30,419 research outputs found

    No Spare Parts: Sharing Part Detectors for Image Categorization

    Get PDF
    This work aims for image categorization using a representation of distinctive parts. Different from existing part-based work, we argue that parts are naturally shared between image categories and should be modeled as such. We motivate our approach with a quantitative and qualitative analysis by backtracking where selected parts come from. Our analysis shows that in addition to the category parts defining the class, the parts coming from the background context and parts from other image categories improve categorization performance. Part selection should not be done separately for each category, but instead be shared and optimized over all categories. To incorporate part sharing between categories, we present an algorithm based on AdaBoost to jointly optimize part sharing and selection, as well as fusion with the global image representation. We achieve results competitive to the state-of-the-art on object, scene, and action categories, further improving over deep convolutional neural networks

    Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification

    Full text link
    The efficacy of particle identification is compared using artificial neutral networks and boosted decision trees. The comparison is performed in the context of the MiniBooNE, an experiment at Fermilab searching for neutrino oscillations. Based on studies of Monte Carlo samples of simulated data, particle identification with boosting algorithms has better performance than that with artificial neural networks for the MiniBooNE experiment. Although the tests in this paper were for one experiment, it is expected that boosting algorithms will find wide application in physics.Comment: 6 pages, 5 figures; Accepted for publication in Nucl. Inst. & Meth.

    Cascade Training Technique for Particle Identification

    Full text link
    The cascade training technique which was developed during our work on the MiniBooNE particle identification has been found to be a very efficient way to improve the selection performance, especially when very low background contamination levels are desired. The detailed description of this technique is presented here based on the MiniBooNE detector Monte Carlo simulations, using both artifical neural networks and boosted decision trees as examples.Comment: 12 pages and 4 EPS figure
    • …
    corecore