4 research outputs found

    A Shared Task on Bandit Learning for Machine Translation

    Full text link
    We introduce and describe the results of a novel shared task on bandit learning for machine translation. The task was organized jointly by Amazon and Heidelberg University for the first time at the Second Conference on Machine Translation (WMT 2017). The goal of the task is to encourage research on learning machine translation from weak user feedback instead of human references or post-edits. On each of a sequence of rounds, a machine translation system is required to propose a translation for an input, and receives a real-valued estimate of the quality of the proposed translation for learning. This paper describes the shared task's learning and evaluation setup, using services hosted on Amazon Web Services (AWS), the data and evaluation metrics, and the results of various machine translation architectures and learning protocols.Comment: Conference on Machine Translation (WMT) 201

    Reinforcement Learning for Machine Translation: from Simulations to Real-World Applications

    Get PDF
    If a machine translation is wrong, how we can tell the underlying model to fix it? Answering this question requires (1) a machine learning algorithm to define update rules, (2) an interface for feedback to be submitted, and (3) expertise on the side of the human who gives the feedback. This thesis investigates solutions for machine learning updates, the suitability of feedback interfaces, and the dependency on reliability and expertise for different types of feedback. We start with an interactive online learning scenario where a machine translation (MT) system receives bandit feedback (i.e. only once per source) instead of references for learning. Policy gradient algorithms for statistical and neural MT are developed to learn from absolute and pairwise judgments. Our experiments on domain adaptation with simulated online feedback show that the models can largely improve under weak feedback, with variance reduction techniques being very effective. In production environments offline learning is often preferred over online learning. We evaluate algorithms for counterfactual learning from human feedback in a study on eBay product title translations. Feedback is either collected via explicit star ratings from users, or implicitly from the user interaction with cross-lingual product search. Leveraging implicit feedback turns out to be more successful due to lower levels of noise. We compare the reliability and learnability of absolute Likert-scale ratings with pairwise preferences in a smaller user study, and find that absolute ratings are overall more effective for improvements in down-stream tasks. Furthermore, we discover that error markings provide a cheap and practical alternative to error corrections. In a generalized interactive learning framework we propose a self-regulation approach, where the learner, guided by a regulator module, decides which type of feedback to choose for each input. The regulator is reinforced to find a good trade-off between supervision effect and cost. In our experiments, it discovers strategies that are more efficient than active learning and standard fully supervised learning
    corecore