139,184 research outputs found

    Cygnus A super-resolved via convex optimisation from VLA data

    Get PDF
    We leverage the Sparsity Averaging Reweighted Analysis (SARA) approach for interferometric imaging, that is based on convex optimisation, for the super-resolution of Cyg A from observations at the frequencies 8.422GHz and 6.678GHz with the Karl G. Jansky Very Large Array (VLA). The associated average sparsity and positivity priors enable image reconstruction beyond instrumental resolution. An adaptive Preconditioned Primal-Dual algorithmic structure is developed for imaging in the presence of unknown noise levels and calibration errors. We demonstrate the superior performance of the algorithm with respect to the conventional CLEAN-based methods, reflected in super-resolved images with high fidelity. The high resolution features of the recovered images are validated by referring to maps of Cyg A at higher frequencies, more precisely 17.324GHz and 14.252GHz. We also confirm the recent discovery of a radio transient in Cyg A, revealed in the recovered images of the investigated data sets. Our matlab code is available online on GitHub.Comment: 14 pages, 7 figures (3/7 animated figures), accepted for publication in MNRA

    Adaptively Secure Computationally Efficient Searchable Symmetric Encryption

    Get PDF
    Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as\ud possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are performed by the same client. Most conventional searchable encryption schemes suffer\ud from two disadvantages.\ud First, searching the stored documents takes time linear in the size of the database, and/or uses heavy arithmetic operations.\ud Secondly, the existing schemes do not consider adaptive attackers;\ud a search-query will reveal information even about documents stored\ud in the future. If they do consider this, it is at a significant\ud cost to updates.\ud In this paper we propose a novel symmetric searchable encryption\ud scheme that offers searching at constant time in the number of\ud unique keywords stored on the server. We present two variants of\ud the basic scheme which differ in the efficiency of search and\ud update. We show how each scheme could be used in a personal health\ud record system

    MonetDB/XQuery - Consistent & Efficient Updates on the Pre/Post Plane

    Get PDF
    Relational XQuery processors aim at leveraging mature relational DBMS query processing technology to provide scalability and efficiency. To achieve this goal, various storage schemes have been proposed to encode the tree structure of XML documents in flat relational tables. Basically, two classes can be identified: (1) encodings using fixed-length surrogates, like the preorder ranks in the pre/post encoding [5] or the equivalent pre/size/level encoding [8], and (2) encodings using variable-length surrogates, like, e.g., ORDPATH [9] or P-PBiTree [12]. Recent research [1] showed a clear advantage of the former for efficient evaluation of XPath location steps, exploiting techniques like cheap node order tests, positional lookup, and node skipping in staircase join [7]. However, once updates are involved, variable-length surrogates are often considered the better choice, mainly as a straightforward implementation of structural XML updates using fixed-length surrogates faces two performance bottlenecks: (i) high physical cost (the preorder ranks of all nodes following the update position must be modifiedā€”on average 50% of the document), and (ii) low transaction concurrency (updating the size of all ancestor nodes causes lock contention on the document root)
    • ā€¦
    corecore