4 research outputs found

    A Spectral Algorithm for Learning Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs) are one of the most fundamental and widely used statistical tools for modeling discrete time series. In general, learning HMMs from data is computationally hard (under cryptographic assumptions), and practitioners typically resort to search heuristics which suffer from the usual local optima issues. We prove that under a natural separation condition (bounds on the smallest singular value of the HMM parameters), there is an efficient and provably correct algorithm for learning HMMs. The sample complexity of the algorithm does not explicitly depend on the number of distinct (discrete) observations---it implicitly depends on this quantity through spectral properties of the underlying HMM. This makes the algorithm particularly applicable to settings with a large number of observations, such as those in natural language processing where the space of observation is sometimes the words in a language. The algorithm is also simple, employing only a singular value decomposition and matrix multiplications.Comment: Published in JCSS Special Issue "Learning Theory 2009

    Consistent estimation of the filtering and marginal smoothing distributions in nonparametric hidden Markov models

    Full text link
    In this paper, we consider the filtering and smoothing recursions in nonparametric finite state space hidden Markov models (HMMs) when the parameters of the model are unknown and replaced by estimators. We provide an explicit and time uniform control of the filtering and smoothing errors in total variation norm as a function of the parameter estimation errors. We prove that the risk for the filtering and smoothing errors may be uniformly upper bounded by the risk of the estimators. It has been proved very recently that statistical inference for finite state space nonparametric HMMs is possible. We study how the recent spectral methods developed in the parametric setting may be extended to the nonparametric framework and we give explicit upper bounds for the L2-risk of the nonparametric spectral estimators. When the observation space is compact, this provides explicit rates for the filtering and smoothing errors in total variation norm. The performance of the spectral method is assessed with simulated data for both the estimation of the (nonparametric) conditional distribution of the observations and the estimation of the marginal smoothing distributions.Comment: 27 pages, 2 figures. arXiv admin note: text overlap with arXiv:1501.0478

    The Value of Observation for Monitoring Dynamic Systems

    No full text
    We consider the fundamental problem of monitoring (i.e. tracking) the belief state in a dynamic system, when the model is only approximately correct and when the initial belief state might be unknown. In this general setting where the model is (perhaps only slightly) mis-specified, monitoring (and consequently planning) may be impossible as errors might accumulate over time. We provide a new characterization, the value of observation, which allows us to bound the error accumulation. The value of observation is a parameter that governs how much information the observation provides. For instance, in Partially Observable MDPs when it is 1 the POMDP is an MDP while for an unobservable Markov Decision Process the parameter is 0. Thus, the new parameter characterizes a spectrum from MDPs to unobservable MDPs depending on the amount of information conveyed in the observations.
    corecore