48 research outputs found

    Discourse Structure in Machine Translation Evaluation

    Full text link
    In this article, we explore the potential of using sentence-level discourse structure for machine translation evaluation. We first design discourse-aware similarity measures, which use all-subtree kernels to compare discourse parse trees in accordance with the Rhetorical Structure Theory (RST). Then, we show that a simple linear combination with these measures can help improve various existing machine translation evaluation metrics regarding correlation with human judgments both at the segment- and at the system-level. This suggests that discourse information is complementary to the information used by many of the existing evaluation metrics, and thus it could be taken into account when developing richer evaluation metrics, such as the WMT-14 winning combined metric DiscoTKparty. We also provide a detailed analysis of the relevance of various discourse elements and relations from the RST parse trees for machine translation evaluation. In particular we show that: (i) all aspects of the RST tree are relevant, (ii) nuclearity is more useful than relation type, and (iii) the similarity of the translation RST tree to the reference tree is positively correlated with translation quality.Comment: machine translation, machine translation evaluation, discourse analysis. Computational Linguistics, 201

    MuLER: Detailed and Scalable Reference-based Evaluation

    Full text link
    We propose a novel methodology (namely, MuLER) that transforms any reference-based evaluation metric for text generation, such as machine translation (MT) into a fine-grained analysis tool. Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types (e.g., errors in translating names of locations). MuLER thus enables a detailed error analysis which can lead to targeted improvement efforts for specific phenomena. We perform experiments in both synthetic and naturalistic settings to support MuLER's validity and showcase its usability in MT evaluation, and other tasks, such as summarization. Analyzing all submissions to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs are among the most frequent POS tags. However, they are among the hardest to translate. Performance on most POS tags improves with overall system performance, but a few are not thus correlated (their identity changes from language to language). Preliminary experiments with summarization reveal similar trends

    Dynamic Context-guided Capsule Network for Multimodal Machine Translation

    Full text link
    Multimodal machine translation (MMT), which mainly focuses on enhancing text-only translation with visual features, has attracted considerable attention from both computer vision and natural language processing communities. Most current MMT models resort to attention mechanism, global context modeling or multimodal joint representation learning to utilize visual features. However, the attention mechanism lacks sufficient semantic interactions between modalities while the other two provide fixed visual context, which is unsuitable for modeling the observed variability when generating translation. To address the above issues, in this paper, we propose a novel Dynamic Context-guided Capsule Network (DCCN) for MMT. Specifically, at each timestep of decoding, we first employ the conventional source-target attention to produce a timestep-specific source-side context vector. Next, DCCN takes this vector as input and uses it to guide the iterative extraction of related visual features via a context-guided dynamic routing mechanism. Particularly, we represent the input image with global and regional visual features, we introduce two parallel DCCNs to model multimodal context vectors with visual features at different granularities. Finally, we obtain two multimodal context vectors, which are fused and incorporated into the decoder for the prediction of the target word. Experimental results on the Multi30K dataset of English-to-German and English-to-French translation demonstrate the superiority of DCCN. Our code is available on https://github.com/DeepLearnXMU/MM-DCCN

    Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction

    Get PDF
    In this work, we study parameter tuning towards the M^2 metric, the standard metric for automatic grammar error correction (GEC) tasks. After implementing M^2 as a scorer in the Moses tuning framework, we investigate interactions of dense and sparse features, different optimizers, and tuning strategies for the CoNLL-2014 shared task. We notice erratic behavior when optimizing sparse feature weights with M^2 and offer partial solutions. We find that a bare-bones phrase-based SMT setup with task-specific parameter-tuning outperforms all previously published results for the CoNLL-2014 test set by a large margin (46.37% M^2 over previously 41.75%, by an SMT system with neural features) while being trained on the same, publicly available data. Our newly introduced dense and sparse features widen that gap, and we improve the state-of-the-art to 49.49% M^2.Comment: Accepted for publication at EMNLP 201

    Deep learning based semantic textual similarity for applications in translation technology

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Semantic Textual Similarity (STS) measures the equivalence of meanings between two textual segments. It is a fundamental task for many natural language processing applications. In this study, we focus on employing STS in the context of translation technology. We start by developing models to estimate STS. We propose a new unsupervised vector aggregation-based STS method which relies on contextual word embeddings. We also propose a novel Siamese neural network based on efficient recurrent neural network units. We empirically evaluate various unsupervised and supervised STS methods, including these newly proposed methods in three different English STS datasets, two non- English datasets and a bio-medical STS dataset to list the best supervised and unsupervised STS methods. We then embed these STS methods in translation technology applications. Firstly we experiment with Translation Memory (TM) systems. We propose a novel TM matching and retrieval method based on STS methods that outperform current TM systems. We then utilise the developed STS architectures in translation Quality Estimation (QE). We show that the proposed methods are simple but outperform complex QE architectures and improve the state-of-theart results. The implementations of these methods have been released as open source
    corecore