 0,1,...,Tp—1, m equals
P

= P
N L0 "%, i1, 7n

where G is the matrix of (67). If an error of weight less than or
-1/ "

equal to L(Tp(6q+l) })/ZJ occurs, then the message digits mo,...,mkp_1

are correctly decodable, since qup + 1 2 Tp({Sq + 1). If we fill

in these values of Myyeoosl 1N formula (71), then the Tp(éq + 1)

checks on m obtained from the formulas (68) and (71) are mutually

P
orthogonal. Hence Si 4] z Tp(dq + 1).

(ii): Analoguos to (i).

o
(5.2.5) Example: Take p(x) := x3+x+1, q{x) := x4+x3+x2%x+l. Tp =7, Tq = 5,
The [7,3] code CpAwith check polynomial p(x) has an orthogonal check set
of size 6p = 3 on any code position, where all checks have weight 2 (for
example, for the O-position we have the checks {1,5}, {2,3}, and {4,6}).
The CS,&J code Cq with check polynomial q(x) has an orthogonal check set
of size éq = ] on any code position, where the check has weight 4 (for
example, for the O-position we have the check {1,2,3,4}). By Theorem (5.2.4)
the [ 35,7] code C with check polynomial p(x)q(x) has a separation vector
s which satisfies s 2 (16,16,16,14,14,14,14),

pabcdefpghifjkpelbkmnpjchnaopmnlogd
I

1 T I R O 0 150 10 S T O O I
[ it 1 il 1
11 1 l | 111
1l 11 11
1 1

1 1

1
] i
11 1
1
1

i

1111

[
1

— ] - S

vy SR

1
] I
1 bl 1 11 i 1
11 11 I 11 11 11
1 11 Il i1 11 I Ii

ABCD EFAB DGEF BCDG FABC GEFA CDGE

Fig. 5.1: Generator matrix of the [ 35,7]code

with check polyﬁomial (x3+x+1)(x4+x3+x2+x+l).



Fig. 5.1 shows an optimal generator matrix for C, together with the checks on

my and m. The message bit me

-4

is equal to the following sixteen orthogonal

checks.
at ¢y + 9 £: c6 + c ke c]3 + ¢i8
b: cz + cl7 g C8 + c33 : cl6 + c31
et ey ¥ ocyg h: ey + ¢y, m: g * Cyg (72)
d: c4 + c34 1: CIO + c30 n: CZO c25
gt €5 T Cyg I ey ¥ Gy 0t Ly T Cqp
P Co T ey ey T S

The message bit my is equal to the following fourteen

"orthogonal" checks.

Az ¢y + cg *Cyy + Crg ¢ + my,
B: ¢, + g + 16 + o3 c + m,
C:oeg *epp ¥ eyt cy Clp*m tm
Poe, *Cppteyg ey, Cig *my *+m (73)
Br cg v o3ty tey, 20 * ™
F: <, + Ci4 + o + Cog Cos + my + m,
Gt e " Cjg * Sy * C33 €30 * B * @ * oy

Actually the separation vector of C equals (16,16,16,14,14,14,14), as one

can easily check.

The [35,81 code c* with check polynomial (x+1)p(x)q(x) has a separation
vector equal to (15,15,15,7,7,7,7,7). For Cf a,b,....,0 are fifteen orthogonal

. For the message

checks on 53 A,B,....,G are seven orthogonal checks on m3

bit m, we have the following seven checks.

c

C

o0 7 14 © “21 28 7 Mo

€p T g TCs Ty eyt tm

c2 + c9 + c16 + c23 + 630 + mO + m] + m2

€3 T et eyt teytm tm (74)
€ Teypteg Tttty v

€5 T Cyp T Cyg G T 33t M

€6 T Cy3 T S0 T Ca7 F 34 * My
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We can extend Theorem (5.2.3) to codes with a check polynomial which is a

product of more than two irreducible polynomials in Iéi:x].

(5.2.6) Theorem: For i = 1,...,v let pi(x) be an irreducible polynomial in
Eé [x] of degree ki and exponent Ti such that g.c.d.(Ti,Tj) = | for all
i,js 1 # 3 , and let the [Ti’ki] binary ccde with check polynomial pi(x)

have an orthogonal check set of size Gi such that all checks have the same
v

.even weight. Then»she code C of length n =TT T, and dimension zi‘Y k; with
' i=1
check polynomial jTg pi(x) has a separation vector s which satisfies
l:-"
F > nSi!Ti (75)

-

. . i-1
for i = 1,...,v and j = (2u=] ku)*}""“’xizl ku'

Proof: Analogbus to Theorem (5.2.3).
0
In many cases we can do much better than formula (75) by adding other checks,
e.g. checks like the ones in formula (71). This will be shown in the next

example.

(5.2.7) Example: Take p(x) := x3+x+1, q(x) :=Vx2+x+!, r(x) = x4+x3+x2+x+l.

T =7, T =3, T =5. |

P q r

Let C be the [105,9] code with check polynomial p(x)q(x)r(x). C has an
optimal generator matrix G := (M:lME{Mz)T, where HP’Mq’ and Mr are repetitions

of resp.
1110100 [110 11000
P ={0111010] , Q = [011] , R = |01100] .
0011101 00110
(00011

The [7,3] code with generator matrix P has three orthogonal checks {1,5},
{2,3}, and {4,6} of weight 2 on code position 0. The [3,2] code with
generator matrix Q has one check {1,2} of weight 2 on code position O.
The [5,4] code with generator matrix R has one check {1,2,3,4} of weight &
on code position O, Hence § = 3,8 =1, and §_ = 1.

T T T.T 4 r
Any vector (x ,y »z ) , where x,y, and z are columns of resp. P,Q, and R,

occurs exactly once as a column of G. Now for any i ¢ {l,..,Tq} and



em

and j € {1,...,Tr} we have

' [
P*i P*S P*Z P*B P*é P*6 é
Q*i + Q*i = Q*i + Q*i = Q*i + Q*i = c (76)
R*j R*j R*j R*j R*j R*j 0

This implies TqTrSp = 45 orthogonal checks on m,. These checks do not contain
the fifteen code digits { Cj | 3 =0 mod 7}, which correspond to the columns
of G given in Fig. 5.2.

€ w N €~ column numbers

LB AR
[ BEN gt - B co S B N

AN S S T N T U TN N N D U B O

~r O

—~
™~ O o~

(=]
~F

» 5 & 2 * ¢ 9 e @ 0 . L

.

From now on points (.) in

matrices should be read

as zeros (0).

Fig. 5.2: Columns G*j of G where j 2 0 mod 7.
From Fig. 5.2 it is easy to see that

a: CO + c2] + c42 + c49 + c

98
br ey Fcy, gty
Cs: C + C

91
28 T G35 Y Cgp * Cyp * gy

+ ¢ (77)

+c

are three additional orthogonal checks on My which are orthogonal to the
45 checks implied by formula (76). Hence we have 48 orthogonal checks on L
Analogously we can find 48 orthogonal checks on m, and m,

For any i ¢ {I,...,Tp} and any j s{l,...,Tr} we have
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[p.. P..
*1 *1 T
Q| * |Q, | = ey := (0,0,0,1,0,0,0,0,0)". (78)
R*j R*j

This implies TpTréq = 35 orthogonal checks on my. These checks do not contain

the code digits { Cj | 5 20 mod 3 }, which correspond to the columns of G

it

given in Fig. 5.3.

wy
—

— 21
— 42
— 63
- 84
- 36
- 57
— 78
- 99
- 30
- 51
- 72
- 93

60
- 81
- 102

.
-
.
.
.
—
.
-t
—
—
ik
"
—
—
3
—
—
Y-
-
—
.
-
.
-
-
p—
.
—
—
-
»
-
-
-
-

Fig., 5.3: Columns G*j of G where j £ 0 mod 3.
From Fig. 5.3 it is easy to see that

a: + c

Cg TGy *Cptcyt o3
Poeg TG Y39t G5t Oy
(CF C30 T C4p Gyt Cep T Co
43 G5y *egy t Cy5 *t Cgy *t Cppp (79
& Cy5 T C33 * S5, * Cgy * gy
f: ey * eyt cgp +cgp * g9
B Cq T Cy T Cy7 Yot Sy

are seven additional orthogonal checks on m,, which are orthogonal to the
35 checks implies by formula (78). Hence we have 42 orthogonal checks on my.
Analogously we can find 42 checks on m, . »

For any i ¢ {1,...,Tp} and any j € {1""’Tq} we have



byl

*i *3 *i *i T
Q*j + Q*j + Q*j + Q*j =eg5 = (0,0,0,0,0,1,0,0,0)". (80)
LR* ] R*z *3 *,_f‘

This implies T T 6 = 21 orthogonal checks on m. These checks do not contain

the 21 code digits {c [ i E0mod 5 }. Since 81’82""’85 > 42,

4
oy + Lo m 6, (81)
for j ¢ {0,5,10,....,}00} build 21 additional checks on mg (cf. the proof

of Theorem (5.2.4)). Hence we have 42 "orthogonal' checks on mg . Analogously

we can find 42 checks on mg 1., and m

7 8’
We have shown that the [105,9] code with check polynomial

3+x2+x+l) has a separation vector of at least

(rx+1) (gt 1) (5%
(48,48,48,42 .42 42,42 ,42,42), Actually equality holds, as one can easily
check. So we have derived a Majority Logic Decoding Scheme for the code that

reaches the actual separation vector.

For a binary cyclic code whose check polynomial is the product of (x+1) and

two primitive polynomials we have the following theorem.

(5.2.8) Theorem: For the primitive polynomials p(x),q(x) € Ié [xJof degrees
k  resp. k such that ¥ >k and g.c.d.(k ,k ) = 1 the binary cyclic
. P kg . q g ( p? q) y ¢y

k k
{(2 p—l)(2 q-l),kp+kq+l] code with check polynomial (x+1)p(x)q(x) has a

separation vector s which satisfies

k k -1
@2 %“ne? - fori = 1,...,kp
5i 7 k k-1 (82)

2P-ne% 1) fori

i

N M
p p

Proof: The [2 p~l k J eyclic code Cp with primitive ﬁheck polynomial p(x) of
degree k is a sxmplex code (i.e. all elements of sz\{()}occuras columns

in a gengrftor matrix of Cp) Hence we have an orthogonal check set of size

59 1= (2 P -1) on any code position, where all weights of the checks equal 2.
The same hglds for the [2 q-l,kq3 code Cq with primitive check polynomial q(x);
§q = (2 4 ~1). Since g.c.d.(kp,kq) = |, we may apply Theorem (5.2.3)(ii)

to the first kp message bits as well as to the message bits Ty seeesTy +kq_}.
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Furthermore

. k k -1
vt (e D/p + 110 k) = @ D@ P -1 and

n n-1 i kp kq‘]
vt D/ + I10 xD) = @ P-ne -,

k X
where n := (2 P-1)(2 9-1).

These observations imply formula (82).

(5.2.9) Examples:
(i): Take k_ = 3, k
P 9

i

2, p(x) = x3+x+l, q{x) = x2+x+1.

NN T RO D 0 I O T I T I

is an optimal generator matrix for the [21,6] cyclic code C with

check polynomial (x+1)p(x)q(x). s(G) = (9,9,9,7,7,7).

Wy My and m have the following checks.

Mo =€ TC9TC TEy T T T Te3Te Ty
= -+ an s e

% T %187 %0 " 6T %11t 0 T 12t G5

Myt Teg T YT T T Ty
¢ TS T %0t %7 T St %00

m5 = c0 + CI + c2 + mo + mz = c3 + c& + §5 + m0
= c6 + c7 + C8 + m1 + m2 = Cg + CIO + cll + m2
Tt C3 oy Tl Tmp vmy Seg o tey t Yy
“C18 T 9T C0 Ty Ty

The generator matrix G' for this code, whose rows are the cyclic
shifts of the generator polynomial, has a separation vector §(G') =

(7,7,7,7,7,7).
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A binary [21,6] code has a minimum distance of at most 8 ( cf. Helgert

and Stinaff (1973)).

(ii): Take k= 4, k_ =3, p(x) i= (x*+x+1), q(x) := (x>+x+1). The [105,8]
code with check polynomial (x+1)p(x)q(x) has separation vector

(49,49,49,49,45,45,45,45).
We can also extend Theorem (5.2.9) to the following one.

(5.2.10) Theorem: For the primitive polynomials pi(x) € Fz[x], i=1,0.0,v
of degrees resp. ki’ i=1,...,v such that . k] > k2 b kv and

g.c.d.(ki,kj) = | for all i,j, 1 # j, the binary cyclic

v k. v
LIC @ *-1),1+ Z{_T ki] code with check polynomial (x+1) J{ pi(x) has a
i=] - i=]
separation vector s which satisfies

k-1 vk k,
s. =3 -DJC @ %n/ei-n (83)
u=}

for i = Zi;} ku +1,.....,Zi=] ku and j = 1,...,v.

Proof: Analogous to the proof of Theorem (5.2.8).

Table B.1 in Appendix B contains the separation vectors of all binary

cyclic UEP codes of length less than or equal to 39,

Notes

Thecrem (5.1.1) is from Dunning and Robbins (1978). It is easy to prove the
Corollaries (5.1.2) and (5.1.3) without the results of Chapter 2, by only
using the special configuration of the generator matris G in formula (55).
Theorem (5.2.1) is from Dyn'kin and Togonidze (1976). They also mention

Theorem (5.2.8) without a proof.
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APPENDIX A: BINARY OPTIMAL LINEAR UEP CODES OF LENGTH LESS THAN
OR EQUAL TO 15

=
e

d{n,k) separation vector

32
42

322

52

422

3222

62, 54

522

4222

32222

72, 64

622, 544

5222

42222, 33332

322222

82, 74

722, 644, 554

6222, 5444

52222, 44442, 43333
422222, 333322

3222222

92, 84, 76

822, 744, 664

7222, 6444, 5544

62222, 54444

522222, 444422, 433332
4222222, 3333222

32222222

10.2, 94, 86

922, 844, 764

8222, 744h, 6644

72222, 64444, 55444
622222, 544442, 533333
5222222, 4444222, 4333322
42222222, 33332222
322222222

11.2, 10.4, 96

10.22, 944, 864, 774, 766
9222, 8444, 7644

82222, 74444, 66444, 55554
722222, 644bbh, 554444
6222222, 5444422, 5333332
52222222, 44442222, 43333222
422222222, 333322222
3222222222

WO D WO D00 0000 0000 NN S OO O U

10
10
10
10
10
10
10
11
11
Il
It
11
11
11
11
12
12
12
12
12
12
12
12
12

CWOWONRUNPUNEYONOUMEWNOONOUVMPEWRNSNOUWBRWNOUEWRNWUWEWNSNRWNN
NNWSRFPEIRERNNNWSESPUVOANNNWERERPRUVMONNWEETONESEITVNWRESENWENWR

-

Table A.1: The separation vectors of the binary optimal LUEP codes

of length less than or equal to 15 (Part I).
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n k d(n,k) separation vector

13 2 8 12.2, 11.4, 10.6, 98

13 3 7 11.22, 10.44, 964, 884, 866

13 4 6 10.22, 9444, B644, 7744, 7666

13 5 5 92222, 84444, 76444, 66664, 66555

13 6 4 822222, 744444, 664444, 555544

13 7 4 7222222, 6444442, 6333333, 5544442, 5444444

13 8 4 62222222, 54444222, 53333322

13 9 3 522222222, 444422222, 433332222

13 10 2 4222222222, 3333222222

13 11 2 32222222222

14 2 9 13.2, 12.4, 11.6, 10.8

14 3 8 12,22, 11.44, 10.64, 984, 966

14 4 7 11.222, 10.444, 9644, 8844, 8666

i 5 6 10.2222, 94444, 86444, 77444, 76666 (a)

14 6 5 922222, 844444, 764444, 666644, 665552

14 7 4 8222222, 7444444" (b)), 6644442, 6544444, 5555444 (c)

14 8 4 72222222, 64444422, 63333332, 55444422, 54444444

14 9 4 622222222, 544442222, 533333222

14 10 3 5222222222, 4444222222

14 11 2 42222222222, 33332222222

14 12 2 322222222222

15 2 10 14.2, 13.4, 12.6, 11.8

15 3 8 13.22, 12.44, 11.64, 10.84, 10.66, 988

15 4 8 12,222, 11.444, 10.644, 9844 (d), 9666

15 5 7 11.2222, 10,4444, 96444, 88444, B6666

15 6 6 10.22222, 944444, 864444, 714444, 766662, 766644,
765554 (e)

15 7 5 9222222, 8444444, 7644444 (f), 6666444, 6655522

15 8 & 82222222, 74444442, 66444422, 65444442, ,,...... (1),
64444444, . ...... (2)

15 9 4 722222222, 644444222, 633333322, 554444222, 544444444

15 10 4 6222222222, 5444422222, 5333332222

15 11 3 52222222222, 44442222222

15 12 2 422222222222, 333322222222

15 13 2 3222222222222

Table A.1: The separation vectors of the binary optimal LUEP codes

of length less than or equal to 15 (Part II).

Any separation vector of a binary linear [n,k] code (4 £ n < 15,

2 £ k £ n-2) is less than or equal to one of the separation vectors

in the row of Table A.l corresponding to n,k. If a component of a
separation vector consists of two digits it is followed by a point.

Let d(n,k) denote the maximal minimum distance of a binary linear code

of length n and dimension k (cf. Helgert and Stinaff (1973)).

The nontrivial codes in Table A.l are constructed in one of the following

ways.



-4 9-

(i): Adding a parity check to another code in the table.

(ii): Shortening or puncturing other codes in the table.

(iii): Adding a column of weight one to a generator matrix of a LUEP code
of length one less.

(iv): The following construction:

If the matrix G, has separation vector gﬂG]), then

1

©

Lon BESFEE o0 3 o ]

[1jtoo0 ....... 0]

has separation vector gﬁGz) = (gﬂcl),Z).
(v): The constructions in Sectiom 4.1.
(vi): (a). Construction (4.2.1) with m = 1 and G1 a generator matrix

of a [7,4,3] Hamming code.

(b). Construction (4.2.1) with m = | and G, a generator matrix

|
of a [7,6,2] code.

. [0
S U B A
SRS TR DA DR I is a generator matrix of a

i::if:fiif::ff [14,7,(5,5,5,5,4,4,4)] code.

N T U (PR

| S PR § R

(@. [iimnnt.....
1., 1111,
Jdeadleslleatl £15,4,(9,8,4,4)] code.
RS DS DS DU

d

is a generator matris of a

(€). [ee. l1011...111
el AT
S TR T
Jo.ll.. 1.1 [15,6,(7,6,5,5,5,4)] code.
RS T O DU P

FEES PR O PN}

is a generator matrix of a

(£). [L....nnnntnr..]
NS S E PR S F ,
Toeondocl,. .| 18 a generator matrix of a
N U IO I I .
cleiidaido| [19:7507,6,8,4,4,4,8)] code.
RPENE D N U
S D DR I
wd
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Table A.]l has two open places.

(1): Does a [15,8,s8] code with (6,5,3,3,3,3,3,3) < s < (6,5,4,4,4,3,3,3)

exist?

(2): Does a [15,8,(5,5,5,x,4,4,4,4)] code with x € {4,5} exist? .

‘bIQQOOhl.QQIIQOO_

with Gl-the matrix in (vi){c) has separation vector (5,5,5,5,4,4,4,3).
By adding a column of weight ome to an optimal generator matrix

of a [14,8,(5,4,4,4,4,4,4,4)] code, we obtain a
[15,8,(5,5,4,4,4,4,4,4)] code.



APPENDIX B: A TABLE OF ALL BINARY CYCLIC UEP CODES OF LENGTH LESS THAN
OR EQUAL TO 39

Table B.! contains the parameters of all binary cyclic UEP codes of length
less than or equal to 39. In this table for each code 6f length n the
exponents l,J,k,... of a primitive nth root of unity a are given such

that « ,aJ,ak,... are nonzeros of the code. For example the first row

of the table denotes a binary eyclie [15,7,(5,5,3,3,3,3,3)] code with
nonzeros { ai l ie CSAU C0 7] 03 }, where Ci (i = 5,0,3) denotes the
cyclotomic coset modulo 15 containing i. The order of the nonzeros
corresponds to the order of the components in the separation vectdr. I.e.
if the order of the nonzeros is i,j,k,.., then the separation vector equals
s (M. l Tlel...)), where M (x = i,j,k,...) denotes a generator matrix

of the minimal ideal in ??[x]ﬂxg+l) with nonzeros { o’ | v e Cx }o In

5{ 0|M3)) = (5,5,3,3,3,3,3).

The last column of the table contains the minimum length or a bound on the

the above example s((M

minimum length of a binary linear code with a separation vector of at least
the one of the corresponding cyclic code. The separation components (and
‘the corresponding nonzeros) larger than the minimum distance of the code

are underlined.



—_52-

length dim. nonzeros separation vector s n(s)
15 7 5,0,3 3,5,3,3,3,3,3 4
g 1,0,3 4,4,4,4,3,3,3,3,3 14

9 0,1,7 S,byb,4,4,4,4,4,4 ' 15

1 0,1,5,7  5,2,2,2,2,2,2,2,2,2,2 15

13 0,1,3,7 3,2,2,2,2,2,2,2,2,2,2,2,2 15

21 6 3,0,7 9,9,9,7,7,7 2 20
7 0,1 9,8,8,8,8,8,8 21

8 7,3,9 8,8,6,6,6,6,6,6 20

s 7,0,3,9 17,7,3,3,3,3,3,3,3 i8

g 0,1,7 7,6,6,6,6,6,6,6,6 19

10 0,1,9 9,4,4,4,4,4,4,4,4,4 20

n 7,19 6,6,4,4,4,4,4,4,4,4,4 19

12 3,1,9 6,6,6,4,4,4,4,4.4,4,4,4 = 20

tz 7,0,1,3 6,6,5,5,5,5,5,5,5,5,5,5 21

13 0,1,5 T54,4,04,4,4,4,4,4,4,4,4,4 21

13 1,0,3,9 4,4,4,4,4,4,3,3,3,3,3,3,3 2 18

15 0,1,5,7 17,2,2,2,2,2,2,2,2,2,2,2,2,2,2 21

17 3,1,5,7  4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2 21

25 21 0,t 5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 15
27 7 0,3 9,6,6,6,6,6,6 19
19 0,1 9,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 27

20 9,1 6,6,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 27

21 0,9,1 ELQLQ,Z,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 24

25 0,1,3 3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2 27

31 1t 0,1,15  11,10,10,10,10,10,10,10,10,10,10 2 30
16 0,1,3,15 9,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 z 29

Table B.1: All binary cyclic UEP codes of length less than or equal to 39
{(Part 1).
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31
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separation vector 8

12,12,6,6,6,6,6,6,6,6,6,6
10,10,10,10,10,10,10,10, 10,10,10, 10

,3,3,3,3,3,3,3,3,3,3,3
_13_,&,4,4,4,4,4,&,&,4,4,4,&,&,4,4,4,4,4,4,4
11,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2
5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,
3,3 ‘
3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2

.L_
11,11

16,16,16,14,14,14,14
15,15,15,7,7,7,7,7

7,7,7,7,5,5,5,5,5,5,5
15,8,8,8,8,8,8,8,8,8,8,8,8
12,12,12,8,8,8,8,8,8,8,8,8,8,8,8
15,4,4,4,4,4,4,4,4,4,4,6,4,6,4,4
7,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
8,8,8,4,4,4,4,4,4,4,4,4,4,6,4,4,4,4
5,5,5,5,4,b,4,4,4,4,4,4,4,4,4,4,4,4,4
8,8,8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
6,6,6,6,4,4,4,4,4,4,4,4,4,6,6,4,4,6,4
70737+7.7,7+7,7,6,6,6,6,6,6,6,6,6,6,6,6
6,6,6,6,6,6,6,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4

7,6,4,8,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,

4,44

354,8,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4

2_32’2’242;2;232:292:2’2329292,2!2$2’232:2’29

2,2,2,2,2,2,2

n(s)

v

v

29

32

28

32

33

32

33

34
32

.22

A AV VS

[

v ¥

v

33
33
32
28
29
26
30
27
31
31

33

35

35

Table B.l: All binary cyclic UEP codes of length less than or equal to 39

{Part II).
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length .dim. nonzeros separation vector s n(s)

35 31 0,1,3,5,15 5,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2 35
315,1,3,7 4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2 35
32 0,5,1,3,7 3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2 35
39 13 0,1 15,12,12,12,12,12,12,12,12,12,12,12,12 > 37
14 13,3 14,14,6,6,6,6,6,6,6,6,6,6,6,6 > 35
15 0,1,13 13,10,10,10,10,10,10,10,10,10,10,10,10,10,10 = 36
15 13,0,3 13,13,3,3,3,3,3,3,3,3,3,3,3,3,3,3 > 33
25 1,0,3 6,6,6,6,6,6,6,6,6,6,6,6,3,3,3,3,3,3,3,3,
3,3,3,3,3 > 35
25 0,1,7 13,4,4,6,6,4,6,6,4,6,4,4,6,4,4,4,4,6,4,4,
bob bbb 39
27 1,13,0,3  6,6,6,6,6,6,6,6,6,6,6,6,6,6,3,3,3,3,3,3,
3,3,3,3,3,3,3 = 37
27 0,1,7,13  12,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2 39
37 0,1,3,7 3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 39

Table B.l: All binary cyclic UEP codes of length less than or equal to 39
(Part IID).
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bound

Griesmer
Plotkin
Singleton
code
length-optimal
Linear Unequal Error Protection
LUEP
Maximum-Distance~Separable
optimal
simplex
concatenation
construction
direct product
direct sum
[uutv]
decoding
Majority Logic
Syndrome
exponent
generator matrix
canonical
minimal weight
optimal
Krawtchouk polynomial
Lee metric
minimal ideal
orthogonal check set
protection level

separation vector
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