1,775 research outputs found

    Inductive Definition and Domain Theoretic Properties of Fully Abstract

    Full text link
    A construction of fully abstract typed models for PCF and PCF^+ (i.e., PCF + "parallel conditional function"), respectively, is presented. It is based on general notions of sequential computational strategies and wittingly consistent non-deterministic strategies introduced by the author in the seventies. Although these notions of strategies are old, the definition of the fully abstract models is new, in that it is given level-by-level in the finite type hierarchy. To prove full abstraction and non-dcpo domain theoretic properties of these models, a theory of computational strategies is developed. This is also an alternative and, in a sense, an analogue to the later game strategy semantics approaches of Abramsky, Jagadeesan, and Malacaria; Hyland and Ong; and Nickau. In both cases of PCF and PCF^+ there are definable universal (surjective) functionals from numerical functions to any given type, respectively, which also makes each of these models unique up to isomorphism. Although such models are non-omega-complete and therefore not continuous in the traditional terminology, they are also proved to be sequentially complete (a weakened form of omega-completeness), "naturally" continuous (with respect to existing directed "pointwise", or "natural" lubs) and also "naturally" omega-algebraic and "naturally" bounded complete -- appropriate generalisation of the ordinary notions of domain theory to the case of non-dcpos.Comment: 50 page

    Unbounded Utility for Savage's "Foundations of Statistics," and Other Models

    Get PDF
    A general procedure for extending finite-dimensional "additive-like" representations for binary relations to infinite-dimensional "integral-like" representations is developed by means of a condition called truncation-continuity. The restriction of boundedness of utility, met throughout the literature, can now be dispensed with, and for instance normal distributions, or any other distribution with finite first moment, can be incorporated. Classical representation results of expected utility, such as Savage (1954), von Neumann and Morgenstern (1944), Anscombe and Aumann (1963), de Finetti (1937), and many others, can now be extended. The results are generalized to Schmeidler's (1989) approach with nonadditive measures and Choquet integrals, and Quiggin's (1982) rank-dependent utility. The different approaches have been brought together in this paper to bring to the fore the unity in the extension process

    Distributive Laws and Decidable Properties of SOS Specifications

    Full text link
    Some formats of well-behaved operational specifications, correspond to natural transformations of certain types (for example, GSOS and coGSOS laws). These transformations have a common generalization: distributive laws of monads over comonads. We prove that this elegant theoretical generalization has limited practical benefits: it does not translate to any concrete rule format that would be complete for specifications that contain both GSOS and coGSOS rules. This is shown for the case of labeled transition systems and deterministic stream systems.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Set Theory or Higher Order Logic to Represent Auction Concepts in Isabelle?

    Full text link
    When faced with the question of how to represent properties in a formal proof system any user has to make design decisions. We have proved three of the theorems from Maskin's 2004 survey article on Auction Theory using the Isabelle/HOL system, and we have produced verified code for combinatorial Vickrey auctions. A fundamental question in this was how to represent some basic concepts: since set theory is available inside Isabelle/HOL, when introducing new definitions there is often the issue of balancing the amount of set-theoretical objects and of objects expressed using entities which are more typical of higher order logic such as functions or lists. Likewise, a user has often to answer the question whether to use a constructive or a non-constructive definition. Such decisions have consequences for the proof development and the usability of the formalization. For instance, sets are usually closer to the representation that economists would use and recognize, while the other objects are closer to the extraction of computational content. In this paper we give examples of the advantages and disadvantages for these approaches and their relationships. In addition, we present the corresponding Isabelle library of definitions and theorems, most prominently those dealing with relations and quotients.Comment: Preprint of a paper accepted for the forthcoming CICM 2014 conference (cicm-conference.org/2014): S.M. Watt et al. (Eds.): CICM 2014, LNAI 8543, Springer International Publishing Switzerland 2014. 16 pages, 1 figur

    Discussion of "Multivariate quantiles and multiple-output regression quantiles: From L1L_1 optimization to halfspace depth"

    Full text link
    Discussion of "Multivariate quantiles and multiple-output regression quantiles: From L1L_1 optimization to halfspace depth" by M. Hallin, D. Paindaveine and M. Siman [arXiv:1002.4486]Comment: Published in at http://dx.doi.org/10.1214/09-AOS723B the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore