
Reinforcement Learning for Machine Translation:
from Simulations to Real-World Applications

Dissertation

zur Erlangung der Doktorwürde
der Neuphilologischen Fakultät

der Ruprecht-Karls-Universität Heidelberg

vorgelegt von

Julia Kreutzer

06. September 2020

Institut für Computerlinguistik
Ruprecht-Karls-Universität Heidelberg

Betreuer und Erstgutachter: Prof. Dr. Stefan Riezler
Institut für Computerlinguistik
Ruprecht-Karls-Universität Heidelberg

Zweitgutachter: Prof. Dr. André Martins
Unbabel & Instituto Superior Técnico &
Instituto de Telecomunicações, Lissabon

Datum der Einreichung: 28.01.2020

Datum der Disputation: 30.03.2020

Hierbei handelt es sich um eine Heidelberger Dissertation.

Für Opa Tom und Oma Eka

iii

Abstract

If a machine translation is wrong, how we can tell the underlying model to fix
it? Answering this question requires (1) a machine learning algorithm to define
update rules, (2) an interface for feedback to be submitted, and (3) expertise on
the side of the human who gives the feedback. This thesis investigates solutions
for machine learning updates, the suitability of feedback interfaces, and the
dependency on reliability and expertise for different types of feedback.

We start with an interactive online learning scenario where a machine transla-
tion (MT) system receives bandit feedback (i.e. only once per source) instead of
references for learning. Policy gradient algorithms for statistical and neural MT
are developed to learn from absolute and pairwise judgments. Our experiments
on domain adaptation with simulated online feedback show that the models can
largely improve under weak feedback, with variance reduction techniques being
very effective.

In production environments offline learning is often preferred over online
learning. We evaluate algorithms for counterfactual learning from human feedback
in a study on eBay product title translations. Feedback is either collected via
explicit star ratings from users, or implicitly from the user interaction with
cross-lingual product search. Leveraging implicit feedback turns out to be more
successful due to lower levels of noise. We compare the reliability and learnability
of absolute Likert-scale ratings with pairwise preferences in a smaller user study,
and find that absolute ratings are overall more effective for improvements in
down-stream tasks. Furthermore, we discover that error markings provide a
cheap and practical alternative to error corrections.

In a generalized interactive learning framework we propose a self-regulation
approach, where the learner, guided by a regulator module, decides which type of
feedback to choose for each input. The regulator is reinforced to find a good trade-
off between supervision effect and cost. In our experiments, it discovers strategies
that are more efficient than active learning and standard fully supervised learning.

iv

Kurzfassung

Wie können wir maschinellen Übersetzungssystemen (MT) beibringen, von
Fehlern zu lernen? Die Beantwortung dieser Frage erfordert (1) einen maschinellen
Lernalgorithmus, (2) eine Schnittstelle für die Übermittlung von Feedback und
(3) Fachwissen. Diese Dissertation untersucht Algorithmen für maschinelles
Lernen mit schwachem Feedback, verschiedene Feedback-Schnittstellen, sowie
die Zuverlässigkeit verschiedener Feedback-Arten.

In einem interaktiven Online-Lernszenario erhält ein MT Modell “Bandit”-
Feedback (d.h. für nur je eine Übersetzung) anstelle von Referenzübersetzungen
zum Lernen. Dafür werden Policy-Gradienten-Algorithmen für statistische und
neuronale MT entwickelt, die von absoluten und paarweisen Bewertungen lernen.
Simulationsexperimente zeigen, dass sich die Modelle selbst mit schwachem
Feedback erheblich verbessern und von Varianzreduktionstechniken profitieren.

In Produktionsumgebungen wird Offline-Lernen allerdings oft dem Online-
Lernen vorgezogen. Daher evaluieren wir Algorithmen für kontrafaktisches
Lernens mit menschlichem Feedback für Übersetzungen von eBay-Produkten.
Das Feedback dabei wird entweder explizit durch Nutzerbewertungen oder im-
plizit über Interaktionen mit der Website gesammelt. Die Nutzung impliziten
Feedbacks erweist sich aufgrund geringeren Rauschens als erfolgreicher. In einer
weiteren Studie vergleichen wir die Zuverlässigkeit und Erlernbarkeit von abso-
luten mit relativen Bewertungen, wobei absoluten Bewertungen effektiver für
Verbesserungen am MT Modell sind. Darüber hinaus stellen Fehlermarkierungen
eine kostengünstige und praktische Alternative zu Fehlerkorrekturen dar.

Anstelle die Art der Feedbacksammlung im Voraus zu entscheiden, lassen
wir das Modell diese Entscheidung in der letzten Studie selbst treffen. Wir
entwickeln einen Selbstregulierungsansatz für interaktiven Lernen: Das lernende
Modell entscheidet mithilfe eines Regulierungsmoduls, welche Art von Feedback
für welche Eingabe gewählt wird. Der Regulator wird so trainiert, dass er
einen guten Kompromiss zwischen Lerneffekt und Kosten findet. In unseren
Experimenten verfolgt er Strategien, die effizienter sind als aktives Lernen und
vollüberwachtes Lernen.

v

Contents

Abstract iv

Kurzfassung v

1 Introduction 8
1.1 Contributions . 11
1.2 Publications . 11
1.3 Released Software and Data . 12
1.4 Outline . 13

2 Background 16
2.1 Machine Translation . 16

2.1.1 Task Definition . 16
2.1.2 Statistical Machine Translation 19
2.1.3 Neural Machine Translation 21

2.2 Learning from Interaction . 26
2.2.1 Reinforcement vs. Bandit Learning 26
2.2.2 Policy Optimization . 28
2.2.3 Variance Reduction by Control Variates 30
2.2.4 Human-in-the-Loop Reinforcement Learning 32

2.3 Reinforced Machine Translation 33
2.3.1 Challenges . 35
2.3.2 Previous Approaches . 36

Part I: Online Learning with Simulated Bandit Feedback

3 Online Bandit Structured Prediction for MT 40
3.1 Algorithms . 42

3.1.1 Full information vs. bandit feedback 42
3.1.2 Bandit Expected Reward Maximization 43

vi

3.1.3 Bandit Pairwise Preference Learning 47
3.1.4 Bandit Cross-Entropy Minimization 51

3.2 Convergence Analysis . 53
3.3 Reward Baselines . 55

3.3.1 Additive Control Variate 55
3.3.2 Relativizing Rewards . 56

3.4 Domain Adaptation Experiments 57
3.4.1 Experiments for SMT . 58
3.4.2 Experiments for NMT . 62

3.5 WMT Shared Task Evaluation 68
3.5.1 Task Setup . 69
3.5.2 Systems . 70
3.5.3 Results . 72

3.6 Conclusion . 74

Part II: Offline Learning with Human Bandit Feedback

4 Learning from E-commerce User Feedback 78
4.1 User Feedback . 79

4.1.1 Explicit Feedback via Star Ratings 79
4.1.2 Task-Based Implicit Feedback 81

4.2 Learning from User Feedback . 83
4.2.1 On- vs. Off-Policy Learning 83
4.2.2 Reward Functions . 84
4.2.3 Training Objectives . 85

4.3 Experiments . 88
4.3.1 Setup . 88
4.3.2 Reward Estimation Quality 91
4.3.3 Simulation: Online vs. Offline Feedback 93
4.3.4 Explicit Star Rating Feedback 95
4.3.5 Task-Based Implicit Feedback 96

4.4 Conclusion . 98

5 Reliability and Learnability of Human Feedback 99
5.1 Human MT Rating Task . 101

5.1.1 Data . 101
5.1.2 Rating Task . 102

5.2 Reliability of Human MT Ratings 102
5.2.1 Inter-rater and Intra-rater Reliability 103
5.2.2 Rater and Item Variance 104
5.2.3 Qualitative Analysis . 108

vii

5.3 Learnability of a Reward Estimator 109
5.3.1 Learning a Reward Estimator 109
5.3.2 Experiments . 111

5.4 Reinforcing MT with Direct and Estimated Rewards 113
5.4.1 Training Objectives . 113
5.4.2 Experiments . 115

5.5 Conclusion . 117

6 Learning from Error Corrections and Markings 121
6.1 Annotation Study . 123

6.1.1 Setup . 123
6.1.2 Analysis . 124

6.2 Adapting MT with Error Corrections and Markings 131
6.2.1 Objectives . 131

6.3 Experiments . 132
6.3.1 Setup . 132
6.3.2 Results . 133

6.4 Conclusion . 137

Part III: Learning to Learn in Interaction

7 Self-Regulated Supervision for Interactive MT 140
7.1 Self-Regulated Interactive Learning 143

7.1.1 Seq2Seq Learning with Various Levels of Supervision . . . 143
7.1.2 Learning to Self-Regulate 146

7.2 Experiments . 148
7.2.1 Architectures . 149
7.2.2 Results . 151
7.2.3 Prospects for Field Studies 157

7.3 Conclusion . 158

8 Thesis Conclusion 160
8.1 Summary . 160
8.2 Limitations and Future Directions 162

Bibliography 165

Acknowledgments 191

viii

Appendix

A Detailed Gradient Derivatives 193
A.1 Derivative of the Score Function 193

B Hyperparameters 195
B.1 SMT Hyperparameters . 195
B.2 NMT Hyperparameters (Ch. 4) 195
B.3 Reward Estimator Hyperparameters (Ch. 4) 195
B.4 NMT Hyperparameters (Ch. 5) 196
B.5 Tuning Token-level Weights . 197
B.6 Hyperparameters for Automatic Marking and Corrections 197

C Examples 199
C.1 eBay Title Translation . 199
C.2 Human Ratings . 199

D Reliability 203
D.1 Rater and Item Variance Filtering 203

E Rating Tasks 204
E.1 Error Marking and Correction Annotator Instructions 204

ix

List of Figures

1 Feedback interfaces for deployed MT systems. 9
2 Diagram of human-in-the-loop machine learning. 10

3 Attention visualization. 25

4 Regret over training iterations. 75
5 Corpus BLEU for development phases. 75
6 Corpus- and sentence-BLEU during training. 76

7 Screenshot: eBay rating interface. 80
8 Histograms of star ratings and simulated ratings. 81
9 Reward estimator architecture. 90
10 Effect of perturbations of translations on the reward functions. . 92

11 User interfaces for 5-point (a) and pairwise ratings (b). 102
12 Reliability after filtering. 105
13 Reward estimator architecture. 112
14 Comparison of estimated simulated ratings and user ratings. . . . 114

15 Duration and effort per sentence for error markings and corrections.125
16 Correction rate by annotation mode. 130
17 Change in TER with training data size. 135

18 Diagram of human-in-the-loop self-regulated learning. 141
19 Stochastic gradients for the Seq2Seq learner. 146
20 Learning procedure of MT and regulator. 148
21 BLEU over cumulative costs and time for regulation variants. . . 152
22 Reg3 actions chosen over time. 154
23 Reg2 and Reg4 actions chosen over time. 155
24 BLEU over cumulative costs for ε-greedy. 156
25 Domain transfer of regulators. 157

1

26 Learned self-regulation strategies. 159

27 Filtering by intra-rater and item-variance threshold. 203

2

List of Tables

1 Chapter overview. 14

2 Test set results for full information and bandit learning. 59
3 Number of iterations until stopping. 60
4 Estimates of gradient norm, Lipschitz constant and variance. . . 61
5 Size of fr-en data splits. 62
6 Baseline results for fully-supervised training. 66
7 Bandit learning results. 67
8 Cumulative rewards during training. 73

9 Examples for five-star user and expert ratings. 82
10 Example of query and product title translation. 83
11 Reward functions. 85
12 Size of collected in-domain data. 89
13 Results for reward estimators. 91
14 Simulation results on public data. 94
15 Simulation results on product titles. 95
16 Results for explicit user ratings. 96
17 Results for implicit user ratings. 97
18 Query recall results. 98

19 Reliability scores for rated translations. 104
20 Correlation between estimated rewards and logged TER. 113
21 Results for fully-supervised models. 116
22 Results for RL models with estimated and direct rewards. 117
23 Examples for in- and out-of-domain translations (selection by

intercept). 119
24 Examples for in- and out-of-domain translations (selection by slope).120

25 Examples of post-editing. 127
26 Examples of markings. 128

3

27 Intra- and Inter-rater agreement. 129
28 Correction statistics. 131
29 Data statistics. 132
30 Results on the test set for feedback from humans. 133
31 Human evaluation. 134
32 Test set results for supervised learning. 136

33 Size of parallel data. 149
34 Examples with feedback costs. 151
35 Evaluation at early stopping point on IWSLT. 153
36 Evaluation of early stopping points on Books. 158

37 Hyperparameters for bandit learners. 195
38 Hyperparameters. 196
39 Impact of marked token weights on translation quality. 197

40 Example product title translations. 199
41 Examples for translations of the logged query test set. 200
42 Examples with lowest and highest deviation in 5-point ratings. . 201
43 Examples with lowest and highest deviation in pairwise ratings. . 202

4

List of Algorithms

1 Bandit Expected Reward Maximization 44
2 Sampling Structures . 45
3 Bandit Pairwise Preference Learning 48
4 Sampling Pairs of Structures . 49
5 Bandit Structured Prediction with Offline Feedback 84
6 Self-regulated Interactive Seq2Seq. 147

5

List of Acronyms

BIN Binary
BEER Better Evaluation as Ranking (Stanojević and Sima’an, 2014)
biLSTM bidirectional LSTM
BLEU Bilingual Evaluation Understudy (Papineni et al., 2002)
BPE Byte-Pair Encoding
ChrF Character F-score (Popović, 2015)
CONT Continuous
CV Control Variate
DC Doubly-Controlled Estimation
DPM Deterministic Propensity Matching
EP Europarl
ER Expected Reward
GRU Gated Recurrent Unit
KSMR Keystroke Mouse Action Ratio
LSTM Long Short-Term Memory
LMEM Linear Mixed Effects Model
METEOR Metric for Evaluation of Translation with Explicit Ordering (Lavie

and Denkowski, 2009)
MDP Markov Decision Process
ML Machine Learning
MLE Maximum Likelihood Estimation
MRT Minimum Risk Training
MT Machine Translation
NC News Commentary
NLP Natural Language Processing

6

NMT Neural Machine Translation
SMT Statistical Machine Translation
PG Policy Gradient
PR Pairwise Ranking
RL Reinforcement Learning
RNN Recurrent Neural Network
sBLEU Per-sentence BLEU
SGD Stochastic Gradient Descent
sQE sentence-level Quality Estimation
TER Translation Error Rate (Snover et al., 2006)
UNK Unknown word
WMT Workshop/Conference on Machine Translation

7

Chapter 1

Introduction

In Natural Language Processing (NLP), most models are trained with full su-
pervision through gold standards. For the task of Machine Translation (MT),
these are reference translations. The generation or collection of these references
requires large amounts of expertise and cost, for example by professional trans-
lators or skilled bilinguals. With millions of translations collected e.g., from
multilingual news, parliament proceedings or web crawls, the quality of MT
models has now reached a level where they are widely deployed in products for
end users, e.g., as a stand-alone translation service (Google Translate1, Bing
Translator2, DeepL Translator3) or integrated into e-commerce websites (eBay,
Amazon) or social media platforms (Facebook, Instagram).

Users translate custom requests, products, postings, websites—and whatever
their use case is, they interact with the system and use its output for their purpose.
In most of the cases, they have much lower expertise in the translation task than
professional translators, but they might still be able to indicate whether the
translation is good enough (Does the output make any sense?), point out obvious
mistakes (Does this word fit the context?), or tell whether the translation helped
them to reach their goal (Does this translation serve its purpose?). This type of
weak feedback collected from non-experts and users is the learning opportunity
that this thesis aims to exploit. We phrase it as a Reinforcement Learning (RL)
problem: In interaction with the feedback provider, the model is trained to
maximize the obtained reward.

Thanks to advances in Deep Learning (DL), the end-to-end training of deep
artificial neural networks with backpropagation, recent progress in RL reported
first successes in scaling to large action spaces (Mnih et al., 2015; Silver et al.,
2016), and, as a result, got adopted for Sequence-to-Sequence learning (Seq2Seq)
(Bahdanau et al., 2015) with exponential output spaces. In NLP, Seq2Seq
with reinforcement learning signals was successfully applied to semantic parsing
(Liang et al., 2017), summarization (Paulus et al., 2017), or the task in the focus
of this thesis—machine translation (Bahdanau et al., 2017). However, these
RL approaches simulate reward signals from gold standards with task-specific

1https://translate.google.com/
2http://www.bing.com/translator
3https://www.deepl.com/translator

8

https://translate.google.com/
http://www.bing.com/translator
https://www.deepl.com/translator

(a) Rating interface: Facebook. (b) Rating interface: eBay.

Figure 1: Example interfaces for Likert-scale ratings in commercially deployed
MT systems: Facebook (a) and eBay (b).4

evaluation metrics such as BLEU, F1 score, or ROUGE as reward functions, in
order to reduce the mismatch between training objective and evaluation metric
(Ranzato et al., 2016).

This thesis, in contrast, aims to improve Seq2Seq learning through rein-
forcement from weak human feedback directly. The central research question
of this thesis is how and when machine translation can be improved with weak
feedback . We approach this by developing policy learning algorithms suitable
for online and offline feedback, with absolute and relative feedback of varying
strength on sequence- and token-level, and test them in simulated and real-world
applications. The goal is to enable users of deployed machine translation systems,
such as in the examples provided above, to express the quality of the translation
and their satisfaction through simple interfaces that do not require much time
nor effort, and are flexible enough to account for various levels of expertise.
Furthermore, these feedback mechanisms should offer a way to personalize MT
systems to specific contexts and domains that general models are not built for,
without having to provide reference translations. From a broader perspective,
the integration of such feedback mechanisms pave the way to a more natural
interaction with machine learning models, and a technique for humans to control
their output.

At the current stage, interfaces for gathering weak feedback exist, for example
for Facebook and eBay translations (Figure 1), but it is not transparent whether
and how the feedback is used to improve the system. The collected feedback is
often utilized for “static” evaluation purposes or market analysis. In scenarios
where the human is considered the teacher or expert for an NLP system, for ex-
ample in post-editing for Computer-Aided Translation (CAT), model adaptation
from human feedback is adopted more widely, as for example in commercial CAT
tools like MateCat5 and Lilt6 (Wuebker et al., 2015; Sanchis-Trilles et al., 2014,
inter alia). This adaptation mode requires expert knowledge and is thus limited

5https://www.matecat.com/
6https://lilt.com/

9

https://www.matecat.com/
https://lilt.com/

prediction

reward

(a) Collecting online feedback.

reward

log

prediction

(b) Collecting offline feedback.

Figure 2: Human-in-the-loop machine learning with online or offline feedback.
The robot head represents the machine learner and the human face the human
that the machine is interacting with. Model predictions are shown to the human
to receive feedback in the form of rewards. If the feedback is online, it can
directly be used to update the model. If it is offline, it is first collected in a log.
In that case logging and learning system might not be identical.

to the small group of translators. We show that weak feedback from non-experts
can serve for model adaptation. We analyze the characteristics of this type
of feedback and provide recommendations for a successful implementation in
practice.

Figure 2 illustrates how the interaction with humans in the loop differs
depending on the feedback availability: If feedback is available online, the
machine learning system can directly use it to update its parameters. If it is
collected offline, interacting and learning system might not be identical. It is
first stored in a log and then used for updating the parameters of the learning
system. The larger the gap between logging and learning system, the harder is
the learning problem. We have to address the counterfactual question, which
feedback the learning model would have gotten, had it been in place of the
logging system.

The distinction between these two learning paradigms plays a crucial role in
the design of our algorithms and user studies: Only offline feedback can easily be
collected for MT systems deployed in the real world, due to the requirement of
real-time feedback and updates. Thus our empirical studies with online feedback
will be limited to simulations. In addition to the algorithms, we also emphasize
the importance of the quality and characteristics of the collected feedback. We
show how normalization and filtering techniques and the design of suitable
interfaces can influence the success of the machine learner.

10

1.1 Contributions

The main contributions of this thesis can be summarized as the following:

1. We develop algorithms for bandit structured prediction in online and offline
learning scenarios.

2. These algorithms are applied and evaluated in simulated and real-world
human-in-the-loop machine translation tasks on standard public domains
(news and talks) and specialized user-generated domains (e-commerce
products).

3. We provide an analysis of the impact on feedback interfaces on the success
of reinforcement learning from human feedback.

4. The cost and effectiveness of weak vs. strong supervision is quantified.

5. We propose a novel unified perspective on cost-sensitive interactive learning
across supervision modes by approaching it as a meta-learning problem.

We believe that these contributions smooth the path towards larger scale adoption
of human-in-the-loop learning paradigms for NLP applications. We provide a
broad investigation of the human factor in interactive structured prediction and
the importance of the role of interfaces in human-in-the-loop machine learning.
Our algorithms are developed for and applied to a variety of domains, feedback
modalities, and learning paradigms.

1.2 Publications

Large parts of this thesis have appeared in peer-reviewed publications. We list
these publications below. The individual contribution of the author of this thesis
to these publications is described in the beginning in each of the chapters.

1. Artem Sokolov, Julia Kreutzer, Christopher Lo, and Stefan Riezler. 2016a.
Learning structured predictors from bandit feedback for interactive NLP.
In Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics. Berlin, Germany

2. Artem Sokolov, Julia Kreutzer, Stefan Riezler, and Christopher Lo. 2016b.
Stochastic structured prediction under bandit feedback. In Advances in
Neural Information Processing Systems (NeurIPS). Barcelona, Spain

3. Julia Kreutzer, Artem Sokolov, and Stefan Riezler. 2017. Bandit structured
prediction for neural sequence-to-sequence learning. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(ACL). Vancouver, Canada

11

4. Artem Sokolov, Julia Kreutzer, Kellen Sunderland, Pavel Danchenko,
Witold Szymaniak, Hagen Fürstenau, and Stefan Riezler. 2017. A shared
task on bandit learning for machine translation. In Proceedings of the Sec-
ond Conference on Machine Translation (WMT). Copenhagen, Denmark

5. Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler.
2018a. Can neural machine translation be improved with user feedback?
In Proceedings of the 16th Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies - Industry Track (NAACL-HLT). New Orleans, LA, USA

6. Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. 2018b. Reliability
and learnability of human bandit feedback for sequence-to-sequence re-
inforcement learning. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (ACL). Melbourne, Australia

7. Julia Kreutzer and Stefan Riezler. 2019. Self-regulated interactive sequence-
to-sequence learning. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL). Florence, Italy

8. Julia Kreutzer, Nathaniel Berger, and Stefan Riezler. 2020. Correct me
if you can: Learning from error corrections and markings. In Proceedings
of the 22nd Annual Conference of the European Association for Machine
Translation (EAMT). Virtual

The Joey NMT toolkit that was developed for the experiments in Chapters 6
and 7 was published in the following paper:

• Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler. 2019. Joey NMT:
A minimalist NMT toolkit for novices. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations. Hong Kong, China

1.3 Released Software and Data

Over the course of the dissertation, the landscape of tools and methods in
machine translation changed drastically and rapidly. While the works from 2016
were based on the cdec framework for SMT (Dyer et al., 2010), later works were
implemented on top of deep learning libraries (TensorFlow and PyTorch) and
NMT toolkits based thereon, namely Neural Monkey (Helcl and Libovický, 2017)
and Joey NMT (Kreutzer et al., 2019). The following three MT toolkits have
been “banditized” over the course of the research for this dissertation:

12

1. bandit-cdec, a version of cdec (Dyer et al., 2010) that can learn online
from absolute and relative feedback, used in (Sokolov et al., 2016a,b, 2017):
https://github.com/juliakreutzer/bandit-cdec.

2. bandit-neuralmonkey, a version of Neural Monkey (Helcl and Libovický,
2017) that can learn from offline and online absolute feedback, used in
(Kreutzer et al., 2017; Sokolov et al., 2017; Kreutzer et al., 2018b):
https://github.com/juliakreutzer/bandit-neuralmonkey.

3. bandit-joey, a version of Joey NMT (Kreutzer et al., 2019) that can learn
from offline absolute feedback on sequence and token-level, and meta-learn
to balance various supervision strengths, used in (Kreutzer and Riezler,
2019) and (Kreutzer et al., 2020):
https://github.com/juliakreutzer/bandit-joeynmt.

The feedback collected in (Kreutzer et al., 2018b) and (Kreutzer et al., 2020)
was compiled into a data set of human machine translation ratings (five-star
and pairwise ratings, corrections and error markings), called “HumanMT”,
available for download at http://www.cl.uni-heidelberg.de/statnlpgroup/
humanmt/.

1.4 Outline

Each chapter approaches the central research question—how machine translation
can be improved from weak human feedback—from a different angle, with the
focus either on algorithms, human interaction, or applications, in order to find
answers for smaller aspects of this general question (see Table 1 on page 14
for a systematic comparison). The following research questions may serve as a
guidance to the individual chapters of this thesis:

1. Which algorithms are suitable for learning from weak feedback in MT?
→ Online learning in Chapter 3 vs. offline learning in Chapters 4 and 5.

2. How can one learn from feedback for MT in production?
→ Chapter 4

3. What is the influence of the feedback interface?
→ Chapter 5

4. How much cheaper is weak feedback than post-edits?
And how effective is it in comparison? → Chapter 6

5. How can we find cost-efficient interactive learning strategies?
→ Chapter 7

13

https://github.com/juliakreutzer/bandit-cdec
https://github.com/juliakreutzer/bandit-neuralmonkey
https://github.com/juliakreutzer/bandit-joeynmt
http://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/
http://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7

Policy

Learning
online x x
offline x x x

Parametrization
shallow x
deep x x x x x

Feedback

Source
simulation x x x x x
human x x x

Type
absolute x x x x x
pairwise x x

Granularity
token x x x
sequence x x x x

Collection
explicit x x x x x
implicit x

Data

Domain
e-commerce x x
TED x x x x
news x x
books x

Language
fr→en x x
en→es x
de→en x x
en→de x

Table 1: Overview over policies, feedback, and data used in the experiments in
each of the chapters. Gray entries mean that these were auxiliary experiments,
e.g. for comparing the experiments with human feedback to simulated feedback.

14

We start with an overview of the background of this work in Chapter 2,
including an outline of reinforcement and bandit learning and models of machine
translation, and a summary of previous human-in-the-loop reinforcement learning
studies. The remainder is grouped into three parts: Part I focuses on learning
from online feedback in simulation, Part II investigates offline feedback, and Part
III develops a meta-learning strategy that integrates reinforcement learning with
fully supervised and unsupervised learning to find the most efficient interaction
paradigm.

Chapter 3 presents the first reinforcement (or bandit) learning algorithms
for machine translation that learn from online feedback in interaction with
a simulated user. We first evaluate them on a range of simulated domain
adaptation or personalization tasks, including a shared task on e-commerce
data. We continue with the presentation of algorithms for learning from offline
feedback and their evaluation on large-scale real human feedback data, elicited
explicitly or implicitly from an e-commerce website in Chapter 4. Inspired by the
difficulties caused by noise in the explicit ratings in these experiments, Chapter 5
investigates the effects of feedback interfaces (absolute vs relative feedback) on
feedback reliability, learnability and effectiveness in a down-stream learning
task in a smaller-scale experiment with semi-professional raters instead of users.
Chapter 6 continues with a comparison of learning from strong supervision
in the form of error corrections and weak supervision in the form of error
markings, quantifying the trade-off between human supervision effort and machine
improvement. Combining weakly-supervised learning with full supervision and
self-training in one single training algorithm, Chapter 7 introduces a meta-learner
for self-regulation that directly learns to balance supervision cost and effectiveness.
We conclude this thesis with Chapter 8 discussing the limitations of the presented
algorithms and training scenarios and pointing towards promising directions for
future research. Table 1 gives an overview over the policies, feedback, and data
used in each of the following chapters of this thesis.

15

Chapter 2

Background

This chapter describes the machine learning techniques and algorithms that this
dissertation builds on. First, we introduce the task of machine translation and
summarize the standard modeling approaches (Section 2.1). Then we discuss two
paradigms for learning from interaction (Section 2.2), namely reinforcement and
bandit learning, with a focus on human-in-the-loop approaches (Section 2.2.4).
Finally, Section 2.3 discusses the challenges for applying reinforcement learning
methods to the task of machine translation that will become relevant for the
empirical studies conducted in later chapters.

2.1 Machine Translation

In the following, we will define the task of machine translation (Section 2.1.1),
and then briefly describe two families of models, statistical and neural models,
and their common training algorithms. The main focus hereby lies on neural
approaches, as they now constitute state of the art and are used predominantly
in this thesis. For a complete technical overview and in-depth details we refer
the reader to the seminal book by Koehn (2009), and for an historic overview of
early approaches to the book by Hutchins (2000).

2.1.1 Task Definition

Modeling translation. Given a source sentence x consisting of a sequence of
words, a translation model should produce the best translation of all possible
translations y ∈ Y consisting of words in the target language (Brown et al., 1988,
1993):1

arg max
y∈Y

P (Y = y | X = x). (1)

The notion of “the best” in translation is rather fuzzy since it varies from context
to context, the task is simplified to produce one given reference translation. We

1The translation model was originally derived in a “noisy channel” model that describes the
generative process of a translation with a target language model for modeling p(y) and a noise
model p(x | y), such that: ŷ = arg maxy p(y | x) = arg maxy p(x | y)p(y).

16

furthermore limit the scope to pairs of aligned sentences, which most of machine
translation research has focused on.2 From now on, we will write p(y | x) in
place for P (Y = y | X = x).

Decoding. Decoding, the task of finding the best translation under the model,
is NP-complete (Knight, 1999), since the number of possible translations grows
exponentially with the length of the source sequence. Building a translation, one
can choose one of many possible words of the target vocabulary for each of a
number of positions in the sentence. Considering all possible options in all steps
for producing a single translation is computationally too expensive, so instead of
exact decoding, we resort to approximate decoding algorithms, such as greedy
or beam search. In greedy decoding, search focuses on the single best scoring
partial hypothesis in each step, while in beam search, a number of k alternatives
is considered and compared in each step.

Discriminative training. The objective for training a machine lerning model
with parameters θ is to find the parameters that maximize the conditional
log-likelihood of the reference translation given the source:

arg max
θ

log pθ(y | x). (2)

The trained models will be able to discriminate between good and bad translations,
by assigning them either high or low probabilities. The probabilities are obtained
from a scoring function that produces a scalar for a pair of x and y. This scoring
function is parametrized with weights θ, building for example a log-linear or a
neural model, as we will discuss in the following sections. The log-likelihood
is differentiable with respect to the model weights, so they can be trained
with gradient-based optimization, such as stochastic gradient ascent (Bottou,
2004). The highest scoring translation corresponds to the “best” translation
under the translation model (the maximum a posterior translation, MAP). We
speak of the training data for such models as parallel corpora D which contain
sentence-aligned pairs of sources and targets (x, y) ∈ D.

Evaluation. Using reference translations also enables us to use automatic
metrics for translation quality evaluation instead of asking humans, which is
costly and impracticable where frequent evaluations are needed. The metrics
that we will use in the experiments of this thesis are listed below. Since none of
these metrics in isolation is sufficient to judge translation quality (for example

2Document-level information has recently started to draw more attention, e.g. as it was
introduced as dedicated shared task in the 2019 WMT evaluation (http://www.statmt.org/
wmt19/translation-task.html).

17

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html

BLEU neglects translations with a high recall)3, we report several metrics instead
of one to capture different aspects of the translation quality or to confirm general
trends across metrics.

• BLEU (Bilingual Evaluation Understudy) was introduced by Papineni
et al. (2002). It is a precision-based metric that builds a geometric mean of
precision scores of n-grams up to a certain length (N = 4 in our case) with
a penalty for proposed translations y′ that are longer than the reference
translation y:

BLEU4(y′, y) = min(1, exp(1− |y
′|
|y|

))(

4∏
n=1

precisionn)
1
N , (3)

where precision measures the ratio of matching n-grams in the proposed
translation. BLEU returns a score between 0 and 1, where 1 expresses
the perfect matching of the reference translation. It was introduced as a
corpus-level metric aggregating the statistics over a whole corpus of (in the
best case multiple) reference translations, but we will use its sentence-level
variant for simulated quality judgments as well (sentence BLEU, sBLEU).
On the sentence level, smoothing becomes important to prevent individual
n-gram precisions from being zero, e.g., by replacing n-gram match counts
of zero with a small number ε in the calculation of precision. The choice of
smoothing technique has in influence of how well the sentence-level scores
correlate with human judgments (Chen and Cherry, 2014).

• TER (Translation Error Rate) was proposed by Snover et al. (2006). It
computes the ratio between the minimum number of edits (insertions, dele-
tions, substitutions, shifts of word sequences) that the machine translation
y′ would need to be transformed into the reference translation y:

TER(y′, y) =
#edits(y′, y)

|y|
(4)

Due to the division by |y′|, the TER does not have an upper limit, but lower
scores express higher quality due to fewer edits needed. The number of
edits is approximated with dynamic programming for the minimal number
of insertions, deletions and substitutions, and greedy search over shift
locations.

• METEOR (Metric for Evaluation of Translation with Explicit Ordering)
was developed by Lavie and Denkowski (2009). It is the only of these
metrics that goes beyond surface-level matching and includes stemming and

3See Section 8.2.7 in (Koehn, 2009) for a deeper discussion.

18

synonyms. While it has better linguistic grounding than the surface-level
metrics, it requires language-specific resources and higher computational
effort.

• BEER (Better Evaluation as Ranking) was proposed by Stanojević and
Sima’an (2014). It is a trained linear model that combines a set of dense
features into one score. In contrast to the two previous metrics, it also
includes character-level information about the character n-gram matches
between proposed and reference translation. It correlates well with human
judgments on sentence and corpus level (Bojar et al., 2016a).

Domain Adaptation. Large collections of parallel data are available for texts
like parliament discussions (Tiedemann, 2012), news commentaries (Tiedemann,
2009), or patents (Wäschle and Riezler, 2012). The quality of machine translation
systems is largely dependent on the training data size, so for these domains
well-trained systems can be built. However, these domains might not capture
the style, genre or topic, that end-users of translation are interested in. For
that purpose, domain adaptation techniques exist that adapt an already trained
MT system to new domains. Over the course of the thesis we will present
several domain adaptation strategies with various level of supervision, to obtain
translations for example for e-commerce product titles (Section 3.5).

2.1.2 Statistical Machine Translation

Whilst later chapters contain experiments solely with neural models, Chapter 3
reports experiments with a log-linear model based on a weighted synchronous
context-free grammar (SCFG). Therefore we focus on this type of statistical
machine translation (SMT) model in this introduction. As an instance of tree-
based SMT it has the advantage over phrase-based SMT (Koehn et al., 2003) of
being able to account for gaps in phrases.

Tree-based SMT. In tree-based SMT, source and target are represented ac-
cording to their hierarchical structure as a pair of trees. An SCFG grammar con-
sists of weighted production rules, where cross-lingual rules relate non-terminals
of source and target language, i.e., syntactic constituents like noun (NP) or verb
phrases (VP) or just abstract identifiers, and terminal symbols, i.e., the words
itself. Consider for example the following excerpt from an SCFG for rules for a

19

phrase in English (“the delicious bagel”) and French (“le bagel délicieux”):

NP
0.2−→ DET1 NN2 JJ3 | DET1 JJ3 NN2

NN
0.9−→ bagel | bagel

DET
0.6−→ le | the

JJ
0.3−→ délicieux |delicious

Non-terminals are indexed so that they can be matched correctly in case of
multiple occurrences. Each rule has a probabilistic score, and the product of
all rules applied to a sentence form the score of the whole translation. This
score can be combined with other scores, e.g., from language models. In practice,
constraints for the construction of rules are applied to reduce parsing complexity,
e.g., at most two non-terminal symbol per rule (Chiang, 2005). Before training
the weights of the log-linear model (see below), hierarchical rules are extracted
from a parallel corpus with word alignments, i.e., mappings between words of
both languages, and optionally syntactic parses.

Log-linear model. In these type of models, a log-linear model produces
scores for pairs of source and target sentences (Och and Ney, 2002). The feature
mapping function φ(x, y) : X ×Y 7→ Rd of this log-linear model produces a vector
from a range of feature extractors, e.g. the tree scores, language model scores
for the whole sequences pLM (y) or pLM (x), or alignment scores. If the feature
functions are parametric models themselves, they are trained before training the
model parameters w ∈ Rd. The feature extractors that we use in the experiments
are described in Section 3.4.1.

p(y | x) =
exp(wTφ(x, y))∑

y′∈Y exp(wTφ(x, y′))
(5)

In the study below we will speak of dense and sparse SMT models. Dense models
have a low-dimensional w expressing dense features, such as continuous language
model scores. Sparse models, on the other side, have high-dimensional feature
vectors with sparse entries, such as binary indicators for the occurrence of a word
in the context.

Training. When we train the weights w of the model to maximize the log-
likelihood (2) of the references, we are not directly optimizing the weights for
obtaining a high evaluation score (e.g. BLEU). Minimum-Error-Rate-Trainig
(MERT) (Och, 2003) alleviates that by iteratively optimizing the individual entries
of w (while holding the others constant) to achieve an overall minimum error
rate, or equivalently a maximum BLEU score, for a collection of k-best outputs

20

(see details in (Lopez, 2008)). This approach is not feasible for models with a
large number of features. For sparse models we therefore use the Margin Infused
Relaxed algorithm (MIRA) instead (Crammer and Singer, 2003; Watanabe et al.,
2007). This algorithm minimizes a structured hinge loss with online updates
that increases the margin between better and worse translations.

Re-ranking vs. re-decoding. In domain adaptation experiments, we adapt
one translation system from one domain to a new domain, e.g., a translation
system trained on news to translate tweets. For SMT, there are two common
options. One is to learn to re-rank the top k translations by the original system
by learning a new ranking function, such that a translation that was considered
not that good on the old domain, will then get ranked higher for the new domain
(or vice versa). Alternatively, one can adapt the model weights directly by
switching the training data from the old to the new domain. This results in
re-decoding with the new model, which means the new model has to generate
completely new translations. In the experiments in Chapter 3 we will present
results for both adaptation strategies.

2.1.3 Neural Machine Translation

The main difference between SMT and NMT is the parametrization of the
translation model and the representations of inputs and outputs. In NMT, a
artificial neural network (NN) with thousands to millions of weights organized in
layers replaces the one-layer linear model in SMT. The scoring function becomes
non-linear due to the use of non-linear activation functions that loosely mimic
activations of neurons in the brain. The successful and wide-spread adoption of
neural models, or deep learning was largely influenced first by the work of Bengio
et al. (2003), who introduced a neural language model, then Collobert et al.
(2011), who learned several NLP tasks with a neural network with a minimal
amount of hand-defined features, and lastly by the invention of embeddings
that represent words as continuous vectors (Mikolov et al., 2013b,a). The first
successes with neural models for MT were published only a few years later
(Kalchbrenner and Blunsom, 2013; Sutskever et al., 2013, 2014; Cho et al., 2014;
Bahdanau et al., 2015).4 This section gives a brief introduction into the workings
of an NMT system. For a general introduction of neural networks and deep
learning for NLP we refer the reader to the primer by Goldberg (2016).

4Credits for earlier development of the idea go to (Neco and Forcada, 1997; Castano and
Casacuberta, 1997).

21

Sequence-to-sequence learning. Neural models for machine translation are
considered as an example for sequence-to-sequence learning (Seq2Seq). These
models relate a sequence of input tokens x = x1 . . . xS , to a sequence of out-
put tokens y = y1 . . . yT , with both sequences being of arbitrary length. A
Seq2Seq translation model is trained to maximize the log-likelihood of the correct
translation y given the source x (Equation 2). The conditional probability of a
translation pθ(y | x) is factorized into probabilities over single tokens conditioned
on the history of preceding target tokens y<t:

pθ(y | x) =

T∏
t=1

pθ(yt | x, y<t). (6)

In contrast to tree-based SMT, we thus treat the input as a sequential structure
without hierarchical sub-structures. The decoder acts like a target language model
conditioned on the source. Note that there is no Markov assumption (unlike in
traditional n-gram language models), i.e., each target token is conditioned on
the complete history of previous target tokens.

Local normalization. The scores for each individual output token of the

vocabulary Vtrg form a discrete probability distribution, i.e.,
∑|V|

j=1 pθ(yt = j |
x, y<t) = 1, by locally normalizing the outputs of the neural network for each
decoding step with a softmax transformation (cf. Eq. 5)

pθ(yt = i | x, y<t) =
exp(oi)∑|Vtrg |

j=1 exp(oj)
, (7)

where o ∈ R|Vtrg | is the output vector of a neural network that processes x
and y<t (e.g., a recurrent, convolutional or attentional network). Each entry oi
represents the model score for a specific token of the target vocabulary Vtrg.

End-to-end training. In contrast to SMT, learning is done end-to-end, with-
out much pre-processing or linguistic feature extraction pipelines. With the help
of back-propagation (Rumelhart et al., 1986), the repeated application of the
chain rule for weights along the computation path, the error signal obtained at
the output of the network can be used to compute gradients in lower layers of
the network. As long the loss function is differentiable with respect to the model
weights, all weights can be adjusted with gradient updates. Suitable representa-
tions for input and output tokens, and intermediate levels of processing, such
as the representation of a partial hypothesis, are learned on the fly. Due to the
depth and non-convexity of the function and the size of the parameter space,
training tricks like adaptive learning rates, momentum, gradient clipping, and
carefully-tuned initialization techniques are required to find good local maxima
and to speed up convergence (Sutskever et al., 2013).

22

Embeddings. Input and output tokens are represented as sparse one-hot
vectors with indices over the source or target vocabulary. They further get
embedded, i.e., represented as dense vectors xs ∈ Rdsrc , yt ∈ Rdtrg by multiplying
them with either the source or the target embedding matrix Esrc ∈ R|Vsrc|×d,
Etrg ∈ R|Vtrg |×d. The embedding matrices contain one vector representation for
every token in the vocabulary. Instead of using a separate matrix for the source
vocabulary and the target vocabulary, one can also use a joint one, for sharing
representations across source and target language. These embedding matrices
are part of the set of model weights θ that are trained and initialized randomly.

Encoder-decoder architecture. Seq2Seq is modeled with a neural archi-
tecture consisting of an encoder and a decoder (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015). The encoder reads the source sentence, and
the decoder generates the target sentence word by word, conditioned on the
encoded source. Attention modules allow learned connections between encoder
and decoder or within encoder or decoder (Bahdanau et al., 2015; Vaswani et al.,
2017). Recurrent (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al.,
2015), convolutional (Gehring et al., 2017) or fully attentional neural networks
(Vaswani et al., 2017) (or a mix thereof (Chen et al., 2018)) are common choices
for encoder and decoder. In this thesis, we focus on recurrent architectures, but
the proposed training algorithms for integrating feedback are in principle not
limited to recurrent models.

Recurrent encoder. The input to the encoder is the sequence of embedded
tokens x = x1 . . .xS representing the source of length S. With a recurrent neural
network (RNN) (Elman, 1990) the sequence of inputs is encoded into a sequence
of hidden states:

hs = RNN([Esrcxs,hs−1]) (8)

h0 = 0. (9)

Gated RNNs like Gated Recurrent Units (GRU) (Chung et al., 2014; Cho et al.,
2014) or Long-Short-Term-Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
were shown to outperform the vanilla Elman-RNNs (Elman, 1990), since they
prevent gradients from vanishing over long recursive gradient computations. The
RNN reads the inputs sequentially and updates its internal state in every step.
Gates control which parts of the inputs are written into memory, which parts
of the memory are discarded and how the memory is updated. We refer the
reader to (Lipton et al., 2015) for an in-depth introduction and discussion of
RNN variants.

23

Stacking. Several RNN layers can be stacked by feeding the hidden state
sequence h1, . . . ,hS as input to another RNN, which in turn outputs a new
sequence of vectors. The sequential processing of the inputs from left to right
may limit the expressiveness of the resulting hidden states, which bi-directional
RNNs alleviate. They consist of two RNNs, where one receives the input sequence
in the original order (the forward RNN) and the other in reversed order (the
backwards RNN). The output of the forward and the backward RNN are then
combined, e.g., by concatenation, and serve as inputs to higher layers.

Recurrent decoder. We define the attentional recurrent decoder following
(Luong et al., 2015a) and borrow the notation from (Kreutzer et al., 2020). The
decoder transforms the output of the encoder into a sequence of output vectors
o1, . . .oT of the size of the target vocabulary ot ∈ R|Vtrg |. The RNN decoder
state is computed from the concatenation of the embedded previous target token
and an attentional state s̃, which in turn is the output of a linear layer combining
decoder state and a context vector ct.

st = RNN([Etrgyt−1; s̃t−1], st−1) (10)

s̃t = tanh(Watt[st; ct] + batt) (11)

There are multiple options to initialize the first decoder state s0, e.g., with zeros,
or as a transformation (identical, linear or non-linear) of the last encoder state.
The output vectors are computed from the attentional decoder states:

ot = Wouts̃t + bout (12)

Attention. The context vector ct serves the purpose of allowing individual
connections between each decoder and encoder state. It is of a weighted average
of all encoder states, where the weighting is learned.

ct =
∑
s

ast · hs (13)

ast =
exp(score(st−1,hs))∑S
k=0 exp(score(st−1,hk))

(14)

There are various options for the scoring function, such as a multi-layer-perceptron
(MLP) (Bahdanau et al., 2015) or a bilinear transformation (Luong et al., 2015a).
When generating an output at step t, the encoder states are weighted differently
than for the steps before or after. Intuitively, this models something similar
to the word alignments for SMT, but rather in a soft way. Figure 3 (page 25)
visualizes the attention weights ast for each pair of source token (German) and
target token (English). One can see that the attention when generating “a” is

24

Figure 3: Learned attention weights for an example from the IWSLT (de-en)
corpus. Bright: high weight, dark: low weight.5

widely spread across the second half of the source sentence, which does not fit
the interpretation of classic word alignments.

Maximum likelihood estimation. Since this encoder-decoder architecture
is fully differentiable with respect to its weights (with back-propagation through
time (Mozer, 1995)), it can be trained with gradient descent methods. Given
a parallel training set of k source sentences and their reference translations
D = {(x(i), y(i))}ki=1, we define the token-level Maximum Likelihood Estimation
(MLE) objective, which aims to find the parameters that maximize

JMLE(θ) =
k∑
i=1

log pθ(y
(i) | x(i)) (15)

=

k∑
i=1

T∑
t=1

log pθ(yt | x(i), y
(i)
<t). (16)

In the context of this thesis, we refer to the MLE objective as fully-supervised
training. It is non-convex for the case of neural networks. A trick of the trade
is to ensemble several models with different random initialization to improve
over single models (Luong et al., 2015a). While target token predictions are
conditioned on reference tokens during training (teacher forcing), they are
conditioned on model outputs during inference. Beam search expands, scores

5Example taken from the Joey NMT (Kreutzer et al., 2020) tutorial (https://joeynmt.
readthedocs.io/en/latest/tutorial.html).

25

https://joeynmt.readthedocs.io/en/latest/tutorial.html
https://joeynmt.readthedocs.io/en/latest/tutorial.html

and prunes translation hypotheses token by token and usually produces outputs
of higher quality than plain greedy decoding for every token.

2.2 Learning from Interaction

2.2.1 Reinforcement vs. Bandit Learning

Bandit and reinforcement learning both stand in contrast to fully-supervised
training with reference or gold outputs. Both learning paradigms cover learning
in interaction, where the model interacts with the world and learns from rewards
it receives from it. For our use case these two paradigms are of great interest,
since they will allow us to leverage weak feedback for MT training. This section
highlights the commonalities and differences of both paradigms before we discuss
how to apply them to machine translation.

Reinforcement Learning

In reinforcement learning (RL), the learner receives supervision signals by in-
teracting with an environment. As opposed to supervised learning, there is no
gold truth for the interactions available, that means that the learner does not
know which action would have been the best choice in which situation. Instead,
the learner has to rely on a scalar reward from the environment, that can be the
increase of a score in a game, the accomplishment of a task goal, or an affirmative
signal from a human. Only after the agent made a decision and executed an
action will it receive feedback on the quality its action, sometimes even only
after a sequence of interactions. The overall goal of the learner, or agent, is to
maximize the cumulative reward.6

Modeling decision making. When the agent can fully observe the states,
its sequential decisions making problem can be formalized as a Markov Decision
Process (MDP). An MDP < S,A, T ,R,γ > consists of

• A finite set of states s ∈ S. The states are Markovian, i.e., future states
are only conditionally dependent on the current state and not the whole
trajectory.

• A finite set of actions a ∈ A, which can be discrete or continuous.

• A state transition function T : S ×A 7→ S that describes which state the
agent ends up in when taking action a from state s, either deterministic or
stochastic.

6We refer the reader to the book by Sutton and Barto (1998) for a thorough introduction.

26

• A reward function R : S × A 7→ R from the environment that expresses
whether a state-action pair should be encouraged (high reward) or discour-
aged (low reward).

• A discount factor γ ∈ [0, 1] that is applied to future rewards.

Trajectories. A sequence of states, actions and rewards τ = (s0, a0, r0,
s1, a1, r1, . . . , sT , aT , rT) is called a trajectory. In applications, rewards are often
not available after an atomic action, but only after a full trajectory of length
T , e.g., after finishing a game or completion of a translation or utterance. In
contrast to supervised learning, data is non i.i.d. because past actions influence
future states, and the reward function is not transparent to the agent.

Applications. Reinforcement learning has been applied for a wide range of
interactive tasks. These include agents that are developed for interactions with
the real world such as in robotic manipulation (Gu et al., 2017), or autonomous
driving (Michels et al., 2005), and agents that operate in virtual environments
such as in games like Go (Silver et al., 2017) or computer games like Atari (Mnih
et al., 2013). For Seq2Seq, the decoder can be seen as a reinforcement learning
agent with continuous states and chooses discrete tokens from the vocabulary
as actions. The transition function is deterministically defined by the decoder
RNN weights. The reward-producing “environment” could be a user that reacts
to partial translations (such as in interactive-predictive MT), or a database that
returns the desired information after completing a query. We will explain in
Section 2.3 how Seq2Seq learners can be trained as agents in an RL environment.

Bandit Learning

Multi-armed bandit learning can be understood as a reduced instance of rein-
forcement learning with a one-step MDP. It does not have any notion of states
or transitions.7 Actions can be seen as arms of a range of one-armed bandit
slot machines with unknown reward distributions. Just like in reinforcement
learning, the agent has to balance exploitation, i.e., choosing the empirically most
rewarding arm, and exploration, i.e., trying out arms that were not as rewarding
or have not been chosen as frequently before. Contextual bandits (Agarwal et al.,
2014), a subset of bandit learning algorithms, allow decisions to be made given
a specific context, for example document or image features, and form the most
suitable class of bandit algorithms for NLP. We refer the reader to (Szepesvári,
2009) for an overview of algorithms for reinforcement learning and their relation
to bandit learning.

7We follow the definitions in the survey by Bubeck and Cesa-Bianchi (2012).

27

Minimizing regret. The agent’s task is to choose the arm with the lowest
expected regret over a horizon of T learning steps,8 i.e., the smallest expected
difference in reward to the best arm9

E[RT] = E

[
max
a′∈A

T∑
t=1

R(a′)−
T∑
t=1

R(at)

]
. (17)

The expectation is taken with respect to rewards and actions, omitted for brevity.
The challenge lies in learning with partial feedback, that means that the

reward function is not fully revealed to the learner and that there is no access
to rewards for alternative arms. We speak of bandit feedback when the reward
function is only evaluated for exactly one arm (Swaminathan and Joachims,
2015a).

Applications. The greatest success of contextual bandit learning in practice
has been to replace A/B-testing in production environments, for example in online
advertisement (Chapelle et al., 2014), news recommendation (Li et al., 2010), or
clinical trials (Durand et al., 2018). In NLP, they have been reported successful
in extractive summarization (Dong et al., 2018) and structured prediction tasks
like chunking and machine translation (Sokolov et al., 2016b,a; Sharaf and Daumé
III, 2017), which we will discuss extensively in Chapter 3. However, for the
task of sequence-to-sequence learning with combinatorial action spaces, i.e., an
exponential number of arms, deep parametrized policies, and a need for strong
generalization, popular bandit learning algorithms (UCB (Auer, 2002), EXP4
(Auer et al., 2002), ε-greedy (Sutton and Barto, 1998), and Thompson sampling
(Thompson, 1933)) fall short in terms of practical guarantees and scalability
(Bubeck and Cesa-Bianchi, 2012). In the following, the main focus will thus lie on
the reinforcement learning perspective on the problem of sequence-to-sequence
learning. But since the SMT models produce one translation (one trajectory)
at once without intermediate prediction steps or states, it resembles the bandit
learning problem.

2.2.2 Policy Optimization

How does the agent decide which action to choose next? It follows a policy,
which is a function π : S 7→ A, that defines a distribution over actions depending
on the current state s:

π(a | s) = P (At = a | St = s). (18)

8The task might also be formulated in terms of cumulative regret or pseudo-regret mini-
mization, see (Bubeck and Cesa-Bianchi, 2012).

9Since there is no notion of states, the state argument of the reward function is dropped.

28

The policy can choose actions either stochastically or deterministically. It needs
to adjust the distribution over actions according to the feedback it receives from
the environment. In policy learning the goal is to optimize the parameters θ that
describe the policy for maximal expected reward:

θ∗ = arg max
θ

Ea∼πθ [R(a, s)] (19)

Alternatively, one could learn value functions for state-action pairs or actions
(policy evaluation), and then infer the best policy from the value function.
However, policy optimization scales better with growing action and state spaces,
since it generalizes better for unseen state-action pairs.

One can either learn those parameters online, i.e., during the interaction
with the environment, or offline, e.g., after the interaction is completed, or in a
combination of both schemes. Comparing online or offline (aka counterfactual)
policy learning there occurs a trade-off between bias and variance. It is harder
to find methods for online learning with low variance (due to exploration) and
methods for offline learning with little bias (due to the mismatch between
logging and learning policy). The following section will present the most popular
algorithm for online policy optimization. .

Policy Gradient

The expected reward objective in Eq. (19) can be optimized with gradient ascent
methods on the parameters of the policy.10

∇θEa∼πθ [R(a, s)] = ∇θ
∑
a∈A

πθ(a | s)R(a, s)

=
∑
a∈A
∇θπθ(a | s)R(a, s) (20)

In order to compute the gradient, the reward function does not have to be
known, nor differentiable with respect to the policy parameters—as long as it
can be evaluated for encountered state-action pairs. However, the computation
of the full gradient (Equation 20) is intractable for large action spaces, and
prohibited when learning from bandit feedback. The full gradient can be approx-
imated stochastically in a Monte Carlo simulation by sampling actions from the

10If the goal is to minimize a task loss instead of a reward, gradient descent is used.

29

parametrized policy a ∼ πθ(a | s):∑
a∈A
∇θπθ(a | s)R(a, s) =

∑
a∈A
∇θπθ(a | s)

πθ(a | s)
πθ(a | s)

R(a, s)

=
∑
a∈A

πθ(a | s)
∇θπθ(a | s)
πθ(a | s)

R(a, s)

=
∑
a∈A

πθ(a | s)∇θ log πθ(a | s)R(a, s)

= Ea∼πθ [∇θ log πθ(a | s)R(a, s)] . (21)

The policy is updated with stochastic gradients, which results in the REINFORCE
algorithm proposed by Williams (1992):

θk+1 = θk + γ∇θk log πθ(ak | sk)R(ak, sk). (22)

In every step, action ak is sampled from the current policy πθk , which changes
after each update. Intuitively, the learner makes gradient steps towards the
actions with the magnitude of the reward (and the learning rate γ as a constant
factor), reinforcing parameter values that lead to high rewards. Discovering
actions that yield high rewards in a large action spaces only can take a long time
and the variance of stochastic gradients is high, so the sample efficiency of policy
gradient (PG) is in practice often insatisfactory. Methods for variance reduction
of the stochastic gradient will be presented in the following section.

Many modifications of the original REINFORCE algorithm have been pro-
posed, for example to include learned approximations for the reward function
(Sutton et al., 2000b), to learn with deterministic outputs (Silver et al., 2014; Lil-
licrap et al., 2015), with natural gradients (Kakade, 2002), or with asynchronous
updates (Mnih et al., 2016).

2.2.3 Variance Reduction by Control Variates

One issue with vanilla policy gradient is that its stochastic gradient updates suffer
high variance, since they involve sampling from the model distribution, which
leads to slow convergence. Various techniques and extensions of its plain version
have since been developed to reduce the variance of the stochastic updates. Here,
we focus on the use of control variates known from Monte Carlo estimation, as
they are very effective for our applications (see Section 3.4.2).

Additive Control Variates

The idea of additive (or linear) control variates is to augment the random variable
X whose expectation is sought, here the noisy gradient from Equation (21), by

30

another random variable Y , the control variate, which is highly correlated with
X (Wilson, 1984; Nelson, 1987; Ross, 2013). Subtracting the random variable
from X and adding its expectation leaves the estimator unbiased:

E[X] = E[X − ĉ(Y − E[Y])]

= E[X − ĉ Y] + ĉE[Y]. (23)

ĉ is a constant that may be tuned, but is usually set to 1. The variance of this
augmented estimate is dependent on the variance of the individual variables and
their covariance:

Var(X − ĉ Y) = Var(X) + ĉ2Var(Y)− 2ĉCov(X,Y). (24)

The variance of the original estimate is reduced by the control variate if the
covariance between X and Y is larger than the variance of Y :

Var(X − ĉ Y) <Var(X) iff 2 Cov(X,Y) > ĉVar(Y). (25)

The optimal scalar c∗ can be derived easily by taking the derivative of (24)

with respect to ĉ, leading to c∗ = Cov(X,Y)

Var(X)
. A convenient choice for Y in the

context of policy gradient algorithms is the baseline control variate (Williams,
1992). Its practical implementation is simple: A running average of rewards is
subtracted from the current reward. Details will be discussed in Section 3.3.

Multiplicative Control Variates

Multiplicative (or ratio) control variates are combined with the original estimate
by multiplication:

E[X] ≈ E[
X

Y
] E[Y]; (26)

E[Y] 6= 0. (27)

In contrast to the additive control variate, this estimator is not unbiased, as
E[YX] 6= E[X]

E[Y] (Swaminathan and Joachims, 2015b).

The variance of the combined estimator m = X
Y (Kong, 1992) is

Var(m) ≈ 1

n
(m2Var(Y) + Var(X)− 2mCov(Y,X)). (28)

The variance of the original estimator will be reduced when the covariance is
large.

We will see this control variate applied for self-normalization in counterfactual
learning in Section 4.2.3 as proposed by Swaminathan and Joachims (2015b);
Lawrence et al. (2017a).

31

There is a close connection to importance sampling in Monte Carlo estimation.
When one can not sample from a distribution p, but from a proposal distribution
q instead, the estimator is reweighted by the likelihood ratio p(X)

q(X) to correct the
sampling bias. If the proposal distribution is chosen carefully, the variance of the
original estimator is reduced. We will see an application of importance sampling
in the Cross-Entropy Minimization objective in Chapter 3.

2.2.4 Human-in-the-Loop Reinforcement Learning

Humans can be integrated in the reinforcement learning process by either giving
the rewards, or act as experts that demonstrate ideal behavior (from which
rewards can be inferred), or correct the agent’s behavior. However, most of the
success in human-in-the-loop RL has been reported for problems with small
action spaces and game-like environments, which we will outline in the following.

Reward functions learned from humans. Knox and Stone (2009) and
Christiano et al. (2017) learn a reward function from human feedback and use
that function to train an RL system. Knox and Stone (2009) apply their approach
(TAMER) to Tetris and Mountain Car, where humans observe the game score
and submit positive or negative feedback (see also (Celemin et al., 2019)), which
resulted in faster convergence than with environmental rewards. Christiano et al.
(2017) use a deep model to learn the reward function from human preference
judgments (without rewards from the environment), aiming for faster convergence
with less human effort. In their evaluation on simulated robotics task, human
feedback is only on one task more sample-efficient than synthetic feedback or
the true reward function, as well as for Atari, where the performance varies
quite a lot across tasks. We will learn reward functions from human feedback in
Chapters 4 and 5.

Actor-critic learning from humans. In actor-critic training, a critic model
is trained to predict the environment’s (true) reward. It is used to reinforce
the agent (=actor) replacing the true reward in the policy gradient update.
Pilarski et al. (2011) and MacGlashan et al. (2017) both adopt the actor-critic
framework for interactive RL. For example, in the COACH framework proposed
by (MacGlashan et al., 2017) a human teacher gives positive and negative
feedback for a virtual dog training task with five actions. The feedback is used to
adapt a shallow learner online, with an exponential decay over a window of time
steps to account for the delay between actions and human feedback. However,
in those methods learning of the agent happens only exactly when feedback is
given, resulting in a sparse signal that might not be sufficient for tasks where
many rounds of learning are needed. In our experiments, we first collect the
feedback, and then move to a learning phase where the model is updated.

32

Deep RL. While the above approaches—with the exception of (Christiano
et al., 2017)—employ shallow models as policies, Arumugam et al. (2019) equip
COACH with a deep policy and find that it stabilizes and speeds up learning. In
the Deep TAMER approach by Warnell et al. (2018), non-expert human trainers
give a series of real-time critiques in the form of scalar feedback to an agent
playing Atari Bowling, a game with a high-dimensional state space, and a small
action space of four actions. The feedback is used to update the critic and also
stored in a feedback replay buffer to allow more frequent updates than human
reactions. They also achieve higher gains and faster learning than the shallow
counterparts. In our experiments, all reward estimators will be deep and we will
benefit from pre-trained embeddings for faster learning.

Reliability. None of these works systematically investigates the reliability
of the feedback, so it is not clear what the human reward function expresses
and whether any other reward function (or even self-supervised learning) would
have achieved the same result. We will experience in Chapter 4 how unreliable
feedback can hurt the reinforcement learner, and in Chapters 5 how a learned
reward function on curated feedback can help to generalize.

Cost and Availability. The above discussed approaches found methods to
cope with limited availability and slow reaction times of human trainers, for
example by filling reward buffers, or distributing rewards over windows of actions.
What has been missing in the analyses is the cost or effort it takes humans to
provide this feedback. Unlike in simulated environments, where the feedback
comes “for free”, there is a cost to pay when employing human teachers. This
concerns not only financial costs, but also costs one might pay if giving feedback
is too strenuous and attention or accuracy is decreasing over time. In our
experiments, we treat the choice of feedback interfaces as a hyperparameter for
interactive learning that needs tuning for a good cost-benefit trade-off. While we
choose it manually in Chapters 4 to 6, we leave it to a meta-learner in Chapter 7.

2.3 Reinforced Machine Translation

Similar to the applications for contextual bandits (see Section 2.2.1) or reinforce-
ment learning (see Section 2.2.1), there are many interactive NLP applications,
such as semantic parsing (Iyer et al., 2017; Lawrence and Riezler, 2018; Yao et al.,
2019, inter alia), summarization (Leuski et al., 2003; Liu et al., 2009; Shapira
et al., 2017; PV et al., 2018, inter alia) or dialogue (Wen et al., 2015; Li et al.,
2016, 2017, inter alia), which may be modeled as sequence-to-sequence learning.

In interactive machine translation, user feedback in the form of post-edits
of predicted translations is used for model adaptation (Bertoldi et al., 2014;

33

Denkowski et al., 2014; Green et al., 2014; Simianer et al., 2016; Karimova et al.,
2018). Since post-editing feedback has a high cost and requires professional
expertise (maybe even more so for the applications of summarization and semantic
parsing), weaker forms of feedback are desirable, which makes reinforcement or
bandit learning attractive.11

11When speaking of “weak” supervision, we do not refer to distant supervision or weak
labeling approaches, but rather the “bandit”-type of feedback expressing the quality for a
output.

34

This section establishes a bridge between reinforcement learning and sequence-
to-sequence learning, focusing on the application of NMT. The task is to improve
a machine translation model with bandit feedback. Instead of training on
reference translations, it is adapted to user or annotator feedback. The feedback
required by our methods can be provided by laymen users or can even be implicit,
e.g., inferred from user interactions with the translated content on a web page,
which makes it attractive for other sequence-to-sequence learning tasks as well.

The core idea is to understand the structured prediction, or generation
models (just like the log-linear or neural MT models presented in Sections 2.1.2
and 2.1.3) as parametrized policy πθ. The output structure is produced by
the policy either (1) in a one-step prediction of a contextual bandit where the
whole structure corresponds to one action (as in log-linear models) or (2) in
token-by-token generation process as a sequence of actions in reinforcement
learning (as in neural models). While Chapter 3 will present detailed solutions
for both, the following sections will elaborate the key challenges to overcome and
discuss how far previous approaches have come.

2.3.1 Challenges

Regardless of the underlying model, the following three challenges have to be
addressed when applying reinforcement/bandit learning to machine translation:

1. Large action spaces. The action space could potentially span the entire
vocabulary of the target language, i.e., hundreds of thousands of words,
which is magnitudes more than what classic RL algorithms are evaluated
on (compare the three to five actions in the reported studies with human
feedback in Section 2.2.4). This requires efficient exploration strategies,
since a large portion of the action space should not even be considered.
With those large action spaces one can generate exponentially many tra-
jectories/translations, but only very few of them form valid translations.
Syntactic sentence structure, semantic context and relations are required
to be nearly correct for receiving any reward at all. Exploration gets even
more challenging in offline learning (Langford et al., 2008; Lawrence et al.,
2017b), which is required for real-world implementations of bandit machine
translation, as we will further discuss in Chapter 4.

2. Credit assignment. In addition, the correctness of a translation can only
be judged when near or at completion. Rewards are sparse, action spaces
large and sequences long and structured. Credit assignment, knowing
which individual actions led to the sequence-final reward, is hard. However,
when interacting with humans, one might ask them for credit assignment
in addition to rewards as well (e.g., by marking the words that are most
relevant for their quality judgment, which we will propose in Chapter 6).

35

3. Noisy rewards. Judging MT quality is a complex task even for humans.
There is usually low agreement on translation quality scoring, and getting
reliable judgments requires filtering of annotators and a careful setup of
interfaces (see Chapter 5). Automatic metrics also fall short in modeling
translation quality and it is still an active field of research to find suitable
metrics (e.g. in the WMT metrics task12). The collected feedback, human
or simulated, will contain noise and might not express with what one is
looking for in the final translations. One trick to avoid noise from human
or automatic quality estimates is to collect feedback implicitly or directly
embedded in a down-stream task and use the task success as feedback,
which will explore in Chapter 4.

2.3.2 Previous Approaches

Both SMT and NMT have both most commonly been trained under supervised
learning objectives with references, such as MLE. Previous or concurrent ap-
proaches to our work can be classified into two categories: The first group uses
RL methods to overcome weaknesses of MLE in presence of reference translations.
The second group shares our interest of improving MT in absence of reference
translations. There is no prior work on RL from human feedback for MT.

Improving Fully-supervised Learning

Neural models trained with MLE were observed to suffer from exposure bias,
since they learn to generate output words based on the history of given reference
words (teacher forcing, see Section 2.1.3), not on their own predictions. This is
why Ranzato et al. (2016) resort to techniques from reinforcement and imitation
learning to learn from feedback to the model’s own predictions.

Furthermore, they address the mismatch between word-level loss and sequence-
level evaluation metric (e.g. BLEU) by using a mixture of REINFORCE and the
standard maximum likelihood training to directly optimize a sequence-level loss.

With the help of policy gradients, models can be optimized for non-differentiable
metrics without having to resort to differential approximations to the original
metric, and as a result, usually show higher test scores.

These two aspects have been the main benefit of minimum risk training both
for SMT (Och, 2003; Smith and Eisner, 2006; Gimpel and Smith, 2010; Yuille
and He, 2012; He and Deng, 2012) and NMT (Shen et al., 2016; Wu et al., 2016),
or later also in actor-critic (Bahdanau et al., 2017) or generative-adversarial
Seq2Seq (Li et al., 2017; Yu et al., 2017a; Wu et al., 2018b; Yang et al., 2018).
These works all share the concept of reinforcing the model’s outputs, but not to
interact with humans, but in order to overcome weaknesses of MLE training in

12http://www.statmt.org/wmt19/metrics-task.html

36

http://www.statmt.org/wmt19/metrics-task.html

presence of reference translations. In our bandit setting, feedback to only a single
sample per sentence is available, and it might not directly be the evaluation
metric, which makes the learning problem much harder.

All these works approach the challenge of large action spaces by warm-starting
the agent with a pre-trained model that was trained in a fully-supervised fashion
on available parallel data. This results in peaked model distributions that ensure
a relatively high quality of initial samples (Choshen et al., 2019). It fits naturally
into the MT domain adaptation setting that we are addressing in the experiments.
It is rare that no pre-training data for a given language is available (only for
extremely low-resource languages), but usually this data does not match the
domain of interest, so domain adaptation with bandit feedback is an attractive
solution.

Improving MT Without References

Concurrently to our introduction of the banditized machine translation training
objectives in (Sokolov et al., 2016a,b), He et al. (2016) propose a dual-learning
mechanism for training machine translation from weak feedback without the
assumption of references. The idea is to train two translation models jointly on
monolingual data with a reward signal from language models and a reconstruction
error. This is attractive because the feedback can automatically be generated
from monolingual data and does not require any human references. In practice,
however, it required references to form a “soft-landing” (He et al., 2016) between
standard likelihood training and reinforced training, just like in the mixed
approach by Ranzato et al. (2016). The idea of leveraging back-translation for
feedback has similarities to the approach we will present in Chapter 4 for learning
from implicit feedback embedded in a cross-lingual information retrieval task.

Nguyen et al. (2017) propose a similar neural approach using a learned
word-based critic in an advantage actor-critic reinforcement learning framework
concurrently to our neural approach (Kreutzer et al., 2017). They investigate
the impact of human-like noise in simulation experiments. In the online bandit
learning shared task on e-commerce product descriptions their approach is
compared to ours (Sokolov et al., 2017) (Section 3.5).

Sokolov et al. (2015) were the first to present a banditized objective for
phrase-based SMT models for re-ranking, which is what we compare against
in Chapter 3. Their algorithm suffers from slow convergence speed, meaning
that impractically many rounds of user feedback would be necessary for learning
in real-world interactive MT. Our initial approaches for SMT and NMT suffer
from the same drawback (Chapter 3), but we will overcome this with means of
off-policy learning, control variates and reward estimators, leading to successes
even with little amounts of human feedback (Chapters 5 to 7).

37

Lawrence et al. (2017a,b) addressed the more practically-realizable problem
of offline learning from logged bandit feedback, with special attention to the
problem of exploration-free deterministic logging as is done in commercial MT
systems. Their objectives for counterfactual SMT training employ variance
reduction techniques, that we will adapt to neural models. We compare our
neural adaptation to their SMT simulation results in Chapter 4, deploy it outside
simulations, and apply it to learning from human feedback.

38

Part I

Online Learning with Simulated Bandit

Feedback

Chapter 3

Online Bandit Structured Prediction for MT

This chapter presents the “banditization” of expected loss minimization (or
expected reward maximization) approaches to structured prediction (Smith,
2011; Yuille and He, 2012) with log-linear and neural models. The resulting
algorithms apply to online learning scenarios where gold standards are not
available, but feedback to predicted structures can be obtained from users or
teachers in the loop. As opposed to standard supervised learning approaches
with gold standards, the learner does not know what the correct prediction looks
like, nor what would have happened if it had predicted differently. As discussed
in the introduction, this learning scenario has been investigated in bandit and
reinforcement learning (see Sections 2.2).

The central challenge of balancing exploration and exploitation is approached
by sampling from the model’s Gibbs distribution over outputs, which results
in simultaneous exploration and exploitation depending on the shape of the
distribution—the flatter the distribution, the more is explored. The trick of the
“banditization” is to use the feedback obtained for a single sample to construct a
parameter update that is an unbiased estimate of the respective update rule for
the corresponding full information objective.

Most closely related are RL approaches that use gradient-based optimization
of a parametric policy for action selection (Bertsekas and Tsitsiklis, 1996; Sutton
et al., 2000a) (see Section 2.2.2). Our case is related to contextual bandits
(Langford and Zhang, 2007; Li et al., 2010) or combinatorial bandits (Dani et al.,
2007; Cesa-Bianchi and Lugosi, 2012) in the sense that the parametric models
receive contextual information and consist of a single state, but for structured
prediction we have to manage structures over exponential output spaces instead
of a small set of options. And while bandit learning is mostly formalized as
online regret minimization with respect to the best fixed arm in hindsight, we
investigate asymptotic convergence of our algorithms, motivated by the practical
consideration of human feedback cost.

40

In comparison to previous work (Section 2.3), we aim to improve convergence
speed for linear models by convexifying the expected reward objective (bandit
cross-entropy minimization), and by merging two gradient updates into one
with a pairwise preference objective (bandit pairwise preference learning). In
order to investigate the connection of optimization for task performance with
optimization-theoretic concepts of convergence, the algorithms are analyzed as
stochastic first-order (SFO) methods in the framework of Ghadimi and Lan
(2012). The pairwise preference objective is to our knowledge the first stochastic
first-order approach to stochastic learning form pairwise feedback, since previous
work on stochastic pairwise learning has been formalized as derivative-free
stochastic zeroth-order optimization (Yue and Joachims, 2009; Agarwal et al.,
2010; Ghadimi and Lan, 2012; Duchi et al., 2015).

The main contribution of this chapter is an experimental evaluation of the
empirical performance and convergence speed of the different algorithms for
SMT and NMT. We present an evaluation on several MT tasks with different
loss functions and models where the reward signal is simulated by evaluating a
task loss against gold standard structures without revealing them to the learning
algorithm (Agarwal et al., 2014).1

We evaluate the resulting algorithms on the task of French-to-English transla-
tion domain adaptation where a seed model trained on Europarl data is adapted
to the NewsCommentary and the TED talks domain with simulated weak feed-
back. In addition, we compare these algorithms in our newly-introduced bandit
learning shared task at the Conference of Machine Translation (WMT) with
e-commerce translations from German to English.

We find consistent improvements over the baseline for all objectives and
models, with generally higher improvements and faster convergence for NMT
than SMT, which demonstrates the success of the training algorithms across model
families and exemplifies the potential of deep reinforcement learning for NLP
applications. These first successes of online learning with weak simulated feedback
across model families constitute the basis for bandit learning for structured
prediction and the first step towards interactive learning with human feedback.

Contributions. The contributions of this chapter are the following:

1. Introduction of three objectives for online bandit structured prediction:
expected reward maximization, cross-entropy minimization, and pairwise
preference learning.

2. Realization and implementation of the three algorithms for shallow/linear
and deep/neural models for structured prediction.

1More results for other structured prediction tasks, namely optical character recognition,
named entity recognition and noun phrase chunking, are reported in (Sokolov et al., 2016a)
and (Sokolov et al., 2016b).

41

3. Analysis of the empirical performance and convergence speed on machine
translation domain adaptation tasks with simulated sentence-level feedback.

4. Measuring the effect of control variates on neural models for faster learning
and improved generalization.

5. Comparison of competing algorithms in a bandit learning shared task at
WMT. This is a novel evaluation paradigm that largely deviates from
standard WMT evaluations with references.

Publications. The methods and results listed for SMT models were published
in (Sokolov et al., 2016b) and (Sokolov et al., 2016a), where the author contributed
the experiments and analysis on sparse machine translation models. The solutions
for neural models published (Kreutzer et al., 2017) were all created by the author.
The results on the shared task evaluation were published in (Sokolov et al.,
2017), in a co-operation with Amazon, where the author had the initial idea and
contributed neural baselines and bandit models.

Outline. Section 3.1 starts with the derivation of three algorithms for online
reward optimization for SMT and NMT, and Section 3.2 analyses their conver-
gence. The effect of reward baselines, which turn out very effective for reward
maximization for NMT, is elaborated in Section 3.3. The experiments on domain
adaptation for SMT and NMT, and the result of the WMT shared task are
discussed in Sections 3.4 and 3.5, respectively. Section 3.6 summarizes the
findings of this chapter.

3.1 Algorithms

3.1.1 Full information vs. bandit feedback

The objectives and algorithms presented in this chapter are based on the well-
known expected loss (or expected reward) criterion for probabilistic structured
prediction (Och, 2003; Smith and Eisner, 2006; Gimpel and Smith, 2010; Yuille
and He, 2012; He and Deng, 2012). The objective is defined as a minimization
of a task loss function (or maximization of the expectation of a given task
reward respectively) with respect to the conditional distribution over structured
outputs.2 This criterion has the form of a continuous, differentiable, and in
general, non-convex objective function.

2In previous work this has been presented as a loss minimization objective, but in the scope
of this thesis we will focus on the maximization perspective to emphasize the similarities to
reinforcement learning from rewards, details in Section 3.1.2.

42

More formally, let X be a structured input space, let Y(x) be the set of
possible output structures for input x, and let r : Y → [0, 1] quantify the reward
ry(y

′) received for predicting y′, where the gold standard structure y should
receive the highest reward ry(y) = 1. In a full information setting, for an empirical
data distribution p(x, y), the learning problem is defined as maximization of the
expected reward with respect to θ ∈ Rd:

Ep(x,y)pθ(y′|x)

[
ry(y

′)
]

=
∑
x,y

p(x, y)
∑

y′∈Y(x)

ry(y
′)pθ(y

′ | x). (29)

Assume further that output structures given inputs are distributed according to
an underlying Gibbs distribution (a.k.a. conditional exponential), which we will
further specify in the next two sections.

Unlike in the full information scenario, bandit feedback in structured predic-
tion means that the gold standard output structure y, with respect to which
the objective function is evaluated, is not revealed to the learner. Thus we
can neither evaluate the task reward ry nor compute the gradient (32) of the
objective function (29).

A solution to this problem is to pass the evaluation of the reward function
to the user, i.e., we access the reward directly through user feedback without
assuming existence of a fixed reference y. We indicate this by dropping the
subscript referring to the gold standard structure in the definition of r. In the
following, we present algorithmic solutions to perform structured learning from
this type of partial feedback, called bandit structured prediction.

3.1.2 Bandit Expected Reward Maximization

Algorithm 1 (page 44) shows the structure of the online learning methods analyzed
in this chapter. It assumes a sequence of input structures x(k), k = 0, . . . ,K
that are generated by a fixed, unknown distribution p(x) (line 3). For each
input, an output ỹ(k) is sampled from a Gibbs model to perform simultaneous
exploitation and exploration on output structures (line 4). Then, feedback
r(ỹ(k)) to the predicted structure is obtained (line 5). An update is performed
by taking a step in the direction of the stochastic gradient sk (which usually
involves the derivative of the sample probability and the reward), at a rate γk
(line 7). As a post-optimization step, a solution θ̂ is chosen from the list of
parameters θk ∈ {θ0, . . . , θK} (line 8). The algorithm maximizes the objective
below by stochastic gradient ascent optimization. It is non-convex for the specific
instantiations in this chapter:

Ep(x)pθ(y|x) [r(y)] =
∑
x

p(x)
∑

y∈Y(x)

r(y)pθ(y | x). (30)

43

Algorithm 1 Bandit Expected Reward Maximization

Input: Sequence of learning rates γk
Output: Optimal parameters θ̂

1: Initialize θ0

2: for k = 0, . . . ,K do
3: Observe input structure x(k)

4: Sample output structure ỹ(k) ∼ pθ(y | x(k))
5: Obtain feedback r(ỹ(k))
6: Compute the stochastic gradient sk of ER: ∇θJER = E[sERk]
7: Update the parameters θk+1 = θk + γk sk

8: Choose a solution θ̂ from the list {θ0, . . . , θK}

The core of the algorithm is the sampling: if the model distribution is very
peaked, the model exploits, i.e., it presents the most probable outputs to the
user. If the distribution is close to uniform, the model explores and presents
random outputs to the user. The balance between exploitation and exploration is
crucial to the learning process: in the beginning the model is rather uninformed
and needs to explore in order to find outputs with high reward, while in the
end it ideally converges towards a peaked distribution that exactly fits the
user’s needs. Pre-training the model, i.e. setting θ0 wisely, ensures a reasonable
exploitation-exploration trade-off.

The “banditization” can be applied to any objective J provided the stochastic
gradients sk are unbiased estimators of the true gradient of the objective (∇θJ =
E[sk]). The computation of the stochastic gradient is dependent on the underlying
model. In the following we derive them for log-linear and neural auto-regressive
models and present an intuitive interpretation of the affect of these updates. We
refer to the algorithm for online maximization of the expected reward (Eq. 30)
as Algorithm ER.

Log-linear Models

For log-linear statistical models, the Gibbs distribution is based on the product
of a joint feature representation of inputs and outputs φ : X × Y → Rd and an
associated weight vector w ∈ Rd:

pw(y | x) = exp(w>φ(x, y))/Zw(x), (31)

where Zw(x) is a normalization constant. For this model, the gradient of objective
(30) is as follows:

∇θEp(x)pw(y|x) [r(y)] = Ep(x)pw(y|x)

[
r(y) (φ(x, y) −Epw(y|x)[φ(x, y)]

)]
. (32)

44

Algorithm 2 Sampling Structures

Input: Model θ, target sequence length limit T
Output: Sequence of sampled tokens y = (y1, . . . , yT) and log-probability q

1: y0 = START, q = 0
2: y = (y0)
3: for t← 1 . . . T do
4: Sample output token yt ∼ pθ(y | x, y<t)
5: Update log-probability q = q + log pθ(yt | x, y<t)
6: Update sequence y = (y1, . . . , yt−1, yt)
7: end for
8: Return y and q

The stochastic gradient for a single sample ỹ(k) with respect to w is the follow-
ing (Sokolov et al., 2015):

sERk = r(ỹ(k))
(
φ(x(k), ỹ(k))− Epw(y(k)|x(k))[φ(x(k), y(k))]

)
. (33)

Intuitively, this gradient compares the sampled feature vector φ(x(k), ỹ(k)) to
the average feature vector Epw(y(k)|x(k))[φ(x(k), y(k))].3 In the stochastic update
(line 7 in Algorithm 1), a step is taken into the direction of this difference, the
more so the higher the reward r(ỹ) of the sampled structure.

Neural Models

For deep neural models (the parameter set θ contains all weight matrices and
bias vectors of the network), the Gibbs distribution is factorized over tokens,
since the models are not globally normalized (see Equation 6). The gradient
for the bandit expected reward objective with respect to a neural model is the
following:

∇θEp(x)pθ(y|x) [r(y)] = Ep(x)pθ(y|x) [r(y)∇θ log pθ(y | x)]

= Ep(x)pθ(y|x)

[
r(y)∇θ

T∑
t=1

log pθ(yt | x; y<t)

]
(34)

In the case of full-information learning where reference outputs are available,
we could evaluate all possible outputs against the reference to obtain an exact
estimation of the loss function. However, this is not feasible in our setting since
we only receive partial feedback for a single output structure per input. Instead,

3For the type of globally normalized linear models over hypergraphs that we consider in our
experiments, the expectation over features can be efficiently computed with the Inside-Outside
algorithm (Li and Eisner, 2009).

45

we use stochastic approximation to optimize this loss. The stochastic gradient
for this objective based on a single output sample ỹ(k) is computed as follows:

sER
k =r(ỹ(k))

∂ log pθ(ỹ
(k) | x(k))

∂θ
. (35)

Intuitively, an update with this stochastic gradient will result in an up-
weighting of the sampled structure according to the magnitude of the reward.
All tokens in the output structure are reinforced to the same extent. Note that
Equation (35) is furthermore an instance of the score function gradient estimator
(Fu, 2006) (see Section 2.2.2), with the score function

∂ log pθ(ỹ | x(k))

∂θ
. (36)

Algorithm 2 describes how to sample structures from an encoder-decoder
model. Output tokens are sampled from the multinomial distribution over the
target vocabulary conditioned on the history of preceding sampled tokens. It
corresponds to the sampling algorithm that is used in MRT presented by Shen
et al. (2016) with the difference that it samples single structures, does not assume
a reference structure, and additionally returns the sample log probabilities.

Reward Maximization vs. Loss Minimization

As hinted above, one can either formalize the objective in Equation (19) as
maximization of a reward r ∈ [0, 1] or minimization of a task loss l ∈ [0, 1]:

θ ← arg max
θ

Ep(x)pθ(y|x)[r(y)] vs. θ ← arg min
θ

Ep(x)pθ(y|x)[l(y)].

While the minimization perspective is predominant in the NLP literature
(Och, 2003; Smith and Eisner, 2006; Gimpel and Smith, 2010; Yuille and He,
2012; He and Deng, 2012; Shen et al., 2016; Wu et al., 2016), we choose the maxi-
mization perspective, first because the signal we obtain from humans or reference
translations is usually understood as rewards rather than “punishment”, and
second because this is the standard in reinforcement learning (cf. Section 2.2.1).

Optimizing θ is then either done with stochastic gradient ascent

θk+1 = θk + sk,with

sk = r(ỹ)∇θ log pθ(ỹ | x) (37)

or gradient descent

θk+1 = θk − sk,with

sk = l(ỹ)∇θ log pθ(ỹ | x) (38)

46

where sk is the stochastic gradient at iteration k for the above objectives for a
single sample ỹ from the model.

Both learning procedures are equivalent iff r(ỹ) = −l(ỹ). For practical
experiments it is important to be aware of two extreme cases: In the first case,
the update is equivalent to a fully-supervised update with MLE with the reference
iff r(ỹ) = 1, i.e., when the sampled structure equals the reference y. Conversely,
in the second case, when r(ỹ) = 0 in that case, then sk = 0, i.e., no update is
performed. Especially the latter case has implications for the learning progress,
depending on where the reward/loss mass is situated.

For example, one could choose to define ry(y
′) = sBLEU(y′, y), which results

in an update whenever the sentence-BLEU score is greater than zero, with larger
updates the closer it comes to the reference. Setting ly(y

′) = 1− sBLEU(y′, y)
might superficially seem to express the same semantics since it produces the
same ranking of hypothesis. However, the learner receives an update whenever it
does not produce the reference, and it makes larger updates the further it is away
from the reference. This means it is rather directed away from bad translations
than directed towards bad translations.

In our experiments, we found the former case more effective for neural models
and the latter for log-linear models. Baseline control variates allow learners
to make updates in both edge cases by expanding the range of the rewards to
[−1, 1], as we will further elaborate in Section 3.3.2.

3.1.3 Bandit Pairwise Preference Learning

Decomposing complex problems into a series of pairwise comparisons has been
shown to be advantageous for human decision making (Thurstone, 1927) and
for machine learning (Fürnkranz and Hüllermeier, 2010). When for every pair
of outputs the correct preference is known (according to a gold standard),
pairwise preference learning can be done in the full information supervised
setting (Herbrich et al., 2000; Joachims, 2002; Freund et al., 2003; Cortes et al.,
2007; Fürnkranz and Hüllermeier, 2010).

However, this is only feasible if either references are given to induce a
complete ranking of outputs, or if experts are available to judge all pairs of
possible outputs for each input. Banditizing this pairwise feedback means that
we require a preference judgment for only one pair of output structures per input,
which is a more realistic scenario. For the example of machine translation, this
means that instead of requiring numerical assessments of translation quality from
human users, only a relative preference judgement on a pair of translations is
elicited.

47

Algorithm 3 Bandit Pairwise Preference Learning

Input: Sequence of learning rates γk
Output: Optimal parameters θ̂

1: Initialize θ0

2: for k = 0, . . . ,K do
3: Observe input structure x(k)

4: Sample a pair of output structures 〈ỹi, ỹj〉(k) ∼ pθ(〈yi, yj〉 | x(k))

5: Obtain feedback ∆(〈ỹi, ỹj〉(k))
6: Compute the stochastic gradient sk of the PR objective: ∇θJPR = E[sPRk]
7: Update the parameters θk+1 = θk + γksk

8: Choose a solution θ̂ from the list θ0, . . . , θK

This idea can be formalized as an expected reward objective with respect to
a conditional distribution of pairs of structured outputs. Let P(x) = {〈yi, yj〉 |
yi, yj ∈ Y(x)} denote the set of output pairs for an input x, and let ∆(〈yi, yj〉) :
P(x) → [0, 1] denote a task reward function that specifies a preference of one
output yi over another output yj .

4

In the experiments, we induce pairwise feedback from absolute feedback,
resulting in either continuous or binary feedback. Continuous pairwise rewards
are computed from absolute rewards r(yi), r(yj) ∈ [0, 1] by subtraction

∆CONT(〈yi, yj〉) = max(r(yi)− r(yj), 0), (39)

and binary pairwise rewards by binarizing the comparison

∆BIN(〈yi, yj〉) = d∆CONT(〈yi, yj〉)e. (40)

We can now instantiate objective (30) with pairs of output structures, forming
the pairwise preference objective (PR):

Ep(x)pθ(〈yi,yj〉|x) [∆(〈yi, yj〉)] =
∑
x

p(x)
∑

〈yi,yj〉∈P(x)

∆(〈yi, yj〉) pθ(〈yi, yj〉 | x).

(41)

stochastic gradient ascent optimization of this objective leads to Algorithm
3. The objective is non-convex in the use cases in this chapter. Maximizing
this objective will assure that high probabilities are assigned to pairs with high
reward due to ranking yi over yj . Stronger assumptions on the learned probability
ranking can be made if transitivity and asymmetry of the ordering of feedback
structures are assumed.5

4This can be formalized as a minimization problem as well (cf. Section 3.1.2), where the
loss function expresses dispreference or a misranking instead.

5See (Busa-Fekete and Hüllermeier, 2014) for an overview of bandit learning from consistent
and inconsistent pairwise comparisons.

48

Algorithm 4 Sampling Pairs of Structures

Input: Model θ, target sequence length limit T
Output: Pair of sequences 〈y, y′〉 and its log-probability q

1: p = 0
2: y, y′, ŷ = (START)
3: Determine the perturbation position i ∼ U(1, T)
4: for t← 1 . . . T do
5: Compute greedy output ŷt = arg maxy∈V p

+
θ (y | x, ŷ<t)

6: if i = t then
7: Sample ”negative” output token y′t ∼ p−θ (y | x, ŷ<t)
8: Update log-probability q = q + log p−θ (y′t|x, ŷ<t)
9: else

10: Sample “positive” output token yt ∼ p+
θ (y | x, ŷ<t)

11: Update log-probability q = q + log p+
θ (y′t | x, ŷ<t)

12: end if
13: Update sequence y = (y1, . . . , yt−1, yt)
14: Update sequence y′ = (y′1, . . . , y

′
t−1, y

′
t)

15: Update ŷ = (ŷ1, . . . , ŷt−1, ŷt)
16: end for
17: Return pair 〈y, y′〉 and q

Log-linear Models

For the log-linear model, we assume the following factorized Gibbs model:

pw(〈yi, yj〉 | x) =
exp(w>φ(x, yi)− w>φ(x, yj))∑

〈yi,yj〉∈P(x)

exp(w>φ(x, yi)− w>φ(x, yj))

=
exp(w>(φ(x, yi)− φ(x, yj)))∑

〈yi,yj〉∈P(x)

exp(w>(φ(x, yi)− φ(x, yj)))

= pw(yi | x)× p−w(yj | x). (42)

The contrasting output yj is hence sampled from the distribution obtained from
negating the model weights. The factorization of this model into the product
pw(yi | x)p−w(yj | x) enables efficient sampling and calculation of expectations.
The stochastic gradient sk for model updates in Algorithm 3 is computed as

sk = ∆(〈ỹi, ỹj〉(k)) (φ(x(k), 〈ỹi, ỹj〉(k))− Epw(〈yi,yj〉|x(k))[φ(x(k), 〈yi, yj〉(k))]).

(43)

49

Neural Models

Analogously to the sequence-level sampling for log-linear models, we define the
following probabilities for sampling on the token level:

p+
θ (yt = wi | x, ŷ<t) =

exp(owi)∑|Vtrg |
v=1 exp(owv)

,

p−θ (yt = wj | x, ŷ<t) =
exp(−owj)∑|Vtrg |

v=1 exp(−owv)
.

The effect of the negation within the softmax is that the two distributions p+
θ

and p−θ rank the next candidate target words (given the same history, here the
greedy output ŷ<t) in opposite order. Globally normalized models as in the linear
case, or LSTM-CRFs (Huang et al., 2015) for the non-linear case, would allow
sampling full structures such that the ranking over full structures is reversed.
But in the case of locally normalized RNNs we retrieve only locally reversed-rank
samples.

Since we want the model to learn to rank yi over yj , we would have to sample
yi word-by-word from p+

θ and yj from p−θ . However, sampling all words of yj
from p−θ leads to translations that are neither fluent nor source-related, so we
propose to randomly choose one token of yj which is sampled from p−θ and sample
the remaining words from p+

θ . We found that this method produces suitable
negative samples which are only slightly perturbed and still relatively fluent and
source-related. A detailed algorithm is given in Algorithm 4 (page 49).

In the same manner as for linear models, we define

pθ(〈yi, yj〉 | x) = pθ(yi | x)× pθ(yj | x).

Due to the token-level sampling scheme and local normalization, however, this
is not as clean as in the linear case, as pθ(〈yi, yj〉 | x) is no longer a proper
probability distribution.

The stochastic gradient for the PR objective (41) is then

sPRk = ∆(〈yi, yj〉)×
(
∂ log pθ(yi | xk)

∂θ
+
∂ log pθ(yj | xk)

∂θ

)
. (44)

This training procedure resembles well-known approaches for noise contrastive
estimation (Gutmann and Hyvärinen, 2010) with negative sampling that are
commonly used for neural language modeling (Collobert et al., 2011; Mnih and
Teh, 2012; Mikolov et al., 2013a). In these approaches, negative samples are
drawn from a non-parametric noise distribution, whereas we draw them from
the perturbed model distribution.

50

3.1.4 Bandit Cross-Entropy Minimization

The standard theory of stochastic optimization predicts considerable improve-
ments in convergence speed depending on the functional form of the objective.
This motivates the formalization of convex upper bounds on expected normalized
gains as presented by Green et al. (2014). Their objective is based on a reward

function r̄ : Y → [0, 1] that is normalized over n-best lists where r̄(y) = r(y)
Zr(x) and

Zr(x) =
∑

y∈n-best(x) r(y). It can be seen as the cross-entropy of model pθ(y | x)
with respect to the “true” distribution r̄(y):

Ep(x)r̄(y) [− log pθ(y | x)] = −
∑
x

p(x)
∑

y∈Y(x)

r̄(y) log pθ(y | x). (45)

In this work, we work with unnormalized gain functions, i.e., r ∈ [0, 1] instead
of r̄, since the normalization is prohibitive in a bandit setting since it would
require to elicit user feedback for each structure in the output space or the n-best
list. Substituting r̄ with r, the gradient of objective (48) is:

∇θEp(x)r(y) [− log pθ(y | x)] = −
∑
x

p(x)
∑

y∈Y(x)

r(y)∇θ log pθ(y | x)

= −Ep(x)r(y) [∇θ log pθ(y | x)] . (46)

In order to obtain a stochastic gradient of (46) for stochastic updates, we use
importance sampling to sample from distribution ps(y | x) instead of sampling
from r (which is infeasible), and normalize r by 1

ps(y|x) to correct the sampling
bias:

−Ep(x)r(y) [∇θ log pθ(y | x)] = −
∑
x

p(x)
∑

y∈Y(x)

r(y)

ps(y | x)
ps(y | x)∇θ log pθ(y | x)

= Ep(x)ps(y|x)[−
r(y)

ps(y | x)
∇θ log pθ(y | x)] (47)

The bias correction is an instance of importance sampling that also serves as a
multiplicative control variate (see Section 2.2.3).

The expected reward objective is non-convex even for the linear models
presented above, but objective (45) is convex for the linear models. We call
this objective bandit cross-entropy minimization and refer to it as CE. Since
the resulting algorithm closely resembles the ER algorithm (it is identical up to
the computation of the stochastic gradient and the sign of the update), we do
not give a separate description in pseudo code. Norouzi et al. (2016) proposed
a very similar objective for reward-augmented MLE concurrently to our work.
Asl alternative to our importance sampling, RAML directly samples from the
normalized (and exponentiated) reward distribution. If reward functions can be

51

de-composed into local edit distances, stratified sampling can be used to make
sampling from this distribution feasible. For machine translation Norouzi et al.
(2016) therefore simplified the reward to Hamming distance and left sampling
according to BLEU for future work.

Log-linear Models

For a proper probability distribution r̄(y), one can show that objective (45) is
a convex upper bound on objective (30) (when working with linear models) by
applying Jensen’s inequality to the convex negative logarithm function. Not nor-
malizing the reward function sacrifices the upper bound but preserves convexity.
This can be seen by rewriting the objective as the sum of a linear and a convex
function in w:

Ep(x)r(y) [− log pw(y | x)] = −
∑
x

p(x)
∑

y∈Y(x)

r(y) log pw(y | x) (48)

= −
∑
x

p(x)
∑

y∈Y(x)

r(y)w>φ(x, y)

+
∑
x

p(x)(log
∑

y∈Y(x)

exp(w>φ(x, y)))R(x),

where R(x) =
∑

y∈Y(x) r(y) is a constant factor not depending on w.
The stochastic gradient sk of the cross-entropy objective for linear models is

sk = − r(ỹ(k))

pw(ỹ(k) | x(k))
(φ(x(k), ỹ(k))− Epw [φ(x(k), y(k))]). (49)

It updates the model according to the ratio of gain versus current probability of
the sampled structure. A positive ratio expresses a preference of the sampled
structure under the gain function compared to the current probability estimate.
We compare the sampled feature vector to the average feature vector (just like
for ER), and we update towards the sampled feature vector relative to this ratio.

We instantiate the importance sampling distribution ps(y | x) to the current
model distribution pw(y | x) in order to present progressively more useful
structures to the user.

Strong convexity of objective (48) can be achieved easily by adding an `2
regularizer λ

2‖w‖
2 with constant λ > 0. The algorithm is then modified to use

the following regularized update rule wk+1 = wk − γk (sk + λ
Kwk).

In contrast to Algorithms 1 and 3, each update is affected by the ratio of
gain versus current probability, which changes over time and is unreliable when
training is started. Especially when model probabilities are low, this increases
the variance already present in stochastic optimization. Clipping sampling
probabilities (Ionides, 2008) is a simple but effective solution for more stable

52

updates, that means that the probability score in the scaling ratio r(ỹ(k))

pw(ỹ(k)|x(k)) is

replaced by its clipped version r(ỹ(k))

max(pw(ỹ(k)|x(k)),c) , where c is a clipping constant

that needs to be tuned.

Neural Models

The advantage of the cross-entropy minimization objective to have a (strongly)
convex optimization problem does not hold for neural models, since their non-
linear form turns it into a non-convex optimization problem. Nevertheless, we
derive the gradient here for the sake of completeness. The differentiable part of
its stochastic gradient is the same as for ER, but it is additionally scaled by a
factor dependent on the reward and the probability of the structure:

sCE
k =− r(ỹ(k))

pθ(ỹ(k) | x(k))

∂ log pθ(ỹ
(k) | x(k))

∂θ

In practice, model scores for a full translation are often magnitudes lower than
log-linear models since they are only locally normalized, and token probabilities
are multiplied to form the score for the full sequence (see Equation (6)). This
makes the cross-entropy criterion less suitable for neural models, since the

vanishing denominator makes the ratio r(ỹ(k))

pθ(ỹ(k)|x(k)) grow.

Stabilization by clipping can be applied here as well, but in preliminary
experiments the clipping constant c had to be set to a high value to prevent
explosion of the gradient. This resulted in clipping every single example, which
turns the denominator of the ratio into a constant. Effectively, it becomes
equivalent to the update of ER (35) up to a scalar factor. We therefore omit
CE in the experiments for neural models.

3.2 Convergence Analysis

Iteration Complexity

To analyze convergence, we describe Algorithms ER, PR, and CE as stochastic
first-order (SFO) methods in the framework of Ghadimi and Lan (2012). We
assume lower bounded, differentiable objective functions J(w) with Lipschitz
continuous gradient ∇J(w) satisfying

‖∇J(w + w′)−∇J(w)‖ ≤ L‖w′‖ ∀w,w′,∃L ≥ 0. (50)

For an iterative process of the form wk+1 = wk − γk sk, the conditions to be met
are 1) unbiasedness of the gradient estimate

E[sk] = ∇J(wk), ∀k ≥ 0, (51)

53

and 2) boundedness of the variance of the stochastic gradient

E[||sk −∇J(wk)||2] ≤ σ2, ∀k ≥ 0. (52)

Condition (51) is met for all three algorithms by taking expectations over all
sources of randomness, i.e., over random inputs and output structures. Assuming
∇ log pθ(y | x) ≤ R, r(y) ∈ [0, 1] for all x, y, and since the ratio r(ỹk)

p̂θk (ỹk|xk) is

bounded (with a fixed maximum length for neural models), the variance in
condition (52) is bounded.

Convergence speed can be quantified in terms of the number of iterations
needed to reach an accuracy of ε for a gradient-based criterion E[‖∇J(θk)‖2] ≤ ε.

For stochastic optimization of non-convex objectives, the iteration complexity
with respect to this criterion is analyzed as O(1/ε2) in (Ghadimi and Lan, 2012).
There are other constants besides ε in the iteration complexity that play a role
in practice—as we will show in the experiments—such as the Lipschitz constant
L and the variance σ2: O(Lε + Lσ2

ε2
). This complexity result applies to linear

implementations of ER and PR, and to all neural implementations.
For PR it is worth highlighting that in contrast to gradient-free stochastic

zeroth-order (SZO) approaches for pairwise learning, as for example discussed
in (Sokolov et al., 2018), its iteration complexity does not depend on the di-
mensionality of the function, which is beneficial especially with neural models.
On the downside, however, we have to resort to approximations for a pairwise
probability distribution due to local token-wise sampling and normalization for
the neural PR implementation (see Section 3.1.3).

The iteration complexity of stochastic optimization of (strongly) convex
objectives, here the case for the log-linear models with a single weight vector
w for CE, has been analyzed as at best O(1/ε) for the suboptimality criterion
E[J(wk)] − J(w∗) ≤ ε for decreasing learning rates (Polyak, 1987).6 Despite
this advantage in the best case, convergence in practice may be slowed down
by additional variance that might get introduced in the process of making the
objective (strongly) convex, such as through sample normalization in Algorithm
CE.

Measuring Numerical Convergence

For the purpose of obtaining numerical results on convergence speed, we compute
estimates of the expected squared gradient norm E[‖∇wJ(wk)‖2], the Lipschitz
constant L and the variance σ2 in which the asymptotic bounds on iteration
complexity grow linearly.

We estimate the squared gradient norm by the squared norm of the stochas-
tic gradient ‖sK‖2 at a fixed time horizon K. The Lipschitz constant L in

6For constant learning rates, Solodov (1998) show even faster convergence in the search
phase of strongly-convex stochastic optimization.

54

equation (50) is estimated by maxi,j
‖si−sj‖
‖wi−wj‖ for 500 pairs wi and wj randomly

drawn from the weights produced during training. The variance σ2 in equa-
tion (52) is computed as the empirical variance of the stochastic gradient,
taken at regular intervals after each epoch of size E, yielding the estimate
1
N

∑N
n=1‖snE −

1
N

∑K
k=1 snE‖2 where N = bKE c. All estimates include multipli-

cation of the stochastic gradient with the learning rate. For comparability of
results across different algorithms, we use the same T and the same constant
learning rates for all algorithms.7 Section 3.4.1 compares the three algorithms
with empirical estimates for gradient norm and variance, and Lipschitz constant
for linear SMT models.

3.3 Reward Baselines

Due to the stochasticity of the updates, our algorithms might suffer from large
variance of the gradients during learning. In this section we explain how a
reward baseline, an instance of additive control variates, can be applied to our
algorithms and which effects it has on gradient updates.

3.3.1 Additive Control Variate

A simple implementation of an additive control variate (see Section 2.2.3) is
the subtraction of a baseline reward bk = 1

k

∑k
j=1 r(y

(j)), a running average of

historic rewards, from the current reward r(y(k)), yielding

E[∇ log pθ(y
(k) | x(k))r(y(k))] = E[∇ log pθ(y

(k) | x(k))(r(y(k))− bk)]
+ E[∇ log pθ(y

(k) | x(k))bk] (53)

The expectation (over inputs x and outputs y) of the control variate E[Y] is
zero in this case, since

E[∇ log pθ(y
(k) | x(k))bk] = E[

∇pθ(y(k) | x(k))

pθ(y(k) | x(k))
bk] (54)

= bk

∫
pθ(y

(k) | x(k))
∇pθ(y(k) | x(k))

pθ(y(k) | x(k))
dy (55)

= bk∇
∫
pθ(y

(k) | x(k)) dy (56)

= bk∇1 = 0. (57)

7Note that the squared gradient norm upper bounds the suboptimality criterion s.t.
‖∇J(θk)‖2 ≥ 2λJ(θk)]− J(θ∗) for strongly convex functions. Together with the use of constant
learning rates this means that we measure convergence to a point near an optimum for strongly
convex objectives.

55

(54) is obtained by applying the log-derivative rule (∇ log f = ∇f
f), (55) by

replacing the expectation with the integral, and (56) by switching the order of
differentiation and integration (Leibniz integral rule).

Alternatively, Ranganath et al. (2014) propose the score function (Equa-
tion 36) directly as additive control variate, in which case the E[Y] = 0 as well.
We will explore both variants of the additive control variate for the stochastic
gradient of ER (35) in our experiments.

3.3.2 Relativizing Rewards

Reward baselines do not only have a variance reduction effect, but also an effect
on the scaling of rewards. Instead of learning from absolute, positive reward
signals ∈ [0, 1], models now learn from relative reward signals ∈ [−1, 1]. That
means that gradient updates can now switch the sign, so the updates can be
towards or away from the sample (as opposed to only making steps towards the
sample, see Section 3.1.2). This allows the learner to make customized updates
relative to the current state of the model.

In order to analyze the effect on the gradient update further, we inspect the
computation of the stochastic gradient update for ER and how it behaves in
dependence of model score and reward. We simplify the analysis by looking at a
single time step in isolation (the bandit learning perspective), like an output for
log-linear models, or one token of a sequence for the neural models, and omit
time-specific indices for y for better readability.8

Recall that model scores are obtained by softmax normalization (7) of the
network output vector o that contains a score for every output k ∈ Vtrg, or a
Gibbs distribution with a linear model (31). The gradient update is composed
of the score function (36) and the reward, see (35). Applying the chain rule to
the score function (detailed derivation in Appendix A.1), we obtain

∇ log pθ(y = j | x) = ∇θ log [softmax(o)]j (58)

=
∑
k

[
([[k = j]]− exp(ok)∑|Vtrg |

i=1 exp(oi)
)
∂ok
∂θ

]

= (1− pθ(y = j | x))
∂oj
∂θ
−
∑
k 6=j

[
pθ(y = k | x)

∂ok
∂θ

]
. (59)

The derivative of the model output with respect to the model parameters ∂ok
∂θ is

dependent on the exact model definition, since ok is either computed by a neural

8For neural models, the score function is decomposed into a sum of token-level scoring
functions due to the factorization of probabilities (6), which are all multiplied with the same
sequence-level reward for the gradient update.

56

network, or simply the dot product between a weight vector and a feature vector
for log-linear models.9

With the stochastic update for the sampled output j the model parameters
are updated towards the direction of the gradient (reward maximization), scaled
by the learning rate γ (see Section 3.1.2):

θ′ = θ + γ × r(j)×
∑
k

[
([[k = j]]− pθ(y = k | x))

∂ok
∂θ

]
(60)

For the parameter update, a weighted sum of the derivatives of the network
outputs (the un-normalized scores) are scaled by the learning rate γ, and the
reward of the sampled output r(j). The weighting of the sum is determined by
model probabilities for each output. The sum of weights for the partial derivatives
of the network outputs at a given update step has the largest absolute value
when the probability of the sample j is low. Therefore, the potentially largest
updates can be achieved when low-probability samples receive high rewards.10

On the other hand, when the sampled output is very likely (pθ(y = k | x) ≈ 1),
the parameters are hardly updated (regardless of the value of the reward), due
to vanishing factors in the sum. This observation explains the necessity of
exploration (especially for warm-start models that already have peaked output
distributions close to convergence), such that low-probability outputs with high
rewards can be discovered.

As briefly discussed in Section 3.1.2, learning is also hindered when receiving
low rewards r(y) ≈ 0 (e.g. in cold-start learning or with very sparse rewards),
since they scale down the gradient update. The baseline can remedy this problem,
because it modifies the scale of the reward depending on the learning context.
Subtracting the baseline reward from the current reward can lead to either
a large negative update if previous samples received a much higher reward
(bk >> r(y(k))), or a large positive update if previous samples received a much
lower reward (bk << r(y(k))).

3.4 Domain Adaptation Experiments

After having defined three algorithms for banditized machine translation, we now
evaluate them in practice. On the task of domain adaptation we measure for both
SMT (Section 3.4.1 and NMT (Section 3.4.2) how well pre-trained out-of-domain
models can be adapted to a new domain with weak bandit feedback, and how
many iterations they require to reach the best performance.

9For log-linear models ∂ok
∂w

= φ(x, k).
10The actual gradient norm depends on the values of the partial derivatives. However, these

do not depend on the decision which output was chosen as a sample for the current step. This
decision affects only the scalars.

57

3.4.1 Experiments for SMT

In this section we first describe the setup of the experiments for SMT, and then
discuss the results for the three algorithms presented in Section 3.1 that include
1) the held-out set performance after training with bandit feedback, 2) the
number of iterations until convergence, and 3) the measurements for numerical
convergence analysis.

Experimental Design

Our experiments follow an online learning protocol where on each of a sequence
of rounds, an output structure is randomly sampled, and feedback to it is used
to update the model (Shalev-Shwartz, 2012). We simulate bandit feedback by
evaluating the reward function r against gold standard structures which are
never revealed to the learner (Agarwal et al., 2014). Training is started from an
pre-trained model that was only trained on out-of-domain data and has to get
adapted to the new domain solely with bandit feedback.

Following the standard practice of early stopping by performance evalua-
tion on a development set, we compute convergence speed as the number of
iterations needed to find the point of optimal performance before overfitting
on the development set. The convergence criterion is thus based on the re-
spective task reward function r(ŷwt(x)) under maximum-a-posteriori prediction
ŷw(x) = arg maxy∈Y(x) pw(y | x). This lets us compare convergence across
different objectives, and is justified by the standard practice of performing online-
to-batch conversion by early stopping on a development set (Littlestone, 1989),
or by tolerant training to avoid overfitting (Solodov, 1998).

As a further measure for comparability of convergence speeds across algo-
rithms, we employ small constant learning rates in all experiments. The use of
constant learning rates for ER and PR is justified by the analysis by Ghadimi
and Lan (2012). For CE, the use of constant learning rates effectively compares
convergence speed towards an area in close vicinity of a local minimum in the
search phase of the algorithm (Bottou, 2004).

The development data are also used for meta-parameter search. Optimal
configurations are listed in Appendix B.1 in Table 37. Final testing was done by
computing BLEU scores on a further unseen test set using the model found by
online-to-batch conversion. For bandit-type algorithms, final results are averaged
over three runs with different random seeds, but the same seeds across algorithms.
For statistical significance testing of results against baselines we use Approximate
Randomization testing (Noreen, 1989).

58

Full Supervision bandit feedback
out-of-domain in-domain ER PR CE

n-best, dense 25.88 28.41 26.89±0.03 27.45±0.04 27.63±0.05

h-graph, sparse 26.51 28.31 26.67±0.008 27.33±0.05 27.13±0.1

Table 2: Test set evaluation in BLEU for full information lower and upper bounds
and partial information bandit learners on the in-domain NC data (ER: expected
reward maximization, PR: pairwise ranking, CE: cross-entropy minimization).

Data & Model

We perform domain adaptation from Europarl (EP) to News Commentary (NC)
domains using the French-to-English portion of the data provided by Koehn
and Schroeder (2007) for the WMT news translation task in 2007.11 One
difference of our experiment compared to (Sokolov et al., 2015) is our use of the
synchronous context-free grammar decoder cdec (Dyer et al., 2010) instead of
the phrase-based Moses decoder. Furthermore, in addition to bandit learning
for re-ranking on unique 5,000-best lists (referred to as “n-best”), we perform
ranking on hypergraphs (referred to as “h-graph”) with re-decoding after each
update. Sampling and computation of expectations on the hypergraph uses the
Inside-Outside algorithm over the expectation semiring (Li and Eisner, 2009).

The n-best model uses a standard set of 15 dense features (6 lexicalized
reordering features, two (out-of- and in-domain) language models, 5 translation
model features, distortion and word penalty). The h-graph model uses additional
lexicalized sparse features: rule-id features, rule source and target bigram features,
and rule shape features. The out-of-domain h-graph model contain 214,642 active
features, the upper-bound in-domain model 133,531 active features.

For all machine translation experiments we tokenize, lowercase and align
words using cdec tools, train 4-gram in-domain and out-of-domain language
models (on the English sides of EP and in-domain NC), for all tuning in the
full-information setting we used cdec’s lattice MERT (Och, 2003). The out-of-
domain baseline machine translation models were trained on 1.6M parallel EP
data and tuned with cdec’s implementation of MIRA (Chiang, 2012) on out-
of-domain Europarl dev2006 dev set. The full-information in-domain machine
translation models was trained on the same Europarl data and tuned on news
in-domain sets.

Learning under bandit feedback starts at the learned weights of the out-of-
domain median models. It uses the parallel in-domain data (see Table 5 for the
sizes) to simulate bandit feedback, by evaluating the sampled translation against
the reference using as loss function a smoothed per-sentence 1 − BLEU (zero

11http://www.statmt.org/wmt07/shared-task.html

59

http://www.statmt.org/wmt07/shared-task.html

n-gram counts being replaced with ε = 0.01). For pairwise preference learning
we use binary feedback resulting from the comparison of the BLEU scores of the
sampled translations.

To speed up training for hypergraph re-decoding, the training instances
were reduced to those with at most 60 words (38,350 sentences). Training is
distributed across 38 shards using multitask-based feature selection for sparse
models (Simianer et al., 2012), where after each epoch of distributed training,
the top 10k features across all shards are selected, and all other features are set
to zero. The meta-parameters were adjusted on the in-domain dev sets. The
final results are obtained on separate in-domain test sets by averaging three
independent runs for the optimal validation set meta-parameters.

Results

Held-out set performance. We report BLEU scores on the in-domain test
set in Table 2. The gap between out-of-domain and in-domain models defines the
range of possible improvements (+2.53 BLEU for n-best and +1.8 for h-graph)
for bandit learning. For bandit learners we report the average results over three
runs with different random seeds. The pairwise feedback simulation, binary or
continuous, is treated as a hyperparameter. Binary feedback performed better
for both models, so we report only these results. The improvements over the
out-of-domain baseline are statistically significant for all bandit learners. Thus
we can confirm and generalize the results of Sokolov et al. (2015) to different
decoders and new objectives, and with re-decoding instead of n-best re-ranking.
The ER objective is outperformed by CE and PR for both decoders.

ER PRBIN CE

n-best, dense 3.8M 1.2M 1.2M
h-graph, sparse 370k 115k 281k

Table 3: Number of iterations until stopping criterion on development data.

Convergence speed. Early stopping by task performance on the development
led to the selection of algorithm PR at a number of iterations that is by a factor
of 2-4 smaller compared to Algorithms ER and CE for the h-graph model, as
reported in Table 3. For the n-best reranking model PR and CE both take the
same number of iterations, approx. three times fewer than ER. n-best rescoring
yields slightly better results than re-decoding with sparse models.

Numerical convergence results. Estimates of E[‖∇wJ(wk)‖2], L and σ2

for three runs of each algorithm with different random seeds for the sparse

60

Algorithm ‖sK‖2 L σ2

CE 3.04±0.02 0.54±0.3 35 ±6

ER 0.02±0.03 1.63±0.67 3.13× 10−4
±3.60× 10−6

PRBIN 2.88× 10−4
±3.40× 10−6 0.08±0.01 3.79× 10−5

±9.50× 10−8

PRCONT 1.03× 10−8
±2.91× 10−10 0.10±5.70× 10−3 1.78× 10−7

±1.45× 10−10

Table 4: Estimates of squared gradient norm ‖sK‖2, Lipschitz constant L and
variance σ2 of stochastic gradient (including multiplication with learning rate)
for fixed time horizon K and constant learning rates γ = 1.0× 10−6 for sparse
SMT. K = 767, 000 for all models. The clipping and regularization parameters
for CE are set as in Table 37. Results are averaged over three runs of each
algorithm, with standard deviation shown in subscripts.

h-graph re-decoding model are listed in Table 4 (page 61). At time horizon
K, the estimated squared gradient norm for Algorithm PR is several orders of
magnitude smaller than for Algorithms ER and CE. Furthermore, the estimated
Lipschitz constant L and the estimated variance σ2 are smallest for Algorithm
PR. Since the iteration complexity increases linearly with respect to these terms,
smaller constants L and σ2 and a smaller value of the estimate E[‖∇θJ(wk)‖2]
at the same number of iterations indicates fastest convergence for Algorithm PR.
This theoretically motivated result is consistent with the practical convergence
criterion of early stopping on development data: Algorithm PR which yields
the smallest squared gradient norm at time horizon K also needs the smallest
number of iterations to achieve optimal performance on the development set.
Note that for comparability across algorithms, the same constant learning rates
were used in all runs. However, we obtained similar relations between algorithms
by using the meta-parameter settings chosen on development data as shown
in Table 2. Furthermore, the above tendencies hold for both settings of the
meta-parameter bin or cont of Algorithm PR.

Summary

We applied the objectives and algorithms for structured prediction from bandit
feedback presented in Section 3.1 to a machine translation tasks with log-linear
models and compared them in terms of convergence speed and test set perfor-
mance. Test set performance was increased by up to 1.75 BLEU points by using
weak bandit feedback only to adapt an out-of-domain model to new in-domain
data. Our experimental results showed a consistent advantage of convergence
speed for bandit pairwise preference learning. In light of the standard stochastic
approximation analysis, which predicts a convergence advantage for strongly
convex objectives over convex or non-convex objectives for log-linear models,

61

this result is surprising. However, the result can be explained by considering
important empirical factors such as the variance of stochastic updates.

3.4.2 Experiments for NMT

In the following, we present an experimental evaluation of the learning objectives
presented above (Section 3.1) on neural machine translation domain adaptation
(Luong and Manning, 2015; Servan et al., 2016; Freitag and Al-Onaizan, 2016).
For this task we build on the evaluation of Freitag and Al-Onaizan (2016), who
investigate strategies to find the best of both worlds: models that adapt well
to the new domain without deteriorating on the old domain. We compare how
the presented neural bandit learning objectives perform in comparison to linear
models, then discuss the handling of unknown words and eventually investigate
the impact of techniques for variance reduction introduced in Section 2.2.3.

Setup

Data. We perform domain adaptation from Europarl (EP) to News Commen-
tary (NC) for translations from French to English as for the linear models, and
additionally from EP to TED talks (TED). Table 5 (page 62) provides details
about the data sets. The data is pre-processed in the same way as for the SMT
experiments (see Section 3.4.1). The challenge for the neural bandit learner is to
adapt from the EP domain to NC or TED with weak feedback only.

Domain Version Train Dev Test

Europarl (EP) v.5 1.6M 2k 2k
News Commentary (NC) WMT07 40k 1k 2k
TED TED2013 153k 2k 2k

Table 5: Number of parallel sentences for training, development and test sets for
French-to-English domain adaptation.

Model. We choose a standard recurrent encoder-decoder architecture with
single-layer GRUs with 800 hidden units, a word embedding size of 300 and
tanh activations. The encoder consists of a bidirectional RNN, where the hidden
states of backward and forward RNN are concatenated. The decoder uses the
attention mechanism proposed by Bahdanau et al. (2015).12 Source and target

12We do not use beam search nor ensembling, although we are aware that higher performance
is almost guaranteed with these techniques. Our goal is to show relative differences between
different models, so a simple setup is sufficient for the purpose of our experiments. At the

62

vocabularies contain the 30k most frequent words of the respective parts of
the training corpus. We limit the maximum sentence length to 50. Dropout
(Srivastava et al., 2014a) with a probability of 0.5 is applied to the network in
several places: on the embedded inputs, before the output layer, and on the
initial state of the decoder RNN. The gradient is clipped when its norms exceeds
1.0 to prevent exploding gradients and stabilize learning (Pascanu et al., 2013a).
All models are implemented and trained with the sequence learning framework
Neural Monkey (Libovickỳ et al., 2016; Bojar et al., 2016b). They are trained
with a minibatch size of 20, fitting onto single 8GB GPU machines. The training
dataset is shuffled before each epoch.

Baselines. The out-of-domain baseline is trained on the EP training set with
standard MLE. For both NC and TED domains, we train two full-information
in-domain baselines: The first in-domain baseline is trained on the relatively
small in-domain training data. The second in-domain baseline starts from the out-
of-domain model and is further trained on the in-domain data. All baselines are
trained with MLE and Adam (Kingma and Ba, 2015) (α = 1× 10−4, β1 = 0.9,
β2 = 0.999) until their performance stops increasing on respective held-out
validation sets. The gap between the performance of the out-of-domain model
and the in-domain models defines the range of possible improvements for bandit
learning. All models are evaluated with Neural Monkey’s mteval. For statistical
significance tests we used Approximate Randomization testing (Noreen, 1989).

Bandit learning hyperparameters. Bandit learning starts with the param-
eters of the out-of-domain baseline. The bandit models are expected to improve
over the out-of-domain baseline by receiving feedback from the new domain,
but at most to reach the in-domain baseline since the feedback is weak. The
models are trained with Adam on in-domain data for at most 20 epochs. Adam’s
step-size parameter α was tuned on the validation set and was found to perform
best when set to 1× 10−5 for non-pairwise, 1× 10−6 for pairwise objectives
on NC, 1× 10−7 for pairwise objectives on TED. The best model parameters,
selected with early stopping on the in-domain validation set, are evaluated on
the held-out in-domain test set. In the spirit of (Freitag and Al-Onaizan, 2016)
they are additionally evaluated on the out-of-domain test set to investigate how
much knowledge of the old domain the models lose while adapting to the new
domain. Bandit learning experiments are repeated two times, with different
random seeds, and mean BLEU scores with standard deviation are reported.

time of the experiments, neither beam search nor ensembling were part of the underlying NMT
framework.

63

Clipping for CE. For CE we had to apply a threshold clipping (Ionides,
2008) to the model probabilities with τ = 1× 10−30 and introduce a constant
c = 1× 1030 to prevent numerical instabilities. However, in preliminary results
we noticed that nearly all sample probabilities were clipped. This reduces it to
the same update as for ER up to a scalar factor, which can be seen as part of the
learning rate. We concluded that unless model probabilities are treated differently
(e.g. normalized over a subset of samples as in MRT), the cross-entropy objective
is not suited for neural models in the form that we presented it for log-linear
models. As a result, we do not include it in the experiments.

Feedback simulation. Weak feedback is simulated from the target side of
the parallel corpus, but references are never revealed to the learner. For the
SMT models we used smoothed sBLEU for simulating the weak feedback for
generated translations from the comparison with reference translations. Here,
we use GLEU instead, which Wu et al. (2016) introduced for learning from
sentence-level reward signals correlating well with corpus BLEU. This metric is
similar to BLEU, but does not have a brevity penalty and considers the recall of
matching n-grams. It is defined as the minimum of recall and precision over the
total n-grams up to a certain n. For our experiments r(ỹ) = GLEU(ỹ, y), where
ỹ is a sample translation and y is the reference translation.

Unknown words. One drawback of NMT models is their limitation to a fixed
source- and target vocabulary. In a domain adaptation task, this limitation has
a critical impact to the translation quality. The larger the distance between
old and new domain, the more words in the new domain are unknown to the
models trained on the old domain. We consider two strategies for this problem
for our experiments: Unknown word (UNK) replacement (Jean et al., 2015b)
and Byte-Pair Encoding (BPE) (Sennrich et al., 2016c).

UNK replacement. Jean et al. (2015b) and Luong et al. (2015b) replace
generated UNK tokens with aligned source words or their lexical translations in a
post-processing step. Freitag and Al-Onaizan (2016) and Hashimoto et al. (2016)
demonstrated that this technique is beneficial for NMT domain adaptation. We
use fast align to generate lexical translations on the EP training data. When
an UNK token is generated, we look up the attention weights and find the source
token that receives most attention in this step. If possible, we replace the UNK
token by its lexical translation. If it is not included in the lexical translations,
it is replaced by the source token. The main benefit of this technique is that it
handles unknown named entities well by passing them through from source to
target. However, since it is a non-differentiable post-processing step, the NMT
model cannot directly be trained for this behavior.

64

BPE. Sennrich et al. (2016c) introduce BPE for word segmentation to build
translation models on sub-word units. Rare words are decomposed into subword
units, while the most frequent words remain single vocabulary items. We train
sub-word level NMT with BPE. We apply 29,800 merge operations to obtain a
vocabulary of 29,908 sub-words (subword_nmt v1).13 The procedure for training
these models is exactly the same as for the word-based models. The advantage
of this method is that the model is in principle able to generate any word
composing it from sub-word units. However, training sequences become longer
and candidate translations are sampled on a sub-word level, which introduces
the risk of sampling nonsense words.

Control variates. We implement the average baseline control variate as de-
fined in Equation (53), which results in keeping an running average over previous
rewards. Intuitively, absolute GLEU feedback is turned into relative feedback
that reflects the current state of the model (see Section 3.3.2). In addition, we
implement the score function control variate (Ranganath et al., 2014) with a
running estimate for c∗:

c∗k =
1

k

k∑
j=1

Cov(sj ,∇ log pθ(y
(j) | x(j)))

Var(sj)
. (61)

13https://github.com/rsennrich/subword-nmt

65

https://github.com/rsennrich/subword-nmt

Results

Model Train Iter. EP NC Train Iter. EP TED

MLE EP 12.3M 31.44 26.98 EP 12.3M 31.44 23.48
+UNK 31.82 28.00 31.82 24.59
+BPE 12.0M 31.81 27.20 12.0M 31.81 24.35

MLE NC 978k 13.67 22.32 TED 2.2M 14.16 32.71
+UNK 13.83 22.56 15.15 33.16
+BPE 1.0M 14.09 23.01 3.0M 14.18 32.81

MLE EP→NC 160k 26.66 31.91 EP→TED 460k 23.88 33.65
+UNK 27.19 33.19 24.64 35.57
+BPE 160k 27.14 33.31 2.2M 23.39 36.23

Table 6: Fully-supervised out-of-domain and in-domain NMT baselines results
(BLEU) on in- and out-of-domain test sets. The EP model is only trained on EP,
the NC model only on NC, the TED model only on TED data. The EP→NC is
first trained on EP, then fine-tuned on NC. The EP→TED is first trained on
EP, then fine-tuned on TED.

Baselines. The NMT out-of-domain baselines, reported in the top section of
Table 6, perform comparable to the linear baselines on NC, but the in-domain
EP→NC baselines (middle section of Table 6) outperform the linear baseline by
more than 3 BLEU points. Continuing training of a pre-trained out-of-domain
model on a small amount of in domain data is thus very effective, whilst the
performance of the models solely trained on small in-domain data is highly
dependent on the size of this training data set. The in-domain dataset for TED
is four larger than the NC training set, so the in-domain baselines perform better.
This effect was previously observed by Luong et al. (2015a) and Freitag and
Al-Onaizan (2016).

Bandit learning. The NMT bandit models that optimize the ER objective
yield generally a much higher improvement over the out-of-domain models
than the corresponding linear models: As shown in Table 7 (page 67), we find
improvements of between 2.33 and 2.89 BLEU points on the NC domain, and
between 4.18 and 5.18 BLEU points on the TED domain. In contrast, the linear
models with sparse features and hypergraph re-decoding achieved a maximum
improvement of 0.82 BLEU points on NC. Optimization of the PR objective
shows improvements of up to 1.79 BLEU points on NC (compared to 0.6 BLEU

66

Training: NC Training: TED
Model Iter. EP NC Diff. Iter. EP TED Diff.

ER 317k 30.36±0.20 29.34±0.29 2.36 976k 29.34±0.42 27.66±0.03 4.18
+UNK* 317k 30.73±0.20 30.33±0.42 2.33 976k 29.68±0.29 29.44±0.06 4.85
+UNK** 349k 30.67±0.04 30.45±0.27 2.45 1.1M 29.62±0.15 29.77±0.15 5.18
+UNK**+SF 713k 29.97±0.09 30.61±0.05 2.61 658k 30.18±0.15 29.12±0.10 4.53
+UNK**+BL 531k 30.19±0.37 31.47±0.09 3.47 644k 29.91±0.03 30.44±0.13 5.85
+BPE 543k 30.09±0.31 30.09±0.01 2.89 831k 30.03±0.43 28.54±0.04 4.18
+BPE+SF 375k 30.46±0.10 30.20±0.11 3.00 590k 30.32±0.26 28.51±0.18 4.16
+BPE+BL 755k 29.88±0.07 31.28±0.24 4.08 742k 29.84±0.61 30.24±0.46 5.89

PRBIN+UNK** 22k 30.76±0.03 29.40±0.02 1.40 14k 31.84±0.01 24.85±0.00 0.26
+BPE 14k 31.02±0.09 28.92±0.03 1.72 69k 31.77±0.01 24.55±0.01 0.20

PRCONT+UNK** 12k 30.81±0.02 29.43±0.02 1.43 9k 31.85±0.02 24.85±0.01 0.26
+BPE 8k 30.91±0.01 28.99±0.00 1.79 55k 31.79±0.02 24.59±0.01 0.24

Table 7: Bandit NMT results (BLEU) on EP, NC and TED test sets for training
on NC and TED bandit feedback. UNK* models involve UNK replacement
only during testing, UNK** include UNK replacement already during training.
For PR, either binary (bin) or continuous feedback (cont) was used. Control
variates: average reward baseline (BL) and score function (SF). Results are
averaged over two independent runs and standard deviation is given in subscripts.
Improvements over out-of-domain models are given in the Diff.-columns.

points for linear models), but no significant improvement on TED. The biggest
impact of relative feedback is the considerable speedup of training speed of 1 to
2 orders of magnitude compared to ER.

Conservative domain adaptation. A beneficial side-effect of NMT learning
from weak feedback is that the knowledge from the out-domain training is not
simply “overwritten”. This happens to full-information in-domain tuning where
more than 4 BLEU points are lost in an evaluation on the out-domain data.
On the contrary, the bandit learning models still achieve high results on the
original domain. This is useful for conservative domain adaptation, where the
performance of the models in the old domain is still relevant.

Unknown words. Unknown word treatment leads to consistent improvements
over word-based models for all baselines and bandit learning models (+UNK and
+BPE rows in Table 7). We observe that the models with UNK replacement
benefit from passing through source tokens, and only marginally from lexical
translations. Bandit learning models take particular advantage of UNK replace-
ment when it is already included during training (+UNK**). The sub-word
(+BPE) models achieve the overall highest improvement over the baselines.

67

Control variates. Applying the score function (+SF) control variate to ER
optimization does not largely change learning speed or BLEU results. However,
the baseline control variate (+BL) leads to improvements of around 1 BLEU
over the ER optimization without variance reduction on both domains. This
empirically confirms the analytic results from Section 3.3.2 that the baseline
has an additional beneficial effect thanks to relativized rewards. They also take
longer until they reach the early stopping point, due to prolonged learning even
with high quality rewards (see Section 3.3.2).

Summary

We showed how to build neural models for structured prediction under bandit
feedback using recurrent neural networks with attention. We transferred the
algorithms previously used with log-linear models to train NMT models under
numerical feedback to single output structures or under preference rankings over
pairs of structures. In our experimental evaluation on the task of neural machine
translation domain adaptation, we found relative improvements of up to 5.89
BLEU points over out-of-domain seed models, outperforming also linear bandit
models. Furthermore, included average reward and score function baselines as
control variates for improved training speed and generalization.

3.5 WMT Shared Task Evaluation

At the First Conference of Machine Translation 2017 (WMT), we organized a
shared task on bandit learning for machine translation in collaboration with
Amazon. In contrast to the other shared tasks that create supervised learning
problems with given training, development and test translations, this shared task
posed a reinforcement learning problem: Given source sentences and rewards for
proposed translations, how fast and how well can models adapt to a new domain?
This problem is very similar to the above described simulation, but it was slightly
more challenging in that 1) participants did not have access to development
or test data, 2) online quality beyond online-to-batch held-out evaluation was
also of interest, 3) the domain was Amazon product titles, i.e., less fluent than
parliament discussions or news text, and 4) every training sample occurred only
once. This created the ideal testbed to compare the adaptability of our statistical
and neural models, and also to external participants. In this section we will
discuss evaluation metrics and the comparison of participating systems; more
details can be found in (Sokolov et al., 2017).

68

3.5.1 Task Setup

In the shared task, user feedback is simulated by a service hosted on Amazon Web
Services. Participants submit translations and receive feedback on translation
quality one by one, i.e. the next source sentence can only be received after
the translation to the previous sentence was sent off. Furthermore, feedback
for only one translation per source can be obtained, in a true online bandit
learning fashion. The task is to use this feedback to adapt an out-of-domain MT
model, pre-trained on mostly news texts, to a new domain (e-commerce), for the
translation direction of German (de) to English (en). The reference translations
are only used to compute the rewards, but are never revealed to the learner,
neither at training nor at test time.

Data

For training initial MT systems, out-of-domain parallel data was restricted to
German-to-English parts of EP v7, NC v12, CommonCrawl and Rapid data
from the WMT 2017 constrained News Translation task14. Monolingual English
data from the constrained shared task was allowed as well. Tuning of the out-of-
domain systems had to be done on the newstest2016-deen set. The in-domain
parallel data for online bandit learning was taken from the e-commerce domain:
The corpus was provided by Amazon and had been sampled from a large real-
world collection of post-edited translations of actual product descriptions. The
post-edits were not always literal, sometimes adding or deleting a considerable
number of tokens and resulting in low feedback BLEU scores for submitted literal
translations.

Evaluation Metrics

In the case of MT personalization both online quality, i.e., during the learning
and exploration phase, as well as offline quality, i.e., after adaptation with
exploitation only, are of interest. In order to capture both, we evaluate models
with the following metrics:

1. Online cumulative reward: This metric measures the cumulative sum
C =

∑K
k=1 r(y

(k)) of the per-sentence BLEU score r(y) for translation y
against the number of iterations. This metric has been used in reinforcement
learning competitions (Dimitrakakis et al., 2014). For systems with the same
design, this metric favors those that do a good job at balancing exploration
and exploitation to achieve high scores over the full data sequence. Unlike
in these competitions, where environments (i.e., action spaces and context
features) were fixed, in our task the environment is heterogeneous due

14statmt.org/wmt17/translation-task.html

69

statmt.org/wmt17/translation-task.html

to the use of different underlying MT architectures. Thus, systems that
start out with a well-performing pretrained out-of-domain model have an
advantage over systems that might improve more over worse starting points.
Even systems that do not perform online learning at all can achieve high
cumulative rewards.

2. Online regret: In order to overcome the problems of the cumulative
reward metric, we can use the regret metric from bandit learning R =
1
K

∑K
k=1 (r(y

(k)
∗)− r(y(k))) (see Section 2.2). Systems are penalized when

predicting translation y instead of the optimal translation y∗. Plotting a
running average of regret against the number of iterations allows separating
the gains due to the MT architecture from the gains due to the learning
algorithm: Systems that learn will decrease regret, systems that do not
learn will not. In our task, we use as oracle system a model that is
fine-tuned on in-domain references.

3. Relative held-out reward: A further way to separate out the learning
ability of systems from the contribution of the underlying MT architecture
is to apply the standard corpus-BLEU score and/or an average of the per-
sentence BLEU score r on a held-out set at regular intervals during training.
Plotting these scores against the number of iterations, or alternatively,
subtracting the performance of the starting point at each evaluation, allows
to discern systems that adapt to a new domain from systems that are
good from the beginning and can achieve high cumulative rewards without
learning. We performed this evaluation by embedding a small fixed held-out
set in the beginning (showing the performance of the initial out-of-domain
model), and again at regular intervals including the very end of the learning
sequence.

3.5.2 Systems

Baselines. As baseline systems, we used static SMT and NMT models that
were trained on out-of-domain data, but did not perform online learning on
in-domain data. Oracle systems that were trained in batch on in-domain data
were used to compute regret.

• SMT-static: A SMT system was built with cdec (Dyer et al., 2010),
similar to the model in Section 3.4.1 but limited to dense features.

• WMT16-static: The Nematus (Sennrich et al., 2017) NMT system that
achieved state-of-the-art news translation quality in 2016 (Bojar et al.,
2016c) was trained on more data than allowed for the task (Sennrich et al.,
2016a), but was nevertheless employed to represent the best one could
possibly do on general domain data.

70

• BNMT-static: We train a byte-pair-segmented Neural Monkey (Helcl
and Libovický, 2017) system on the shared task parallel data using a BPE
vocabulary from 30k merge operations on all tokens and all single characters
of the training data, including the UNK token. If unknown characters
occur, they are copied from source to target with the UNK replacement
strategy of Jean et al. (2015b) (see Section 3.4.2).

• Oracles: To simulate full-information systems (oracles) for regret cal-
culation, we train an SMT and an NMT system on the in-domain data
that other learning systems accessed only through the numerical feedback.
The SMT oracle system was trained on combined in-domain and out-of-
domain data, while the NMT oracle system continued training from the
converged out-of-domain system on the in-domain data with the same BPE
vocabulary.

Participating Systems. We summarize the submissions grouped by model
and training objective. For detailed hyperparameter descriptions we refer the
reader to (Sokolov et al., 2017).

• Online bandit first-order SMT: Online bandit learners based on SMT
were following the previously presented ER algorithm to adapting an
SMT model from weak user feedback (see Section 3.4.1). Average reward
baselines were used as control variates (CV) for all SMT online learners.

• Online bandit zeroth-order SMT: We implement stochastic zeroth-
order (SZO) optimization for online bandit learning (Flaxman et al., 2005).
In a nutshell, on each step of the SZO algorithm, the model parameters w
are perturbed with an additive standard Gaussian noise ε, and the Viterbi
translation is sent to the service.

• Online bandit first-order NMT: Online bandit learners based on SMT
were similar to the models presented in Section 3.4.2 and trained with
the ER algorithm. However, since the models are now evaluated online,
we would like the model to gradually stop exploring, in order to still
achieve high cumulative per-sentence reward and not only final held-out
test performance in an exploitation-only evaluation. To achieve such a
behavior, the temperature of the softmax over the outputs of the last layer
of the network is annealed (Rose, 1998). The annealing schedule for this
temperature T is defined as Tk = 0.99max(k−kSTART,0), i.e. decreases from
iteration kSTART on. The same decay is applied to the learning rate, such
that γk = γk−1 · Tk. As in the experiments before, we compare word-based
NMT (WNMT) with a lexical translation model for unknown words with
BPE-based models (BNMT).

71

• UMD NMT domain adaptation: The UMD team’s systems were
based on an neural recurrent model with subwords. They follow a domain
adaptation approach of Axelrod et al. (2011) to select training data after
receiving in-domain source-side data and selecting the most similar out-of-
domain data from the WMT 2016 training set for re-training.

• UMD NMT reinforce: Another type of models submitted by UMD uses
reinforcement learning techniques to learn from feedback and improve the
update of the translation model to optimize the reward, based on Bahdanau
et al. (2017) and Ranzato et al. (2016). Details are reported in (Sharaf
et al., 2017).

• LIMSI SMT UCB1: The team from LIMSI tried to adapt a seed Moses

system trained on out-domain data to a new, unknown domain relying
on two components, each of which addresses one of the challenges raised
by the shared task: i) estimate the parameters of a MT system without
knowing the reference translation and in a ‘one-shot’ way (each source
sentence can only be translated once); ii) discover the specificities of the
target domain ‘on-the-fly’ as no information about it is available. Details
are provided in (Wisniewski, 2017).

3.5.3 Results

Cumulative Reward. Table 8 (page 73) shows the evaluation results under
the cumulative rewards metric. The best performance (of the non-oracle systems)
is obtained by the UMD-domain adaptation system which is pre-adapted to the
domain and static during training. It is followed closely by the online bandit
learner BNMT-ER which optimizes the ER objective online. It outperforms the
BNMT-static baseline and the SMT models.

Online Regret. The evolution of the online regret plotted against the log-
scaled number of iterations during training is shown in Figure 4 (page 75).
Most of the learning happens during the first 100,000 iterations, however, online
learning systems optimizing structured ER objectives or based on reinforcement
learning eventually converge to the same result: BNMT-ER or UMD-reinforce2
get close to the regret of the static UMD-domain adaptation.

Relative Held-out Reward. Figures 5, 6a and 6b (page 75 and 76) show the
evolution of corpus- and sentence-BLEU on the held-out set that has been embed-
ded in the development and the training sequences.15 While under corpus-BLEU,
static systems always outperform online learners on the held-out embedded set,

15In the plots, algorithms and models are named “EL” instead of “ER”.

72

Model Cumulative Reward

‘translate’ by copying source 64,481.8
S

M
T

SMT-oracle 499,578.0
SMT-static 229,621.7

SMT-ER-CV-ADADELTA 214,398.8
SMT-ER-CV-ADAM 225,535.3
SMT-SZO-CV-ADAM 208,464.7

N
M

T

BNMT-oracle 780,580.4
BNMT-static 222,066.0
WMT16-static 139,668.1

BNMT-ER-CV 212,703.2
BNMT-ER 237,663.0
WNMT-ER 115,098.0

UMD-domain-adaptation 248,333.2

Table 8: Cumulative rewards over the full training sequence. Only completely
finished submission are shown.

online learning systems such as BNMT-ER can catch up under corpus-BLEU
during development, and under a sentence-BLEU evaluation during training. The
curves for corpus- and average sentence-BLEU (Figures 6a and 6b on page 76)
show different dynamics, with the corpus-BLEU sometimes decreasing whereas
the sentence-BLEU curve continues to increase. This is due to the mismatch
between training rewards and evaluation rewards in the case of corpus-BLEU.

Summary

In the novel shared task on bandit learning for machine translation we compared
the adaptability and learning speed of a set of static, statistical and neural trans-
lation models on domain adaptation from the news domain to e-commerce data.
Despite challenges like noisy rewards and an unusual domain, we found promising
results for both linear and non-linear online learners that could outperform their
static SMT and NMT baselines. This validates the empirical successes for the
ER-based neural learners that we reported on simulations (Section 3.4.2) on a
more realistic task.

73

3.6 Conclusion

In this chapter we started from the definition of online bandit structured predic-
tion and the adaptation of expected loss/reward objectives from supervised to
bandit learning (“banditization”). We presented three algorithms and their in-
stantiation for both statistical and neural machine translation models, discussed
their strengths and weaknesses and applied them to a domain adaptation task,
where the adaptation, or personalization, is guided by a weak reward signal.
We introduced and analyzed the effects of control variates and found that they
improve variance and generalization. Both statistical and neural models yielded
significant improvements on a set of evaluation tasks for English-to-French trans-
lations and also performed well in an online evaluation on the challenging product
title domain in a shared task with translations from German to English.

From the perspective of real-world interactive applications, bandit pairwise
preference learning is perhaps the most attractive algorithm of the three since
it only requires comparative judgments for learning. In our experiments we
found that relative feedback resulted in improved empirical convergence speed
for SMT, but for NMT the decomposition of the structure into a sequence of
tokens prohibits a simple transfer of the pairwise objective. Chapter 5 will
further investigate the potential of pairwise preference learning for NMT and
the suitability for human ratings.

Despite the success of the experiments also revealed that these reinforcement
algorithms with exponential action spaces need large amounts of training data
to adapt to the reward signal, and careful tuning of learning and annealing rates.
The shared task evaluation highlighted the difficulties of balancing online quality
and offline evaluations: exploration during learning is a potential loss of online
quality (a potential loss of customers if deployed in production), while reaching
best offline (held-out) quality requires it. In the next two chapters, we will
therefore move to offline learning, where there is no model-based exploration in
interaction with a user and feedback collection and model training are completely
separated.

74

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

 1000 10000 100000 1e+06

re
gr

et

iteration

SMT-static
SMT-EL-CV-ADADELTA

SMT-EL-CV-ADAM
SMT-SZO-CV-ADAM

WMT16-static
BNMT-static

WNMT-EL
BNMT-EL

BNMT-EL-CV
UMD-dom-adapt
UMD-reinforce1
UMD-reinforce2

UMD-reinforce3
LIMSI-UCB1

LIMSI-UCB1-sampl
LIMSI-UCB1-select

Figure 4: Evolution of regret plotted against log-scaled number of iterations
during training. The steeper is the decrease of a curve, the better learning
capability has the corresponding algorithm. Algorithms labeled “EL” correspond
to our “ER”. Plot made by Artem Sokolov.

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 0 1 2 3

co
rp

us
-B

LE
U

check points

Lexical IBM2
SMT-static

SMT-EL-CV-ADADELTA
SMT-EL-CV-ADAM

SMT-SZO-CV-ADAM
WMT16-static

BNMT-static
WNMT-EL

BNMT-EL
BNMT-EL-CV

BNMT-EL-CV w/o annealing

Figure 5: Evolution of corpus BLEU scores during development for configuration
selected for the training phase of the competition. Each check point is comprised
of the same 700 sentences spaced at a regular intervals of 12,400 sentences
starting from the beginning of the development sequence. Algorithms labeled
“EL” correspond to our “ER”. Plot made by Artem Sokolov.

75

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

 0 1 2 3 4 5 6 7 8 9 10 11

co
rp

us
-B

LE
U

check points

SMT-static
SMT-EL-CV-ADADELTA

SMT-EL-CV-ADAM
SMT-SZO-CV-ADAM

WMT16-static
BNMT-static

WNMT-EL
BNMT-EL

BNMT-EL-CV
UMD-dom-adapt
UMD-reinforce1
UMD-reinforce2

UMD-reinforce3
LIMSI-UCB1

LIMSI-UCB1-sampl
LIMSI-UCB1-select

(a) corpus-BLEU

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

 0 1 2 3 4 5 6 7 8 9 10 11

av
er

ag
e

se
nt

en
ce

-B
LE

U

check points

SMT-static
SMT-EL-CV-ADADELTA

SMT-EL-CV-ADAM
SMT-SZO-CV-ADAM

WMT16-static
BNMT-static

WNMT-EL
BNMT-EL

BNMT-EL-CV
UMD-dom-adapt
UMD-reinforce1
UMD-reinforce2

UMD-reinforce3
LIMSI-UCB1

LIMSI-UCB1-sampl
LIMSI-UCB1-select

(b) sentence-BLEU

Figure 6: The evolution of corpus- and sentence-BLEU scores during training for
all participant and baselines. Each check point is comprised of the same 4,000
sentences spaced at a regular intervals of 113,634 sentences starting from the
beginning of the training sequence. Algorithms labeled “EL” correspond to our
“ER”. Plots made by Artem Sokolov.

76

Part II

Offline Learning with Human Bandit

Feedback

Chapter 4

Learning from E-commerce User Feedback

In commercial scenarios of neural machine translation (NMT), the one-best
translation of a text is shown to multiple users who can reinforce high-quality
(or penalize low-quality) translations by explicit feedback (e.g., on a Likert scale)
or implicit feedback (e.e., by clicking on a translated page). In such settings this
type of feedback can be easily collected in large amounts. Likert-scale ratings
are for example implemented by eBay or Facebook (see Figure 1 on page 9).
While bandit feedback in the form of user clicks on displayed ads is the standard
learning signal for response prediction in online advertising (Bottou et al., 2013),
bandit learning for machine translation has so far been restricted to simulation
experiments (Sokolov et al., 2016b; Lawrence et al., 2017b; Nguyen et al., 2017;
Kreutzer et al., 2017; Bahdanau et al., 2017), as discussed in the previous chapter.

The goal of this chapter is to show that cheap and abundant real-world human
bandit feedback can be exploited for machine learning in NMT. We analyze and
utilize human reinforcements that have been collected from users of the eBay
e-commerce platform. We find that explicit user judgments in form of five-star
ratings are not reliable and do not lead to downstream BLEU improvements in
this scenario. In contrast, we find that implicit task-based feedback that has
been gathered in a cross-lingual search task can be used successfully to improve
task-specific metrics and BLEU.

Another crucial difference of our work to previous research is the fact that we
assume a counterfactual learning scenario where human feedback has been given
to a historic system different from the target system. Learning is done offline
from logged data, which is desirable in commercial settings where system updates
need to be tested before deployment and the risk of showing inferior translations
to users needs to be avoided. Our offline learning algorithms range from a simple
bandit-to-supervised conversion (i.e., using translations with good feedback
for supervised tuning) to transferring the counterfactual learning techniques
presented by Lawrence et al. (2017b) from SMT to NMT models.

A naive bandit-to-supervised conversion proved to be hard to beat, despite
theoretical indications of poor generalization for exploration-free learning from
logged data (Langford et al., 2008; Strehl et al., 2010). However, we can improve
over this with a task-specific reward scoring function, resulting in significant
improvements in both BLEU and in task-specific metrics.

78

Contributions. The contributions of this chapter are the following

1. We present the first study on learning from real-user bandit feedback for
machine translation.

2. The feedback is collected in production, for which we transfer previous
online learning approaches to an offline learning scenario.

3. We adapt two objectives for SMT to offline bandit learning for NMT from
explicit user feedback and evaluate them on simulated and real data.

4. We develop a novel technique to elicit implicit feedback from user queries
and clicks in a cross-lingual information retrieval pipeline.

5. We also discover the simple but strong bandit-to-supervised conversion
that should serve as baseline in any future work concerning learning from
bandit feedback.

Publications. This work is the result of a collaboration with eBay and was
published in (Kreutzer et al., 2018a). The author of this thesis conducted
the experiments with the collected feedback and in simulation, developed the
objectives and analyzed the models and feedback, while eBay provided the
feedback and in-domain data, the baseline models, and the expert annotations.

Outline. We describe how to collect explicit and implicit user feedback for
the eBay platform in Section 4.1. Section 4.2 introduces algorithms for learning
from this feedback. In the experiments reported in Section 4.3 we evaluate how
well an NMT system can be improved with the help of the feedback collection.
Section 4.4 concludes this chapter with a summary of the findings.

4.1 User Feedback

4.1.1 Explicit Feedback via Star Ratings

Feedback Collection

eBay used to collect user feedback for their translations through a 5-star rating
interface, pictured in Figure 7 (page 80).1 When users visited product pages with
translated titles, they could inspect the source by hovering with the mouse over
the title. Five stars are shown with the instruction to ‘rate this translation’ as
for example shown for the product in Figure 7. A log is built from the collected
star ratings together with the original title and the machine translation.

1At the time of the study (Spring 2018); now this feature is disabled.

79

Figure 7: Screenshot of the 5-star rating interface embedded on a product page
on www.ebay.es for a product translated from English to Spanish.

For the experiments in this paper, we focus on translations from English to
Spanish. The user star rating data set contains 69,412 rated product titles with
148k individual ratings. Since 34% of the titles were rated more than once, the
ratings for each title are averaged. Figure 8a (page 81) depicts a histogram of
the averaged ratings, linearly scaled to [0, 1]. We observe a tendency towards
high ratings, with half of the titles rated with five stars.

Reliability and Validity of Star Ratings

The user ratings were available only in aggregated form, so that we could not
filter or normalize by rater (see Section 5.2.1). To investigate the reliability and
validity of these ratings, we employed three bilingual annotators (‘experts’) to
independently re-evaluate and give five-star ratings for a balanced subset of 1000
product title translations. The annotators were presented the source title and the
machine translation, together with instructions to rate the translation with stars.
The inter-annotator agreement between experts is relatively low with Fleiss’
κ = 0.12 (Fleiss, 1971). Furthermore, there is no correlation of the averaged
‘expert’ ratings and the averaged user star ratings (Spearman’s ρ = −0.05). This
dis-agreement might be caused by the difficulty of the domain in general, and
the ill-definedness of the translation tasks when the source is not a well-formed
sentence.

However, when we ask another three annotators to indicate whether they
agree or disagree with a balanced subset of 2,000 user ratings, the majority
agrees with 42.3% of the ratings. In this binary meta-judgment task, the inter-

80

www.ebay.es

(a) Histogram of user star ratings. (b) Histogram of sBLEU scores.

Figure 8: Histograms of star ratings and simulated sBLEU ratings on the
training data for the reward estimator. The original ratings on a five-star scale
are averaged per title and linearly scaled to [0, 1]. The sBLEU scores are obtained
for translations of the out-of-domain baseline for simulation experiments.

annotator agreement between experts is moderate with κ = 0.45. We observe a
strong tendency of the expert annotators to agree with high user ratings and to
disagree with low user ratings. Two examples of user ratings, expert ratings and
expert judgment are given in Table 9 (page 82). In the first example, all raters
agree that the translation is good, but in the second example, there is a strong
disagreement between users and experts.

This analysis shows that it is generally not easy for non-professional users of
the e-commerce platform, and even for expert annotators, to give star ratings of
translations in the domain of user-generated product titles with high reliability.
User ratings of product titles translations have a low validity, i.e., we do not know
whether their response actually expresses translation quality. We cannot control
the influence of other factors on their judgment, e.g., the displayed image, the
product itself, or the users’ general satisfaction with the e-commerce transaction
or their source language understanding. The user judgment might also be given
with an adversarial purpose. Furthermore, we do not have control over the
quality of sources,2 nor can we discern to which degree a user rating reflects
fluency or adequacy of the translation.

4.1.2 Task-Based Implicit Feedback

Feedback Collection

Another form to collect human reinforcement signals via the used e-commerce
platform is to embed the feedback collection into a cross-lingual information

2Most titles consist of a sequence of keywords rather than a fluent sentence. See (Calixto
et al., 2017) for a fluency analysis of product titles.

81

Src Universal 4in1 Dual USB Car Charger Adapter Voltage DC 5V
3.1A Tester For iPhone

Hyp Coche Cargador Adaptador De Voltaje Probador De Corriente
Continua 5V 3.1A para iPhone

Rating Users: 4.56; Experts: 4.33 / Correct

Src BEAN BUSH THREE COLOURS: YELLOW BERGGOLD, PUR-
PLE KING AND GREEN TOP CROP

Hyp Bean Bush tres colores: Amarillo Berggold, púrpura y verde Top
Crop King

Rating Users: 1.0; Experts: 4.66 / Incorrect

Table 9: Two examples for five-star user and expert ratings of the machine
translation (hyp) for the English sources (src), and expert judgments on the user
ratings (“Is the user rating correct or incorrect?”). Expert and user ratings are
averaged for all raters. The expert judgment is obtained by majority voting.

retrieval task. The product title translation system is part of the following
pipeline in the search interaction of a user with the e-commerce system: When
the user enters a query in Spanish, it is first translated to English, then a search
engine retrieves a list of matching products, and their titles are translated to
Spanish and displayed to the user. As soon as the user clicks on one of the
translated titles, the original query, the translated query, the source product title
and its translation are stored in a log.

From this collection we filter the cases where (a) the original query and the
translated query are the same, or (b) more than 90% of the words from the
query translation are not contained in the retrieved source title. In this way,
we attempt to reduce the propagation of errors in query translation and search.
This leaves us with a data set of 164,065 tuples of Spanish queries, English
product titles and their Spanish translations (15% of the original collection).
Note that this data set is more than twice the size of explicit feedback data set.
An example is given in Table 10 (page 83). This approach has similarities to
back-translation (Sennrich et al., 2016b) as exploited in dual learning (He et al.,
2016) where translations get reinforced to the extent that they reconstruct the
original source.

Inducing Rewards

The advantage of embedding feedback collection into a search task is that we can
assume that users who formulate a search query have a genuine intent of finding
products that fit their need, and are also likely to be satisfied with product title
translations that match their query, i.e., contain terms from query in the user’s

82

Query (es) candado bicicleta
Query (en) bicycle lock
Title (en) New Bicycle Vibration Code Moped Lock Bike Cycling Security

Alarm Sound Lock
Title (es) Nuevo código de vibración Bicicleta Ciclomotor alarma de

seguridad de bloqueo Bicicleta Ciclismo Cerradura De Sonido
Recall 0.5

Table 10: Example of query and product title translation. ‘candado’ is translated
to ‘lock’ in the query, but then translated back to ‘cerradura’ in the title. The
recall metric would prefer a title translation with ‘candado’, as it was specified
by the user.

own language. We exploit this assumption to measure the quality of a product
title translation by requiring a user to click on the translation when it is displayed
as a result of the search, and quantifying the quality of the clicked translation
by the extent it matches the query that led the user to the product. For this
purpose, we define a word-based, recall-focused matching function match(w, q)
that evaluates whether a query q = (q1, . . . , qQ) contains the word w of the
translation:

match(w, q) =

{
1, ifw ∈ q
0, otherwise.

(62)

A sequence-level reward for a sentence y of length T and a query of length Q is
ratio between matching words and query length:

recall(y, q) =
1

Q

T∑
t=1

match(yt, q). (63)

4.2 Learning from User Feedback

4.2.1 On- vs. Off-Policy Learning

While the simulation experiments in the previous chapter were based on online
availability of feedback, where the learner could query the teacher/human at any
time during the learning process, this is not an attractive solution for production
environments. As discussed in the Introduction, the feasible solution for MT in
production is to separate the feedback collection step from the model update
step. Feedback for translations of the deployed system is collected over some
period of time, and copies or variants of the deployed model (or other models

83

Algorithm 5 Bandit Structured Prediction with Offline Feedback

Input: Logging system with parameters ψ, learning system with parameters θ
1: Initialize log L = {}
2: for k = 0, . . . ,K do
3: Observe input structure x
4: Predict output structure ŷ ≈ arg max pψ(y | x)
5: Obtain reward r(ŷ)
6: Store interaction L = L ∪ (x, ŷ, r(ŷ))

7: Learn parameters θ from L

that have the potential to get deployed) can be trained and tuned on the feedback
log in the meantime, until they have reached a performance that exceeds the
currently deployed model, at which point they can replace it. This ensures that
the deployed model is the best available model at all times and is not harmed by
integrating the feedback. But it also results in a mismatch between logging and
learning model, which requires the shift from on-policy learning (in simulations)
to off-policy (or counterfactual) learning (Bottou et al., 2013). It comes with the
additional challenge of maintaining means of exploration, which are essential for
bandit and reinforcement as we showed in Section 3.3.2.

Algorithm 5 describes the basic procedure in counterfactual bandit structured
prediction. In contrast to ER (Algorithm 1) presented in Chapter 3, sampling is
replaced with deterministic logging (Line 4), the feedback is stored (Line 6), and
there is the distinction between logging and learning model (ψ vs θ). If the logging
process was stochastic, one could use the sampling probability under the historic
model for inverse propensity scoring (Bottou et al., 2013). In the deterministic
case, however, no exploration is allowed during sampling, so alternative solutions
for implicit exploration (Lawrence et al., 2017b) have to be found, such as rating
online-sampled translations with reward estimatorsin lieu of user feedback.

4.2.2 Reward Functions

In reinforcement and bandit learning, rewards received from the environment
are used as supervision signals for learning. In our experiments, we investigate
several options (Table 11 on page 85) to obtain a reward function r : Y → [0, 1]
from logged human bandit feedback:

1. Direct user reward: Explicit feedback, e.g., in the form of star ratings,
can directly be used as a reward signal by treating the reward function
as a black box. Since human feedback is usually only available for one
translation per input, learning from direct user rewards requires the use of
bandit learning algorithms. In our setup, human bandit feedback has been

84

Function Availability Source

Direct user reward black box one per input human
Reward scoring function glass box unlimited inferred
Estimated reward glass box unlimited model

Table 11: Comparison of reward functions used in the experiments.

collected for translations of a logging MT system different from the target
system to be optimized. This restricts the learning setup to offline learning
from logged bandit feedback. Evaluation at test time using the same reward
function is infeasible since it would require interactive feedback from the
same users under the same circumstances.

2. Reward scoring function: A possibility to use human bandit feedback
to obtain rewards for more than a single translation per input is to score
translations against a logged reference or a logged query, i.e., inferred
from stronger supervision. The first option requires a bandit-to-supervised
conversion of data where high-quality logged translations are used as
references for BLEU or other MT quality metrics (see Section 3.4). The
second option uses logged queries to obtain a matching score as in Equation
63. Reward scoring functions can be evaluated for all translations of a
given input, thus they can be superior to bandit learning which is bound to
a single feedback signal per input. Also, evaluation with respect to reward
scores is feasible.

3. Estimated reward: Another option to extend bandit feedback to all
translations is to learn a parametric model of rewards, e.g., by optimizing
a regression objective. The reward function is known, but the model
parameters need to be trained based on a history of direct user rewards or
by evaluations of a reward scoring function. Estimated rewards share the
advantages of reward scoring functions in training and evaluation, but bring
the disadvantage of possibly being inaccurate. Most importantly, they
will allow the model to learn from implicit exploration in exploration-free
logging scenarios.

4.2.3 Training Objectives

Maximum likelihood estimation. Most commonly, NMT models are trained
with MLE (Equation 15) on a given parallel corpus of source and target sequences.
It requires reference translations and is agnostic to rewards (see Section 2.1.3).
However, in a bandit-to-supervised conversion, translations can be filtered by

85

their rewards to create a corpus of pseudo-references for MLE training. We apply
this scenario to simulated bandit feedback and to explicit and implicit human
feedback data in our experiments.

Expected reward maximization. When rewards can be retrieved for sam-
pled translations during learning, the online bandit structured prediction frame-
work from Chapter 3 can be applied for NMT. The ER objective (Equation 30)
maximizes the expectation of a reward over all source and target sequences, and
does in principle not require references. Just like in Chapter 3, we optimize ER
using smoothed sBLEU in our simulation experiments, comparing a sampled
translation ỹ ∼ pθ(y | x) to a given reference translation.

Sequence-level minimum risk training. When rewards can be obtained for
several translations per input instead of only for one as in the bandit setup, e.g.
when the reward function is known (e.g. sBLEU), Minimum Risk Training (MRT)
(Shen et al., 2016) can be applied to optimize NMT for reward maximization on
a given parallel corpus of source and target sequences D = {(x(s), y(s))}Ss=1:

JMRT(θ) =
S∑
s=1

∑
ỹ∈S(x(s))

qαθ (ỹ | x(s)) ry(ỹ), (64)

where sample probabilities are re-normalized over a subset of translation samples
S(x) ⊂ Y(x):

qαθ (ỹ | x) =
pθ(ỹ | x)α∑

y′∈S(x) pθ(y
′ | x)α

. (65)

The hyper-parameter α controls the sharpness of q (Shen et al., 2016). The
re-normalization can be seen as a multiplicative control variate (Section 2.2.3).

Token-level minimum risk training. With sequence-level rewards, such
as sBLEU, all words of a translation are reinforced to the same extent and
are treated as if they contributed equally to the translation quality (uniform
credit assignment). A word- or token-based reward function, such as the match
with a given query (Equation 62), allows tokens to receive individual weights.
The following modification of the sequence-level MRT objective (Equation 64)
accounts for token-level rewards:

JT-MRT(θ) =

S∑
s=1

∑
ỹ∈S(x(s))

T∏
t=1

[
qαθ (ỹt | x(s), ỹ<t) ry(ỹt)

]
, (66)

where the token-level reward is for example the matching score (Equation 62):
ry(ỹt) = match(ỹt, y).

86

Combining MLE and MRT. T-MRT and ER typically require a warm start
for large output spaces with sparse reward functions, for example by pre-training
with MLE (see Section 2.3). After pre-training, fine-tuning is furthermore
stabilized through a linear combination of MLE and T-MRT objective, which we
will call “MIX” (Wu et al., 2016):

JT-MIX(θ) = λ · JMLE(θ) + JT-MRT(θ), (67)

or analogously on the sequence-level

JMIX(θ) = λ · JMLE(θ) + JMRT(θ). (68)

In our experiments, these MIX objectives are applied to simulated as well as to
explicit and implicit human feedback data.

Deterministic propensity matching. Counterfactual learning attempts to
improve a target MT system from a log of source sentences, translations produced
by a historic MT system, and obtained feedback L = {(x(h), y(h), r(y(h)))}Hh=1

(see Section 2.3). Lawrence et al. (2017b) introduced the Deterministic Propensity
Matching (DPM) objective

JDPM(θ) =
1

H

H∑
h=1

r(y(h)) p̄θ(y
(h) | x(h)), (69)

where translation probabilities are reweighted over the whole log. This reweight-
ing can be seen as a multiplicative control variate as shown by (Swaminathan and
Joachims, 2015b): By dividing the original estimator 1

H

∑H
h=1 r(y

(h)) pθ(y
(h) |

x(h)) by 1
H

∑H
h=1 pθ(y

(h) | x(h)), the variance of the estimator is reduced if they
covary (see Section 2.2.3).

For the neural models the reweighting over the whole log is infeasible because
it would requires re-decoding of the whole log for every training update. We
re-normalize over the current mini-batch B ⊂ H,B � H instead:

p̄θ(y
(h) | x(h)) =

pθ(y
(h) | x(h))∑B

b=1 pθ(y
(b) | x(b))

. (70)

We additionally normalize the log probability of a translation y by its length T :
pnormθ (y | x) = exp (log pθ(y|x)

T). This length normalization stabilizes the updates,
since the model probabilities are very small due to the composition of the
probability of the sequence as a product of token probabilities (Equation 6). In
our experiments, we apply the DPM objective to simulated data and explicit
human feedback data.

87

Doubly controlled estimation. Lawrence et al. (2017b) furthermore propose
the Doubly Controlled objective (DC, Equation 71). In addition to learning
from the logged reward for the logging system, the reward for other translations
is estimated by a parametrized regression model that is trained on the log
r̂θ : Y → [0, 1]. This objective contains both a multiplicative (probability
reweighting) and an additive (reward estimate) control variate, hence the name.3

JDC(θ) =
1

H

H∑
h=1

[(
r(y(h))− r̂θ(y(h))

)
· p̄θ(y(h) | x(h)) +

∑
ỹ∈S(x(h))

r̂θ(ỹ) pθ(ỹ | x(h))

]
(71)

As for MRT, the expectation over the full output space is approximated with a
subset of k sample translations S(x) ⊂ Y(x). This objective can be seen as a
combination of DPM and MRT, where the combination strategy is dependent
on the quality of the reward estimator: If it is perfect (r(y(h)) = r̂θ(y

(h))), only
the MRT part of the objective is active, i.e., the expected estimated reward
maximization. As long as the reward estimator is imperfect, the logged reward
is part of the update. Similar to DPM, we apply the DC objective to simulated
data and explicit human feedback data in our experiments.

Average reward baseline. REINFORCE objectives are known to benefit
from variance reduction via the average reward baseline. That means that a
running average of historic rewards b is subtracted from the current reward
in the gradient updates (Section 2.2.3). In the experiments we apply this
control variate not only to the online ER optimization, but also to DPM and
DC objectives with offline feedback, since learning still operates on the basis
of stochastic mini-batch updates. For DC we replace the subtraction of the
estimated reward r̂θ(y

(h)) in the first part of Equation 71 with the subtraction
of the average logged reward, and add to the second part the subtraction of the
average estimated reward ¯̂rh = 1

H

∑H
h=1

1
k

∑
ỹ∈S(x(h)) r̂θ(ỹ). Despite introducing

bias in the gradient estimate, we found this use of the baseline control variates
to be effective, especially in combination with suboptimal reward estimators,
presumably for its reward-relativizing effect (Section 3.3.2).

4.3 Experiments

4.3.1 Setup

In our experiments, we first evaluate a range of learning objectives in a simulation
experiment both on a public domain and the eBay domain, and then investigate

3We find empirically that estimating ĉ over the current batch as in objective ĉDC in
(Lawrence et al., 2017b) does not improve over the simple setting with c = 1.

88

Description Number of sentences

Out-of-domain training data 2,741,087
In-domain training data (for simulations) 62,162

In-domain development data 1,619
In-domain test data 1,000

Product titles with user star ratings 69,412
. . . of which are rated 5 stars on average 40,064
. . . of which are rated by experts 1,000
. . . of which are judged (correct/incorrect) by experts 2,000

Query-title pairs 164,065
. . . of which have recall = 1 61,965

Table 12: Data set sizes for collected feedback in number of sentences. The
in-domain title translations are only used for simulation experiments.

three approaches to learn from logged human feedback for e-commerce transla-
tions: (1) bandit-to-supervised conversion, (2) counterfactual bandit learning
for explicit human feedback, and (3) minimum-risk training with task-specific
reward scores for implicit human feedback.

Learning from feedback starts from a pre-trained English-to-Spanish NMT
model that has not seen in-domain data (i.e. no product title translations).
This corresponds to a domain adaptation setting, where product title reference
translations are not available, but a general-domain model can be used to gather
initial feedback from users.

Data

We conduct experiments on an English-to-Spanish e-commerce item titles transla-
tion task. A small in-domain corpus of in-house e-commerce data (product titles,
descriptions, etc.) is available, for training in simulations (comparable in size to
the user-rated translations), and for development and testing. The baseline is
trained on out-of-domain data selected from available parallel corpora, that is
Europarl, TAUS, and OpenSubtitles released by the OPUS project (Tiedemann,
2009). It is sub-sampled according to the similarity to the in-domain data by
selecting 25% of the most similar sentence pairs following the invitation approach
(Cuong and Sima’an, 2014). The corpus is pre-processed by tokenization and
replacement of numbers and product specifications with a placeholder token
(e.g., ‘6S’, and ‘1080p’). Table 12 gives an overview of the type and the size of
the data, including the feedback that is collected explicitly (rated product title
translations) and implicitly (query-title pairs).

89

Figure 9: Model architecture for the reward estimator. This example has one
filter for each filter size (3: purple, 1: green, 2: blue). Source and target sequences
are padded up to a maximum length, here Tmax = 8.

NMT Model

The NMT baseline model (BL) is a standard subword-based encoder-decoder
architecture with attention (Bahdanau et al., 2015), implemented with Python
and TensorFlow (Abadi et al., 2016) on top of eBay’s in-house NMT toolkit. It
has a bi-directional RNN encoder with one layer of 1,000 GRUs, a decoder with
1,000 GRUs, and source and target word embeddings of size 620.

The vocabulary is generated from the out-of-domain training corpus with
40k byte-pair merges (BPE) (Sennrich et al., 2016c) and contains 40,813 source
tokens and 41,050 target tokens. The full softmax is approximated by 1,024
samples as proposed by Jean et al. (2015a). Dropout (Gal and Ghahramani,
2016) is applied with probability p = 0.1 to the embedding matrices, with p = 0.2
to the input and recurrent connections of the RNNs.

The model is trained with MLE on out-of-domain data and the early stopping
point is determined on a small in-domain dev set of 1,619 product title translations.
A beam of size 12 and length normalization (Wu et al., 2016) are used for beam
search decoding. For BLEU score evaluation we use the multi-bleu script of
the Moses decoder (Koehn et al., 2007), for TER computation the tercom tool
(Snover et al., 2006). For NMT models involving random sampling, we report
average results and standard deviation (in subscript) for two runs with different
random seeds. Detailed hyperparameter settings are given in Appendix B.2.

Reward Estimator

The model architecture for the reward regressor used in the DC objective is
a bilingual extension of the convolutional neural network (CNN) for sentence
classification proposed by Kim (2014). Both source and target sequences are
padded up to a pre-defined maximum sequence length Tmax, their embeddings are

90

Data MSE
Macro-avg.
Distance

Micro-avg.
Distance

Pearson’s
r

Spearman’s
ρ

Star ratings 0.1620 0.0065 0.3203 0.1240 0.1026
sBLEU 0.0096 0.0055 0.0710 0.8816 0.8675

Table 13: Results for the reward estimators trained and evaluated on human
star ratings and simulated sBLEU.

concatenated and further processed by a 1D-Convolution over the time dimension,
which is then followed by max-over-time pooling and fed to a fully-connected
output layer (Figure 9) that produces a scalar score.

The model is trained to minimize the mean squared error (MSE) on the
training portion of the logged feedback data (60,000 for simulated sentence-BLEU
feedback, 62,470 for star rating feedback). The word embeddings of the reward
estimator are initialized by the word embeddings of the trained baseline NMT
system and fine-tuned further together with the other CNN weights. The best
parameters are identified by early-stopping on the validation portion of the
feedback data (2,162 for the simulation, 6,942 for the star ratings). Detailed
hyperparameter settings are reported in Appendix B.3.

4.3.2 Reward Estimation Quality

Held-Out Set Evaluation

Results for a stand-alone evaluation of the reward estimator on the validation
portions of the feedback data are given in Table 13. The estimator for sBLEU
models the data much more accurately than the user star rating estimator. The
correlation of the estimated star ratings with the ground truth is poor. This is
due to large variance and skew of the user ratings.4

An estimator trained with MSE typically predicts values around the mean,
which is not a suitable strategy for such a skewed distribution of labels, but is
successful for the prediction of normal-distributed sBLEU. For further illustration,
Figure 8b shows the histogram of sBLEU scores for the simulation experiments
with logged feedback on the training set. The distribution of simulated rewards
appears to be much closer to a normal distribution than the rewards collected
from users that had a strong skew towards positive ratings (compare Figure 8).

4Nguyen et al. (2017) analyze the detrimental effects of variance and skew for bandit learning
for NMT.

91

Figure 10: Effect of perturbations on test title translations of the baseline model
(BL) measured by different MT evaluation metrics (BLEU, TER, estimated user
reward): ‘source’: replace the translation by its source, ‘drop’: each word is
removed by 20% chance, ‘permute’: word order is randomly permuted, ‘delete’:
delete complete translation.

Robustness

The reward estimator is used in the DC objective to judge the quality of sampled
translations. In order to get more insights into its behavior, we probe its
robustness by perturbing translations and measuring the change in estimated
quality. This lets us also compare to non-parametric reward functions like BLEU
and TER that are commonly used in simulations. Ideally, the reward estimator
should show sensitivity to perturbations that reduce the translation quality.

Figure 10 (page 92) illustrates the effect of a range of perturbations of the
BL NMT translations on the estimated user reward in comparison to BLEU and
TER. The estimated reward for the baseline translations is 53.93. When the
source is equal to the target, the estimated reward rises slightly, just as TER,
while BLEU drops (“source” in Figure 10). When a random selection of words
from each translation is removed (each word is removed by 20% chance), BLEU
and TER drop a bit more. (“drop” in Figure 10). When the order of the words
in each translation is randomly permuted, the BLEU is drastically lowered to
4.87, the estimated reward drops only by 0.6, TER rises to 78.87 (“permute”). If
the translation is completely deleted, the TER drops, and BLEU is 0. However,
the estimated reward is still 28.89 (“delete”).

This shows that the estimated reward function is not as sensitive to word
omissions and permutations as BLEU and TER, and furthermore encourages
source words on the target side. It might be a result of the large skew towards

92

positive ratings in the underlying training data (cf. Figure 8a), and will cause
the estimated reward function to be overly optimistic, harming its capability to
distinguish good and bad translations.5

4.3.3 Simulation: Online vs. Offline Feedback

First we test the proposed objectives in simulation in order to find out whether
1) our transfer from statistical to neural models was successful, 2) the objectives
work well across domains, and 3) how much loss is expected when going from
online to offline feedback.

Simulation on Public Data

We use exactly the same data, preprocessing and splits as Lawrence et al. (2017b)
to compare with their French-to-English news experiments on counterfactual
learning with deterministically logged feedback for SMT. Just like in the experi-
ments in Chapter 3, the baseline model is trained with MLE on Europarl (EP)
translations, bandit feedback is then simulated from News Commentary (NC)
translations.

The results comparing our neural models to the log-linear ones from Lawrence
et al. (2017b) are given in Table 14. The NMT out-of-domain baseline is noticeable
stronger than the SMT one. Out-of-domain pre-training and then fine-tuning
(EP→NC) outperforms solely training on in-domain data (NC), and also shows
larger improvements for NMT (4.93 BLEU) than SMT (2.81 BLEU).

Looking at the models trained with bandit feedback, we notice that the
improvement with online feedback (ER) is relatively small (0.47 BLEU), and
DPM with offline feedback does not yield any improvements over the baseline.
Thanks to the reward estimator that allows it to explore the output space, DC
achieves the highest improvements of 0.65 BLEU.

When greedy decoding is used instead of beam search (like in Chapter 3),
the difference in BLEU scores between domains is larger, and there is still an
advantage of online over offline feedback (ER:+1.61 BLEU, DC:+1.07 BLEU).
Since there is (limited) exploration during decoding in beam search, the gains
diminish. This aligns with the relatively larger improvements found for ER in
Section 3.4.2, and was also observed by Bahdanau et al. (2017).

Simulation on E-commerce Data

Moving to the target domain, we adapt the NMT out-of-domain baseline to the
e-commerce domain with the in-domain parallel corpus, where bandit feedback is

5In hindsight, it might have been advantageous to train the reward estimator directly as a
discriminator (e.g. with a ranking objective or like in generative-adversarial approaches (Wu
et al., 2017; Yu et al., 2017b)).

93

Training Model SMT
NMT

beam search greedy

Fully Supervised
EP BL 25.27 27.55 26.32
NC BL – 22.35 19.63
EP→NC 28.08 32.48 31.04

Bandit Feedback
ER – 28.02 27.93
DPM 26.24 27.54 26.36
DC 26.33 28.20 27.39

Table 14: BLEU scores for simulation models evaluated on the French-to-English
NC test set. SMT results are from (Lawrence et al., 2017b) (“–” if not reported).
The BL models are trained with MLE on either EP or NC. EP→NC is fine-tuned
on NC after being pre-trained on EP. ER, DPM, and DC are trained with
simulated bandit feedback on NC data.

simulated by evaluating a sampled translation against a reference using smoothed
sentence-BLEU (sBLEU). Similar to previous studies on SMT (Lawrence et al.,
2017b), this reward is deterministic and does not contain user-dependent noise.
Translations for off-policy learning with simulated rewards are generated by
beam search decoding (beam width of 5) with the out-of-domain baseline NMT
system. Models that involve random sampling are repeated three times and their
mean results and standard deviation are reported. Table 15 lists results with
beam search decoding.

When fine-tuning the baseline model (OD) on in-domain references (OD→ID
MLE), it improves by 3.34 BLEU on the in-domain test set. By tuning it
on the same in-domain data for sBLEU with MIX, it gains another 3 BLEU
points (OD→ID MIX). When feedback is given to only one translation per input
(=online bandit feedback), the model (ER) achieves comparable performance to
MLE training with references.

When the feedback is logged offline for one round of deterministic outputs of
the baseline model (=offline bandit feedback), we can still find improvements of
1.81 BLEU (DPM). With a reward estimator trained on this log, DC achieves
improvements of 3 BLEU. To test the contribution of the feedback in contrast to
a simple in-domain training effect, we randomly perturb the pairing of feedback
signal and translation, and retrain (DPM-random). This degrades results,
confirming the sBLEU feedback to be a useful signal rather than noise.

94

Training Model Test BLEU Test TER

Fully Supervised
OD BL 28.38 57.58
OD→ID MLE 31.72 53.02
OD→ID MIX 34.79±0.02 48.56±0.02

Bandit Feedback

ER 31.78±0.06 51.11±0.36

DPM 30.19 56.28
DPM-random 28.20 57.89
DC 31.11±0.34 55.05±0.02

Table 15: Results for simulation experiments with NMT evaluated on product
titles dev and test set. MLE and MIX assume references, ER learns on online
bandit feedback, DPM and DC on offline feedback. DPM-random was trained
on the same logged translations, but with randomly permuted feedback. For
models with random sampling, mean scores and standard deviation across three
runs are reported. OD: out-of-domain, ID: in-domain.

4.3.4 Explicit Star Rating Feedback

Counterfactual Bandit Learning

As shown in Table 16, counterfactual learning (DPM/DC) on the logged star
ratings as direct reward does not yield any improvements over the baseline
model in terms of corpus BLEU or TER. A randomization of feedback signals for
translations gives the same results (DPM-random), showing that counterfactual
learning from logged star ratings has the same effect as learning from noise. This
stands in contrast to the simulation results in the same domain with sBLEU
feedback (Section 4.3.3).

Evaluating the translations with the reward estimator instead of BLEU
or TER, we find an improvement of +1.49 for DC, +0.04 for DPM over the
baseline (53.93) (not shown in Table 16). That means that DC “improved”
at least, but not in terms of BLEU and TER. However, the reward estimator
largely over-estimates the translation quality of translations with major faults
(see Section 4.3.2), so these improvements might be misleading. This over-
estimation might be the result of missing exploration in the logged translations
(Swaminathan and Joachims, 2015a), and was also observed in (Lawrence et al.,
2017b). Hence it is not desirable to optimize towards this signal directly.

Bandit-to-Supervised Conversion

Since a large portion of the translations was rated with five stars and experts
agreed on these ratings, we utilize the user ratings to filter the log to keep only

95

Training Model Test BLEU Test TER

Fully Supervised OD BL 28.38 57.58

Bandit Feedback
DPM 28.19 57.80
DPM-random 28.19 57.64
DC 28.41±0.85 64.25±1.66

Bandit-to-Supervised

MLE (all) 31.98 51.08
MIX (all) 34.47±0.06 47.97±0.18

MIX (small) 34.16±0.09 48.12±0.33

MIX (stars = 5) 34.35±0.11 47.99±0.13

Table 16: Results for models trained on explicit user ratings evaluated on product
titles dev and test set. ‘small’ indicates a random subset of logged translations of
the same size as the filtered log that only contains translations with an average
rating of five stars (‘stars = 5’). The differences in BLEU between the MIX
models are not significant at p = 0.05.

five-star rated translations. On this subset, the model can be trained with MLE
and MIX using sBLEU against pseudo-references as reward function.

Table 16 (page 96) shows that this filtering strategy leads to large improve-
ments over the baseline, for MLE and even more for MIX, even though the data
set size is reduced by 42%. However, around the same improvements can be
achieved with a random selection of logged translations of the same size (MIX
small, containing 55% five-star ratings).

Using all logged translations for training MIX achieves the best results. This
suggests that the model does not benefit from fine-grained feedback, but mostly
from being exposed to in-domain translations of the logging system. This effect
is similar to training on pseudo-references created by back-translation (Sennrich
et al., 2016a,b), and was also observed by Wun et al. (2018) for a Chinese-
to-English NMT system that gets adapted with beam search translations of a
monolingual source-side in-domain corpus.

4.3.5 Task-Based Implicit Feedback

We apply the same filtering technique to the logged implicit feedback by treating
translations with recall = 1 as references for training MIX with sBLEU (reduction
of the data set by 62%). The results in Table 17 show that large improvements
over the baseline can be obtained even without filtering, BLEU and TER scores
being comparable to the ones observed for training on explicit user ratings.

96

Training Model Test BLEU Test TER

Fully Supervised OD BL 28.38 57.58

Bandit-to-Supervised

MLE (all) 31.89 51.35
MIX (all) 34.39±0.08 47.94±0.24

MIX (small) 34.13±0.26 48.27±0.60

MIX (recall = 1) 34.17±0.02 47.72±0.26

Table 17: Results for models trained on implicit task-based feedback data
evaluated on product titles dev and test set. ‘small’ indicates a random subset
of logged translations of the same size as the filtered log that only contains
translations that contain all the query words (‘recall = 1’). The BLEU score of
MIX (small) significantly differs from MIX (all) at p = 0.05, the score of MIX
(recall = 1) does not.

Task-based Feedback

The key difference between the implicit feedback collected in the query-title data
and the explicit user ratings, is that it can be used to define reward functions
like recall or match (Equations 63, 62). For the experiments we train T-MIX,
the token-based MRT objective (Equation 66) linearly combined with MLE, on
the logged translations accompanying the queries (160k sentences).

To account for user-generated language in the queries and subwords in the
MT model, we soften the conditions for a match: if a token is part of a word
that is either contained in the query, or has less than edit distance 3 (or less
than 30% of its length) to the query, it counts as a match.

Table 18 repeats the best MIX results from Tables 15 (ID MIX), 16 (MIX
(all ratings)), and 17 (MIX (all queries)), and evaluates the models with respect
to query recall. We also report the query recall for the logged translations and
the out-of-domain baseline. These results are compared to T-MIX training on
implicit feedback data described in Section 4.1.2. The development portion of
the query-title dataset contains 4,065 sentences, the test set 2,000 sentences,
which is used for query recall evaluation. TER and BLEU are computed on
translations of the title test set.

The T-MIX model shows the largest improvement in query recall (12% points)
and BLEU (6 points) over the baseline. It comes very close to the BLEU/TER
results of the model trained on in-domain references, but surpasses its recall
by far. This is remarkable since the model does not use any human generated
references, but trains all its components on logged data of task-based human
feedback. Example translations can be found in Appendix C.1.

97

Training Model Test recall Test BLEU Test TER

– Logged translations 65.33 – –

Fully Supervised
OD BL 45.96 28.38 57.58
ID MIX (simulated) 51.89±0.37 34.79±0.02 48.56±0.02

Bandit-to-Supervised
MIX (all ratings) 62.92±0.56 34.47±0.06 47.97±0.18

MIX (all queries) 63.21±0.24 34.39±0.08 47.94±0.24

Query Matching T-MIX 68.12±0.27 34.52±0.02 46.91±0.03

Table 18: Query recall results on the query test set, and BLEU and TER scores
on the title test data, comparing MIX models trained on logged translations with
the T-MIX model trained via word-based query matching, and the MIX model
trained on in-domain model with simulated rewards (ID MIX). The difference in
BLEU between the MIX (rating, queries) models and the T-MIX model is not
significant at p = 0.05, but the difference to the MIX model trained on in-domain
references is significant.

4.4 Conclusion

In this chapter we presented, compared, and evaluated methods to improve NMT
from offline human reinforcement signals to translations of product titles. The
signals were logged from user activities of an e-commerce platform and consist
of explicit ratings on a five-point Likert scale and implicit task-based feedback
collected in a cross-lingual search task.

We found that learning from explicit feedback is successful only in a simulated
setting without noise, and fails with human star ratings. However, implicit task-
based feedback was used successfully as a reward signal for NMT optimization,
leading to improvements both in terms of enforcing individual word translations
and in terms of automatic evaluation measures.

With an initial impression of the extent of noise and user-level variation that
explicit user ratings entail, we will dive deeper into the effects of reliability of
reinforcement learning signals in the next chapter.

98

Chapter 5

Reliability and Learnability of Human Feedback

In this chapter we will show that the reliability of feedback signals is a catalyst
for learning from human feedback. As described in the previous chapter, the first
deployment of bandit NMT in an e-commerce translation scenario conjectured
lacking reliability of user judgments as the reason for disappointing results. We
thus raise the question of how human feedback can be gathered in the most
reliable way, and which effect reliability will have in downstream tasks.

In order to answer these questions, we measure intra- and inter-annotator
agreement for two feedback tasks for bandit NMT, using cardinal feedback (on a
5-point scale) and ordinal feedback (by pairwise preferences) for 800 translations,
conducted by 16 and 14 human raters, respectively. Perhaps surprisingly, while
relative feedback is often considered easier for humans to provide (Thurstone,
1927), our investigation shows that α-reliability (Krippendorff, 2013) for intra-
and inter-rater agreement is similar for both tasks, with highest inter-rater
reliability for standardized 5-point ratings.

In a next step, we address the issue of machine learnability of human rewards.
We use deep learning models to train reward estimators by regression against
cardinal feedback, and by fitting a Bradley-Terry model (Bradley and Terry,
1952) to ordinal feedback. Learnability is understood by a slight misuse of
the machine learning notion of learnability (Shalev-Shwartz et al., 2010) as the
question of how well reward estimates can approximate human rewards.

Estimating human quality ratings is also known as the task of Quality
Estimation (QE) (Specia et al., 2010). However, there are crucial differences
between sentence-level QEn (sQE) and the reward estimation in our work: sQE
usually has more training data, often from more than one machine translation
model. Its gold labels are inferred from post-edits (as for example in the yearly
WMT shared task1), i.e. corrections of the machine translation output, while we
learn from weaker bandit feedback.

Our experiments reveal that rank correlation of reward estimates with TER
against human references is higher for regression models trained on standardized
cardinal rewards than for Bradley-Terry models trained on pairwise preferences.
This emphasizes the influence of the reliability of human feedback signals on the
quality of reward estimates learned from them.

1https://www.statmt.org/wmt19/qe-task.html

99

https://www.statmt.org/wmt19/qe-task.html

Lastly, we investigate machine learnability of the overall NMT task, in the
sense of Green et al. (2014) who posed the question of how well an MT system
can be tuned on post-edits. We use an RL approach for tuning, where a crucial
difference of our work to previous work on RL from human rewards (Knox and
Stone, 2009; Christiano et al., 2017) is that our RL scenario is not interactive, but
rewards are collected in an offline log. RL then can proceed either by off-policy
learning using logged single-shot human rewards directly, or by using estimated
rewards.

We expect an advantage by estimating rewards first, since the arguably
simpler problem is addressed first—learning a reward estimator instead of a full
RL task for improving NMT. The reward estimator can then supply unlimited
feedback for the MT model. This type of function approximation instead of using
rewards directly has been proposed in the RL literature under the name of “actor-
critic” methods with a wide range of algorithmic variants (for a literature review
see Section 2.2.4). Previous works with critics trained from human feedback lack
a systematic investigation of the reliability of the feedback and its impact on the
down-stream task.

Our results show that significant improvements can be achieved by training
NMT from both estimated and logged human rewards, with best results for
integrating a regression-based reward estimator into RL. This completes the
argumentation that high reliability influences quality of reward estimates, which
in turn affects the quality of the overall NMT task. Altogether, we gather data-
and user-supported insights into the reliability of Likert-scale and pairwise ratings,
which enables us to both understand and leverage the collected explicit ratings
more successfully than in the eBay study presented in the previous chapter.
Since the size of our training data is tiny in machine translation proportions,
this result points towards a great potential for larger-scale applications of RL
from human feedback.

Contributions. The contributions of this chapter are the following:

1. We investigate reliability and learnability of human feedback, which have
previously been neglected in human reinforcement learning studies.

2. In addition to the previously used Likert-scale rating interface (Chapter 4),
we investigate a pairwise preference interface for learning from logged
feedback. To our knowledge this is the first work that compares these
rating interfaces in a systematic and thorough manner.

3. The empirical results on a German-to-English translation task show that
even small-scale five-point feedback can yield down-stream improvements
for NMT, given a certain level of reliability and the abstraction through a
reward estimator.

100

4. We highlight the weaknesses of pairwise ratings, which have previously
been considered advantageous.

Publications. This work was published in (Kreutzer et al., 2018b). Joshua
Uyheng contributed the practical setup of the rating interface and the agree-
ment and ablation analysis (Section 5.1) of the collected ratings. The linear
mixed effects analysis (Section 5.2.2) was added after the publication. The
remaining work was done by the author. The resulting collection of ratings was
published as a data set and is available at http://www.cl.uni-heidelberg.

de/statnlpgroup/humanmt/.

Outline. Section 5.1 starts with a description of the setup of the feedback
collection study. The reliability of the collected feedback is analyzed in Section 5.2,
and the learnability in Section 5.3. Section 5.4 evaluates the feedback and trained
reward estimators in how far they can improve the NMT system. The findings
of this chapter are finally summarized in Section 5.5.

5.1 Human MT Rating Task

5.1.1 Data

We translate a subset of the TED corpus from German to English with a
general-domain and a domain-adapted NMT model (see Section 5.4.2 for details
about NMT system and data), post-process the translations (replacing special
characters, restoring capitalization) and filter out identical out-of-domain and
in-domain translations. In order to compose a homogeneous data set, we first
select translations with references of length 20 to 40, then sort the translation
pairs by difference in character n-gram F-score (ChrF, β = 3) (Popović, 2015)
and length, and pick the top 400 translation pairs with the highest difference
in chrF but lowest difference in length. This yields translation pairs of similar
length, but different quality.

The pairs were treated as 800 separate translations for a 5-point rating task.
100 translation pairs were randomly selected for repetition to measure intra-rater
reliability. This produced a total of 1,000 individual translations, with 600
occurring once, and 200 occurring twice. The translations were shuffled and
separated into five annotation sections, ensuring that a single translation does
not occur more than once in each section. For a pairwise rating task, the same
procedure was applied to pairs of translations.

101

http://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/
http://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

(a) 5-point ratings (b) pairwise ratings

Figure 11: User interfaces for 5-point (a) and pairwise ratings (b).

5.1.2 Rating Task

We recruited 14 participants for the pairwise rating task and 16 for the 5-point
rating task. The participants were university students with fluent or native
language skills in German and English. The above described selected translations
(pairs) were presented in a Google form with one annotation section per page.
The rating interfaces are shown in Figure 11. Note that no reference translations
were presented since the objective is to model a realistic scenario for bandit
learning, where references are not available.

Participants for the 5-star rating task were given the following instructions:
“You will be presented with a German statement and a translation of this statement
in English. You must assign a rating from 1 (Very Bad) to 5 (Very Good) to
each translation.”

Participants for the pairwise task were given the following instructions: “You
will be presented with a German statement and two translations of this statement
in English. You must decide which of the two translations you prefer, or whether
you have no preference.”

5.2 Reliability of Human MT Ratings

The goal of this analysis is to assess the reliability of both types of ratings. We
inspect three different aspects of reliability:

1. How well do raters agree in each mode? → Reliability is measured in terms
of intra- and inter-rater agreement in Section 5.2.1.

2. What is the influence of rater and item variance? → We assess this (1) by
observing the effect of filtering by rater or item variance, and (2) by a linear
mixed effects analysis to compare both rating modes while accounting for
rater and item variance in Section 5.2.2.

102

3. What are the subjective and objective difficulties for each mode? → We
capture the rater’s experience in a feedback form and discuss the results,
together with a quantitative analysis, in Section 5.2.3.

Inter- and intra-rater reliability of the cardinal and ordinal feedback tasks
described in Section 5.1.2 can be estimated with Krippendorff’s α (Krippendorff,
2013) on interval and ordinal scale, respectively. Table 19 (page 104) shows
that differences in inter-rater reliability between the 5-point and pairwise task
are small (α = 0.2308 vs. α = 0.2385. 5-point scores are further normalized by
standardization to Z-scores so that individual rater’s tendencies towards high
or low ratings are corrected. That means that every rating r(i,j) by rater j for
example i of n is normalized by subtracting the per-rater-mean:

rnorm(i,j) = r(i,j) −
1

n

n∑
k=1

r(k,j). (72)

This results in a marked improvement of overall inter-rater reliability for the
5-point task (α = 0.2820). A one-way analysis of variance taken over inter-rater
reliabilities between pairs of participants suggests statistically significant differ-
ences across tasks (F (2, 328) = 6.399, p < 0.01), however, a post hoc Tukey’s
(Larsen and Marx, 2012) honest significance test attributes statistically significant
differences solely between the 5-point tasks with and without normalization.
When inferring paired ratings from 5-point ratings,2 the inter-rater agreement
slightly improves compared to raw pairwise ratings, but the intra-rater relia-
bility drops. This is consistent with the observation that 5-point ratings have
slightly higher inter-rater reliability (when normalized), but tend to have lower
intra-reliability. While the absolute agreement scores seem relatively low, they
lie within the range reported in literature for MT (Turian et al., 2003; Carl
et al., 2011; Lommel et al., 2014; Guzmán et al., 2015) and more generally in
text generation evaluation problems (Godwin and Piwek, 2016; Verberne et al.,
2018).

5.2.1 Inter-rater and Intra-rater Reliability

Intra-rater reliability was on average higher among participants in the pairwise
task (α = 0.5085) than in the 5-point task (α = 0.4014). This suggests that,
on average, human raters provide more consistent ratings with themselves in
judging a pair translation in contrast versus single translations in isolation.
Seeing multiple translations may provide raters with more cues to make a
consistent judgment, such as a wider range of lexical translation options (in the

2“Re-pairing”: If translation A obtained a higher rating on the 5-point scale than translation
B, it is assumed to be preferred over B in a pairwise rating setup.

103

Inter-rater Intra-rater
Type α Mean α Stdev. α

5-point 0.2308
0.4014 0.1907

+ normalized 0.2820
+ filtered by rater 0.5059 0.5527 0.0470
+ filtered by item 0.3236 0.3845 0.1545

Pairwise 0.2385 0.5085 0.2096
+ filtered by rater 0.3912 0.7264 0.0533
+ filtered by item 0.3519 0.5718 0.2591
Re-paired from 5-point 0.2569 0.2800 0.0765

Table 19: Inter- and intra-reliability measured by Krippendorff’s α for 5-point
and pairwise ratings of 1,000 translations of which 200 translations are repeated
twice. The filtered variants are restricted to either a subset of raters or a subset of
items (translations). The “re-paired” pairwise ratings are inferred from pairwise
5-point rating comparisons.

example from Figure 11b “patient woman” or “patient’s lawyer” as translation for
“PatientInnenanwältin”), and may cause them to inspect the translations more
thoroughly in order to spot differences between translations (“as I sometimes
say” vs. “as I say sometimes”).

However, at the current sample size, a Welch two-sample t-test (Larsen and
Marx, 2012) between (unfiltered) 5-point and pairwise intra-rater reliabilities
shows no significant difference between the two tasks (t (26.92) = 1.4362,p =
0.1625) and intra-rater normalization does not affect the intra-rater reliability.
Thus, it remains difficult to infer whether one task is definitively superior to the
other in eliciting more consistent responses. Larger sample sizes, i.e., studies
with more raters or translations would be required to draw definite conclusions.

5.2.2 Rater and Item Variance

Ablation Analysis

The following analysis is based on two assumptions: first, human raters vary
in that they do not provide equally good judgments of translation quality, and
second, items vary in that some translations may be more difficult to judge
than others. This allows to investigate the influence of rater variance and item
variance on inter-rater reliability by an ablation analysis where low-quality raters
and difficult translations are filtered out. In practice, filtering out unreliable
raters, e.g., in (Akkaya et al., 2010) or items with inconsistent ratings, e.g., in
(Laws et al., 2011) or (Jamison and Gurevych, 2015), is a common practice for

104

(a) intra-rater consistency filtering (b) item-variance filtering

Figure 12: Improvements in inter-rater reliability after filtering out raters with
lowest intra-rater reliability (a) or items with highest variance (b). Plots created
by Joshua Uyheng.

quality control in crowd-sourced annotation tasks on platforms like Amazon
Mechanical Turk. For economic reasons it is, however, desirable to retain as
many ratings as possible. In particular, when they are intended to train deep
models, which are notorious for requiring large amounts of data.

Figure 12a shows a filtering process where human raters with intra-rater α
scores lower than a moving threshold are removed from the pool. As the relia-
bility threshold increases from 0 to 1, overall inter-rater reliability is improving.
Figure 12b shows a similar filtering process by variance in ratings per item. Item
variances are normalized to a scale from 0 to 1 and subtracted from 1 to produce
an item variance threshold. As the threshold increases, high-variance items are
progressively removed from the pool.

As the plots demonstrate, inter-rater reliability generally increases with
consistency and variance filtering. Figure 12a shows how the inter-rater reliability
of the 5-point task increases more quickly of the pairwise task when filtering out
raters. The reason for that effect is that more participants in the 5-point task
had low intra-rater reliability. Pairwise tasks, on the other hand, require higher
thresholds before large gains are observed in overall inter-rater reliability, as
more participants in the pairwise task had relatively high intra-rater reliability.

In the normalized 5-point task, selecting a threshold of 0.49 for intra-rater
reliability retains 8 participants with an inter-rater reliability of 0.5059. For
the pairwise task, a threshold of 0.66 leaves 5 participants with an inter-rater
reliability of 0.3912, which is the result we include in Table 19 (page 104).
Figure 27a in Appendix D.1 shows how this threshold was selected.

The opposite phenomenon is observed in the case of variance filtering. As

105

shown in Figure 12b, the overall inter-rater reliability of the pairwise task quickly
overtakes that of the 5-point task. In the pairwise setup, more items can be a
source of disagreement among human judges; and especially ambiguous cases,
which will be discussed in Section 5.2.3, may result in higher item variance. This
problem is not as pronounced in the 5-point task, where judges must simply judge
individual translations. It may be surmised that this item variance accounts
for why judges in the pairwise task demonstrate higher intra-rater reliability on
average than those in the 5-point task, yet the overall inter-rater reliability of
the pairwise task is lower.

By selecting a variance threshold (see Figure 27b in Appendix D.1) such
that at least 70% of items are retained in the analysis, the improved inter-rater
reliabilities were 0.3236 for the 5-point task and 0.3519 for the pairwise task,
which is the result we include in Table 19 (page 104).

Linear Mixed Effects Model

Linear Mixed Effects Models (LMEM) can be used to quantify the effect of item-
or rater- and interface-based variance on the preference ratings. More formally,
a LMEM models the conditional dependency of a response variable Y on fixed
effects X and random effects Z. Adopting the matrix form notation from Fox
(2002), a LMEM is defined as follows:

yi = Xiβ + Zibi + εi (73)

bi ∼ Nq(0,Ψ) (74)

εi ∼ Nni(0, σ2Λi) (75)

yi is a column vector containing measured responses (e.g., HTER) for a range
of sentences in of group i (e.g., in-domain translations). The design matrix Xi

describes fixed effects in a ni×p matrix, where ni is the number of measurements
for this group and p is the number of fixed effects. The ni× q matrix Zi similarly
describes q random effects. εi is a ni-dimensional vector of residuals. β is
a column vector of fixed effect coefficients (identical for all groups). bi is a
q-dimensional vector of random effect coefficients for group i. bi and εi are
modeled as normal multivariate distributions, with co-variance matrices Ψ and
σ2Λi, respectively. The co-variance of the random effects is constant for all
groups, while the co-variance of the error is specific for one group, and they are
both parametrized.

For our collected data, we are interested in a LMEM for preference judgment
as response variable, and model the rating interface as fixed effect, and source
and rater id as random effects. In this way we can investigate how certain items
and raters prefer either of the translation system in each rating mode.

In order to model the rating interface as a fixed effect, both rating schemes
have to be made comparable. Therefore, we formulate the preference decision on

106

a continuous scale, with 0 expressing a tie, and 1 and −1 the preference of either
the in-domain (ID) or out-of-domain (OD) translation (like Green et al. (2014)):

pref(r(yID
i), r(yOD

i)) =

1 if r(yID

i) > r(yOD
i)

−1 if r(yID
i) < r(yOD

i)

0 otherwise.

(76)

The preference decision comparing yID
i and yOD

i is either directly expressed
in the pairwise ratings, or inferred from the 5-point ratings (see “re-pairing”
in Section 5.2.1). Random effects are items and raters, for which we assume
individual intercepts, with global random slopes for the items.3 The model is
trained with restricted maximum likelihood estimation with the lme4 R library
(Bates et al., 2015):

pref ∼ mode + (1 + mode | source id) + (1 | rater id),

where mode is a binary variable expressing the two rating modes (5-point and
pairwise preferences), and pref the above described preference of either out-of-
domain or in-domain model or a tie.4

The fitted model estimates the variance by item to be much larger than the
variance across raters (0.038 vs 0.002). The global intercept is at 0.03, that means
that translations from the in-domain model are slightly preferred. In the pairwise
mode the preference of the in-domain model’s translations is significantly lower
than in the absolute rating mode (but still higher than the out-of-domain model)
(b=-0.40, p < 0.05).5

Inspecting the individual coefficients, we can find examples that have a strong
tendency to be preferred when translated with either the in-domain system or
the out-of-domain system: The first two examples in Table 23 (page 119) have an
intercept of around 0.4, hence a strong preference for the in-domain translation
(important differences underlined, e.g. the translation of “wegblasen” in the first
example); while the third and fourth examples have an intercept of around -0.6,
hence a strong preference for the out-of-domain translation (for example because
of the translation of “normalerweise” or “der Bach”).

Individual slopes tell us how much the rating mode affects the preference for
individual items. For the first two examples in Table 24 (page 120), the pairwise
preference mode had a strong influence on preferring the in-domain translation,
since the out-of-domain translation only contains one part of the source, which
might be acceptable (the part that is translated is adequate) when judged in
isolation, but not when directly compared to a translation that contains both

3We do not include random slopes for raters since there is no overlap of raters across modes.
4For a practical tutorial on fitting LMEMs we refer the reader to Winter (2013).
5Significance tested with the lmerTest library.

107

parts. There are other cases, for example the last two sentences in Table 24,
where the mode did not have an influence on the preference, probably because
the translations were both similarly bad (e.g. the translation of the name “Frau
Drucker” to “woman printer”).

Inspecting the intercepts per rater, we find that four raters in the pairwise
task on average preferred the out-of-domain translations, while everyone else
had a preference for in-domain translations. Interestingly, the rater that had the
strongest preference for out-of-domain translations (intercept of -0.04) also had
the lowest intra-rater reliability (α=0.10). A potential avenue for future work
would be to investigate if filtering according to rater intercepts would result in
the same beneficial effect for overall reliability that was observed when filtering
by variance in the ablation analysis above.

5.2.3 Qualitative Analysis

On completion of the rating task, we asked the participants for a subjective
judgment of difficulty on a scale from 1 (very difficult) to 10 (very easy). On
average, the pairwise rating task (mean 5.69) was perceived slightly easier than
the 5-point rating task (mean 4.8). The participants also had to state which
aspects of the tasks they found difficult: They reported that the biggest challenge
for 5-point ratings was the weighing of different error types and the rating of
long sentences with very few, but essential errors. For pairwise ratings, it
was most difficult to distinguish between similar, or similarly bad translations.
They reported difficulties with decisions for translations with ungrammatical or
incomprehensible sources for both modes.

Comparing items with high and low agreement across raters allows us to draw
conclusions about objective difficulty. We assume that high inter-rater agreement
indicates an ease of judgment, while difficulties in judgment are manifested in
low agreement. Table 42 in Appendix C.2 lists low- and high-variance items for
5-star ratings, Table 43 for pairwise ratings. From the annotations in the tables,
the reader may get an impression which translations are “easier” to judge than
others.

For 5-point ratings, difficulties arise with ungrammatical sources and omis-
sions, whereas obvious mistakes in the target, such as over-literal translations,
make judgment easier. Preference judgments tend to be harder when both
translations contain errors and are similar. When there is a tie, the pairwise
rating framework does not allow to indicate whether both translations are of
high or low quality. Since there is no normalization strategy for pairwise ratings,
individual biases or rating schemes can hence have a larger negative impact on
the inter-rater agreement.

108

5.3 Learnability of a Reward Estimator

After having analyzed the intrinsic quality of the ratings with measures of
reliability and item and rater variance, we now assess how well we can predict
the ratings from each feedback mode in order to compare their learnability.
Learnability plays an important role for downstream RL applications where the
reward estimator helps the learning model to explore outputs that were not
originally rated (cf. Section 4.3.2 for the experiments with estimators for eBay
ratings).

5.3.1 Learning a Reward Estimator

The numbers of ratings that can be obtained directly from human raters in a
reasonable amount of time is insignificant compared to the millions of sentences
used for standard NMT training. By learning a reward estimator on the collection
of human ratings, we seek to generalize to unseen translations.

The reward estimator should not require time-consuming feature extraction so
it can be deployed in direct interaction with a learning NMT system, estimating
rewards on the fly. Most importantly, it should generalize well so it can guide
the NMT towards good local optima. Therefore we opt for a neural model that
can be fitted to the collected ratings in an end-to-end fashion with stochastic
gradient descent and back-propagation.

State-of-the-art models for sentence-level Quality Estimation such as (Martins
et al., 2017; Kim et al., 2017; Kepler et al., 2019) are less suitable for the direct
use in this task since they rely on linguistic input features, stacked architectures,
post-edit or word-level supervision, or learned ensembles. Similar to approaches
for generative adversarial NMT (Yu et al., 2017b; Wu et al., 2017) we prefer a
convolutional architecture based on word embeddings for reward estimation.6

Learning from Cardinal Feedback

The inputs to the reward estimation model are sources x and their (model-
generated or reference) translations y. Given cardinal judgments for these
translations, a regression model with parameters ψ is trained to minimize the
mean squared error (MSE) between K judgments (human-generated or simulated)
r and the predictions by the model r̂ψ:

JMSE(ψ) =
1

K

K∑
k=1

(r(y(k))− r̂ψ(y(k)))2. (77)

6Contextualized multilingual embeddings from BERT (Devlin et al., 2019) (which appeared
after the publication of these experiments) also have a large potential for this task (Kim et al.,
2019), which we explore in Chapter 6.

109

In simulation experiments, where all translations can be compared to existing
references, r may be computed by sentence-BLEU (sBLEU) to obtain scores
between 0 and 1. For our human 5-point judgments, we first normalize the
judgments per rater as described in Section 5.2, then average the judgments
across raters and finally scale them linearly to the interval [0.0, 1.0].

Learning from Pairwise Preference Feedback

When pairwise preferences are given instead of cardinal judgments, the Bradley-
Terry model (Bradley and Terry, 1952) allows us to train a regressor nevertheless.
Following Christiano et al. (2017), let P̂ψ[yi � yj] be the probability that any
translation yi is preferred over any other translation yj by the reward estimator:

P̂ψ[yi � yj] =
exp(r̂ψyi)

exp(r̂ψ(yi)) + exp(r̂ψ(yj)
). (78)

Let Q[yi � yj] be the probability that translation yi is preferred over transla-
tion yj by a gold standard, e.g. the human raters or in comparison to a reference
translation. With this supervision signal we formulate a pairwise (PW) training
loss for the reward estimation model with parameters ψ:

JPW(ψ) = − 1

K

K∑
k=1

Q[y
(k)
i � y(k)

j] log P̂ψ[y
(k)
i � y(k)

j]

+Q[y
(k)
j � y(k)

i] log P̂ψ[y
(k)
j � y(k)

i]. (79)

This objective maximizes the likelihood of the correct preference while minimizing
the likelihood of the incorrect preference.

When obtaining preference judgments directly from raters, Q[yi � yj] is
simply the empirical frequency of yi being preferred over yj by the human raters.

Qhuman[yi � yj] =
Count(yi � yj)

R
, (80)

where Count(yi � yj) counts how many of a total of R raters preferred yi over
yj in the collected log.

For simulation experiments—where we lack a genuine supervision for preferen-
ces—we compute Q comparing the sBLEU scores for both translations, i.e.
translation preferences are modeled according to their difference in sBLEU:

Qsimulated[yi � yj] =
exp(sBLEU(yi))

exp(sBLEU(yi)) + exp(sBLEU(yj))
. (81)

110

5.3.2 Experiments

Data Augmentation

The collected ratings for 800 translations (Section 5.1.1) are used to train neural
regression models and pairwise preference models. In addition, we train models
on simulated rewards (sBLEU) for a comparison with arguably “clean” feedback
for the same set of translations.

In order to augment the small collection of human-rated translations, we
leverage the available out-of-domain bitext as auxiliary training data: 10k
randomly chosen source sentences of WMT (out-of-domain) are translated by the
out-of-domain model. Translations from nine beam search ranks are compared
to their references to compute sBLEU rewards. This auxiliary data provides 90k
out-of-domain training samples with sBLEU reward.

For pairwise rewards, sBLEU scores for two translations for the same source
are compared. Each mini-batch during training is sampled from the auxiliary
data with probability paux, from the original training data with probability
1 − paux. Adding this auxiliary data as a regularization through multi-task
learning prevents the model from overfitting to the small set of human ratings,
and makes sure it is still aligned with BLEU evaluation in the end. This was a
problem in the experiments on eBay user ratings, where the learned estimator
behaved very differently than BLEU (Section 4.3.2). paux = 0.8 worked best in
our experiments.

Model Architecture

We build a convolutional reward estimation, similar to the one presented in
Section 4.3.1: Input source and target sequence are split into the BPE subwords
used for NMT training, padded up to a maximum length of 100 tokens, and
represented as 500-dimensional subword embeddings. Subword embeddings are
pre-trained on the WMT bitext with word2vec (Mikolov et al., 2013a), nor-
malized to unit length and held constant during further training. Additional
10-dimensional BPE-feature embeddings are appended to the subword embed-
dings, where a binary indicator encodes whether each subword contains the
subword prefix marker ”@@”. BPE-prefix features are useful information for the
model since bad translations can arise from invalid compositions of subwords.

The embeddings are then fed to a source-side and a target-side bidirectional
LSTM (biLSTM) (Hochreiter and Schmidhuber, 1997), respectively. The biLSTM
outputs are concatenated for each time step and fed to a 1-D convolutional layer
with 50 filters each for filter sizes from 2 to 15. The convolution is followed
by max-over-time pooling, producing 700 input features for a fully-connected
output layer with leaky ReLU (Maas et al., 2013) activation function. Dropout
(Srivastava et al., 2014b) with p = 0.5 is applied before the final layer.

111

Source
BiLSTM

Target
BiLSTM

s0
s1
s2
s3
s4
s5
s6
PAD

t0
t1
t2
t3
t4
t5
PAD
PAD

1D Convolution Max over time Fully connected
output layer

Figure 13: Neural architecture for the reward estimator: Source and target
sentences are padded and embedded, read by a biLSTM, then concatenated and
fed into convolutional, pooling and fully connected layers.

This architecture, depicted in Figure 13 can be seen as a biLSTM-enhanced
bilingual extension to the convolutional model for sentence classification proposed
by Kim (2014) and is slightly more advanced than the reward estimator used in
Section 4.3.1 by using the biLSTM before the convolution, which supplies the
CNN with contextualized embeddings, rather than static ones. In general, this
architecture has the advantage of not requiring any feature extraction but still
modeling n-gram features on an abstract level.

The quality of the reward estimation models is tested by measuring Spear-
man’s rank correlation ρ against TER on a held-out test set of 1,314 translations,
following the standard in sentence-level quality estimation evaluations.7 Hyper-
parameters are tuned on another 1,200 TED translations.

Results

Table 20 (page 113) reports the results of reward estimators trained on simulated
and human rewards. When trained from cardinal rewards, the model of simulated
scores performs slightly better than the model of human ratings. This advantage
is lost when moving to preference judgments, which might be explained by
the fact that the softmax over sBLEUs (Equation 81) with respect to a single
reference is just not as expressive as the preference probabilities obtained from
several raters.

Intuitively, the information contained in one preference rating is used to
infer the absolute quality of two translations, as opposed to only one in the
Likert-scale rating task. Hence, it is not surprising that the estimators based on
the pairwise ratings are weaker than the five-point ratings, but the gap between

7In sQE it is rather HTER than TER since the sentence-level quality score is estimated
from post-edits of the system outputs.

112

Model Feedback ρ

MSE simulated -0.2571
PW simulated -0.1307

MSE human -0.2193
PW human -0.1310

MSE human, filtered by rater -0.2341
PW human, filtered by item -0.1255

Table 20: Spearman’s rank correlation ρ between estimated rewards and TER for
models trained with simulated rewards (sBLEU) and human rewards (five-point
and pairwise ratings, also filtered subsets).

those is rather large. Filtering by participants (see Section 5.2.1) improves the
correlation further for cardinal rewards, but slightly decreases it for preference
judgments.

The overall correlation scores are relatively low—in particular for the PW
models—which we suspect is due to overfitting to the small set of training data.
Figure 14 (page 114) compares histograms of estimated (test split) and collected
rewards (train split) for both simulated and human ratings. One can see that the
Bradley-Terry model (Equation 78) struggles to model fine-grained differences.
From these experiments we conclude that when it comes to estimating translation
quality regressors, cardinal human judgments exhibit better learnability than
pairwise preference judgments.

5.4 Reinforcing MT with Direct and Estimated Re-

wards

5.4.1 Training Objectives

Online estimated or simulated rewards. Deploying NMT in a reinforce-
ment learning scenario, the goal is to maximize the expectation of a reward r
over all source and target sequences (Equation 30). We extend it further to the
multi-sample approximation by Wu et al. (2016):

JRL(θ) =Ep(x)pτθ (y|x) [r(y)]

≈Ep(x)

∑
y′∈S

pτθ(y′ | x)r(y′)

 (82)

The expectation over outputs is approximated with k samples from a subset of
translations S ⊂ Y(x) drawn from the model distribution, but the set of samples

113

(a) TER scores (test) (b) MSE: sBLEU (test) (c) PW: sBLEU (test)

(d) Avg. user ratings (train) (e) MSE: user ratings (test) (f) PW: user ratings (test)

Figure 14: Comparison of estimated simulated and user ratings. “MSE”: trained
with the MSE objective (77), “PW”: (79).

S is much smaller than the actual output space to keep the gradient computation
feasibly fast, just as in MRT (Equation 64). In contrast to MRT there is no
re-normalization over the sample probabilities. When k = 1, this is equivalent to
the expected reward objective from Equation (30) for bandit feedback.

However, when feedback for more than one output per input is obtainable (e.g.
when working in simulations, or with paid annotators instead of users), k can be
increased accordingly. In this work, we have non-bandit learning opportunities,
when the reward r either comes from a reward estimation model (estimated
direct reward) or is computed with respect to a reference in simulation (simulated
direct reward).

In order to counteract high variance in the gradient updates, the running
average of rewards is subtracted from r for learning (see Section 3.3). Adding
a temperature hyper-parameter τ ∈ (0.0,∞] to the softmax (Equation 7) over
the model output vector o allows us to control the sharpness of the sampling
distribution, i.e., the amount of exploration during training:

pτθ(y | x) = softmax(o/τ). (83)

With temperature τ < 1, the model’s entropy decreases and it samples closer
to the one-best output. Exploration should be kept low to prevent the NMT to
produce samples that lie far outside the training domain of the reward estimator.

114

Offline direct rewards. When rewards can not be obtained for samples from a
learning system, but were collected for a static deterministic system (e.g. the eBay
use case presented in Chapter 4), we are in an off-policy learning scenario. The
challenge is to improve the MT system from a log L = {(x(h), y(h), r(y(h)))}Hh=1

of rewarded translations. We can hence directly apply the DPM objective from
Equation (69). In contrast to the RL objective, only logged translations are
reinforced, i.e. there is no exploration in learning. Also there is no exclusion of
translations with low ratings: They will also get reinforced, but with a smaller
reward.

5.4.2 Experiments

Data. We use the WMT 2017 data8 for training a general domain model for
translations from German to English. The training data contains 5.9M sentence
pairs, the development data 2,999 sentences (WMT 2016 test set) and the test
data 3,004 sentences. For in-domain data, we choose the translations of TED
talks9 as used in IWSLT evaluation campaigns. The training data contains 153k,
the development data 6,969, and the test data 6,750 parallel sentences.

Architecture. Our NMT model is a standard encoder-decoder architecture
with attention (Bahdanau et al., 2015) (see Section 2.1.3). We implemented
the RL and DPM objectives in Neural Monkey (Helcl and Libovický, 2017).10

The NMT has a bidirectional encoder and a single-layer decoder with 1,024
GRUs each, and subword embeddings of size 500 for 30k shared byte-pair merges
(Sennrich et al., 2016c). Maximum input and output sequence length are set to
60. For model selection we use greedy decoding, for test set evaluation beam
search with a beam of width ten. We sample k = 5 translations for RL models
and set the softmax temperature τ = 0.5. Training hyperparameters are given
in Appendix Section B.4.

Evaluation. Trained models are evaluated with respect to BLEU (Papineni
et al., 2002), METEOR (Denkowski and Lavie, 2011) using MultEval (Clark
et al., 2011) and BEER (Stanojević and Sima’an, 2014) to cover a diverse set
of automatic measures for translation quality (see Section 2.1.1).11 We test for
statistical significance with Approximate Randomization (Noreen, 1989).

8Pre-processed data available at http://www.statmt.org/wmt17/translation-task.html.
9Pre-processing and data splits as described in https://github.com/rizar/

actor-critic-public/tree/master/exp/ted.
10The code is available in the Neural Monkey fork https://github.com/juliakreutzer/

bandit-neuralmonkey/tree/acl2018.
11Tendencies of improvement turn out to be consistent across metrics, so we only discuss

BLEU in the text.

115

http://www.statmt.org/wmt17/translation-task.html
https://github.com/rizar/actor-critic-public/tree/master/exp/ted
https://github.com/rizar/actor-critic-public/tree/master/exp/ted
https://github.com/juliakreutzer/bandit-neuralmonkey/tree/acl2018
https://github.com/juliakreutzer/bandit-neuralmonkey/tree/acl2018

WMT TED
Model BLEU METEOR BEER BLEU METEOR BEER

WMT 27.2 31.8 60.08 27.0 30.7 59.48
TED 26.3 31.3 59.49 34.3 34.6 64.94

Table 21: Results on test data for in- and out-of-domain fully-supervised models.
Both are trained with MLE, the TED model is obtained by fine-tuning the WMT
model on TED data.

Baselines. The out-of-domain model is trained with MLE on WMT. The task
is now to improve the generalization of this model to the TED domain. Table
21 compares the out-of-domain baseline with domain-adapted models that were
further trained on TED in a fully-supervised manner supervised fine-tuning
as introduced by Freitag and Al-Onaizan (2016); Luong and Manning (2015).
The supervised domain-adapted model serves as an upper bound for domain
adaptation with human rewards: if we had references, we could improve up to 7
BLEU.

RL from simulated rewards. First we simulate “clean” and deterministic
rewards by comparing sample translations to references using GLEU (Wu et al.,
2016) for RL, and smoothed sBLEU for estimated rewards and DPM.12 Table 22
(page 117) lists the results for this simulation experiment in rows 2–5 (S). If
unlimited clean feedback was given (RL with direct simulated rewards), improve-
ments of over 5 BLEU can be achieved. When limiting the amount of feedback to
a log of 800 translations, the improvements over the baseline are only marginal
(DPM). When replacing the direct reward by the simulated reward estimators
from Section 5.3, i.e. having unlimited amounts of approximately clean rewards,
however, improvements of 1.2 BLEU for MSE estimators (RL+MSE) and 0.8
BLEU for pairwise estimators (RL+PW) are found. This suggests that the
reward estimation model helps to tackle the challenge of generalization over a
small set of ratings.

RL from human rewards. Knowing what to expect in an ideal setting with
clean feedback, we now move to the experiments with human feedback. DPM is
trained with the logged normalized, averaged and re-scaled human reward. RL
is trained with the direct reward provided by the reward estimators trained on
human rewards from Section 5.3. Table 22 shows the results for training with
human rewards in rows 6–8: The improvements for DPM are very similar to

12We use GLEU for RL because of the recommendation by Wu et al. (2016), but sBLEU
since it was used in previous works on counterfactual learning for MT (Lawrence et al., 2017b).

116

Model Rewards BLEU METEOR BEER

Baseline - - 27.0 30.7 59.48

RL D S 32.5?±0.01 33.7?±0.01 63.47?±0.10

DPM D S 27.5? 30.9? 59.62?

RL+MSE E S 28.2?±0.09 31.6?±0.04 60.23?±0.14

RL+PW E S 27.8?±0.01 31.2?±0.01 59.83?±0.04

DPM D H 27.5? 30.9? 59.72?

RL+MSE E H 28.1?±0.01 31.5?±0.01 60.21?±0.12

RL+PW E H 27.8?±0.09 31.3?±0.09 59.88?±0.23

RL+MSE E F 28.1?±0.20 31.6?±0.10 60.29?±0.13

Table 22: Results on TED test data for training with estimated (E) and direct
(D) rewards from simulation (S), humans (H) and filtered (F) human ratings.
Significant (p ≤ 0.05) differences to the baseline are marked with ?. For RL
experiments we show three runs with different random seeds, mean and standard
deviation in subscript.

DPM with simulated rewards, both suffering from overfitting. For RL we observe
that the MSE-based reward estimator (RL+MSE) leads to significantly higher
improvements than the pairwise reward estimator (RL+PW)—the same trend
as for simulated ratings. Finally, the improvement of 1.1 BLEU over the baseline
demonstrates that NMT can be improved with only a small number of human
rewards. Learning from estimated filtered 5-point ratings does not significantly
improve these results, since the improvement of the reward estimator is only
marginal (see Section 5.3).

5.5 Conclusion

In this chapter, we sought to answer the question of how cardinal and ordinal
feedback differ in terms of reliability, learnability and effectiveness for RL training
of NMT. Our rating study, comparing 5-point and preference ratings, showed
that their reliability is comparable, whilst cardinal ratings are easier to learn and
to generalize from, and also more suitable for RL in our experiments. Through
the user study, the ablation study, and variance analysis we now understand
better why pairwise ratings for structured outputs like machine translation are
difficult. We learned that translations on a similar level of quality but with
different types of errors are hard to rank, and that the reliability of the ratings
largely depends on the selection of pairs of translations.

117

Furthermore, our experiments show that improvements of over 1 BLEU
are achievable by learning reward estimators from a data set that is tiny in
comparison to standard training corpora for NMT and in comparison to the
previous study on large-scale eBay user feedback (see Chapter 4). In contrast
to the less successful attempt to learn from explicit feedback in the eBay study,
we now proved that with more control over users and items and less resulting
noise in the feedback collection, RL methods can successfully be employed in
off-policy learning of NMT models even with direct human feedback.

While we found evidence that more reliable feedback can lead to higher
down-stream improvements, the question about the general relation of reliability
and down-stream improvements remains open. Just like us, Aziz et al. (2013)
observed quality scores useful for a down-stream task despite low reliability. Even
if ratings were reliable, they might not be accurate and could still mislead the
learning system. It is yet to be evaluated how much uncertainty and variance in
translation quality judgments is actually inherent in the task definition, and how
the models can account for it.

118

Src Man muss das Geräusch des Winds machen, sie wegblasen und den
Rest des Buchs lesen.

OD You must make the noise of the wind, go away and read the rest of the
book.

ID You have to make the sound of the wind, blow it away, and read the
rest of the book.

Src Es ist ebenso einfacher wenn man es in Eukaryonten wie wir es sind tut:
man nimmt einfach den Nukleus raus und gibt einen anderen hinein,
und das ist genau das was Sie alle über das Klonen gehört haben.

OD It’s just as easy if you are in eukarypes like we are doing it: You simply
take the nucleus out and there is another way, and that is exactly what
you all heard about the cloning.

ID It’s also easier if you do it in eukarytes like we are: You just take the
nucleus out and you put in another one, and that’s exactly what you
all heard about cloning.

Src Ich habe die letzten paar Jahre damit verbracht, mich in Situationen zu
platzieren, die normalerweise sehr schwierig und gleichzeitig irgendwie
gefährlich sind.

OD I spent the last couple of years trying to place me in situations that
usually are very difficult and at the same time dangerous.

ID I’ve spent the last few years placing myself in situations that are
normally very difficult and at the same time dangerous.

Src Ich denke, dass der Bach begeistert gewesen wäre, wenn er die klan-
glichen Möglichkeiten der heutigen modernen Klaviere gehabt hätte.

OD I think that the bach would have been enthusiastic if he had had the
sound possibilities of today’s modern piano.

ID I think the stream would have been thrilled if it had had the sound of
today’s modern piano.

Table 23: Examples for in- (ID) and out-of-domain (OD) translations for selected
source sentences (selection by LMEM intercept). For the first two, the in-domain
translations were preferred by the raters, while for the latter ones they preferred
out-of-domain translations.

119

Src Ich habe einen Plan dafür. Ich möchte mehr Menschen überzeugen,
einschließlich Ihnen allen, mehr Zeit mit dem Spielen größerer und
tollerer Spiele zu verbringen.

OD I have a plan for it.
ID I have a plan for that. I want to convince more people, including all of

you, spend more time playing bigger and more fun games.

Src Dann ist der Umfang der semantischen Querverbindung und die Fülle,
die sich daraus ergibt, wirklich enorm. Es ist ein klassischer Netzwerk-
effekt.

OD Then the scope of semantic cross-connections and the abundance that
result from it really enormous.

ID Then the scope of semantic cross-connection and the abundance that
comes out of it is really enormous. It’s a classic network effect.

Src Ich residierte an einem Lehrkrankenhaus hier in Toronto als Frau
Drucker zu mir in die Notfallabteilung des Krankenhauses gebracht
wurde.

OD I resisted at a hospital here in toronto as a woman printer to me in the
emergency department of the hospital.

ID I was residing at a teacher hospital here in toronto as a woman printer
to me in the emergency department of the hospital.

Src Also nicht mehr sparen, verzichten, vermeiden, reduzieren, kein Schuld-
management, sondern intelligente Verschwendung.

OD So no more save, forego, avoid, reduce, no debt management, but
intelligent waste.

ID So not saving, forgiving, avoiding, reducing, not guilt management, but
smart waste.

Table 24: Examples for in- and out-of-domain translations for selected source
sentences (selection by LMEM slope). For the first two, the rating mode had a
large influence to choose the in-domain examples, while for the latter it did not
have an influence.

120

Chapter 6

Learning from Error Corrections and Markings

In previous chapters we evaluated approaches for learning from sequence-level
feedback, for example the simulated feedback in the form of sBLEU scores
(Section 3.4.2), or the star ratings from the eBay platform (Section 4.1.1) or
from pairwise preferences and five-point ratings in our own annotation study
(Section 5.1). We argued previously that this weak feedback is easier to obtain
than full corrections or translations from scratch in the sense that it requires
less expertise (collecting it from users, i.e., translation consumers, instead of
experts, i.e., translation producers), less time and effort. Yet this advantage has
not been quantified—how much less costly is weak feedback compared to full
feedback? This chapter precisely quantifies the differences in time and effort for
weak supervision vs. full supervision provided by human annotators.

User studies on machine learnability from machine translation post-edits,
together with thorough performance analyses with mixed effects models, have
been presented by Green et al. (2014); Bentivogli et al. (2016); Karimova et al.
(2018).1 Albeit showcasing the potential of improving NMT through human
corrections of machine-generated outputs, these works do not consider “weaker”
annotation modes like error markings. Unlike previous experiments with weak
feedback on the sequence level, we move to weak feedback on the token level,
motivated by the promising results from token-level implicit feedback on the
eBay domain (Section 4.1.2) and related work on token-level weights for NMT
(Marie and Max, 2015; Domingo et al., 2017; Petrushkov et al., 2018; Yan et al.,
2018; Lam et al., 2019; Jehl et al., 2019). In human-in-the-loop learning this can
be realized by asking the human to mark errors in machine outputs, for example
erroneous words or phrases in a machine translation.

Our approach takes the middle ground between supervised learning from
error corrections as in post-editing2 (or from translations created from scratch)
and reinforcement learning from sequence-level bandit feedback (including self-
supervised learning with uniform weights for all tokens). In contrast to sequence-
level feedback, error markings offer precise token-level credit/blame assignment

1User studies on the process and effort of machine translation post-editing are too numerous
to list — a comprehensive overview is given in (Koponen, 2016).

2We use the terms “error corrections” and “post-edits” interchangeably for the task of
machine translation.

121

(discussed in Section 2.3.1), are thus more interpretable thanks to the grounding
in individual tokens (which might be beneficial for filtering or data cleaning),
and still have comparatively low annotation cost. Our experiments show that
this type of feedback can lead to an effective fine-grained discriminative signal
for machine translation.

Prior work closest to ours is that of Marie and Max (2015); Domingo et al.
(2017); Petrushkov et al. (2018); Yan et al. (2018), however, these works were
conducted by simulating error markings with an heuristic matching of machine
translations against independently created human reference translations. The
question of the practical feasibility of machine learning from error markings, and
the influence of noise and variance on the quality of the annotations, is left open.

To answer these questions, we conduct a user study on the collection and
analysis of error corrections and error markings from junior professional transla-
tors (we call them “semi-professional”), which is the first to investigate this type
of feedback outside simulations. Moreover, we leverage the markings as training
signal for fine-tuning neural machine translation systems. We find that error
markings require significantly less effort (in terms of keystroke mouse action
ratio and time) and result in a lower correction rate (ratio of words marked
as incorrect or corrected in a post-edit) and are chosen more frequently than
corrections when users are given the choice between annotation modes. De-
spite lower inter-annotator agreement for error markings than error corrections,
fine-tuning of neural machine translation has been conducted successfully from
either signal. Furthermore, we show how to learn automatic error correction and
marking models, and achieve best results by fine-tuning a Transformer-based
error correction models on small amounts of human error corrections.

Contributions. The core contributions of this chapter are the following:

1. We conduct a first study of learning from markings, i.e., error highlights,
that were collected from human annotators. This interaction mode has
previously only been investigated in simulation. However, we can confirm
its success in practice.

2. We quantify the reliability, characteristics and suitability of markings for
adapting a machine translation system in comparison to post-editing, the
prevalent mode of feedback collection in practice.

3. In contrast to the weak feedback collected in the previous real-world studies,
this type of feedback naturally passes the task of credit or blame assignment
to the human, instead of leaving it to the machine to learn, and at the same
gives humans fewer degrees of freedom than in corrective feedback. We
show that this type of feedback is several magnitudes cheaper to collect than

122

post-edits but still allows to improve the underlying machine translation
system.

4. The collected data includes detailed logging records and may serve for
future investigations of human effort in post-editing or error marking.

Publications. The study reported in this chapter is published in (Kreutzer
et al., 2020). The second author of the paper contributed the implementation
of the annotation interface, the assignment of annotation tasks to annotators,
the computation of reliability scores, and the implementation of the automatic
marking module. All NMT experiments, the implementation of the objectives
and the training of the automatic corrector module, and the annotation analysis
were conducted by the author of this thesis.

Outline. We start with a description and analysis of the user study in Sec-
tion 6.1. Section 6.2 subsequently presents training objectives for improving
NMT with corrections and error markings. These objectives are evaluated in
Section 6.3. Section 6.4 concludes with a summary of the findings of this chapter.

6.1 Annotation Study

The goal of the annotation study is to compare the novel error marking mode to
the widely adopted machine translation post-editing mode. We are interested in
finding an interaction scenario that costs little time and effort, but still allows to
teach the machine how to improve its translations. In this section we present
the setup, measure and compare the observed amount of effort and time that
went into these annotations, and discuss the reliability and adoption of the new
marking mode. Machine learnability is discussed in Section 6.2.

6.1.1 Setup

Participants. We recruited ten participants that described themselves as
native German speakers and having either a C1 or C2 level in English, as measured
by the Common European Framework of Reference levels. Eight participants
were students studying translation or interpretation and two participants were
students studying computational linguistics. All participants were paid 100e
for their participation in the study, which was done online, and limited to a
maximum of six hours, and it took them 2–4.5 hours excluding breaks to complete.
They agreed to the usage of the recorded data for research purposes.

123

Interface. The annotation interface has three modes: (1) markings, (2) cor-
rections, and (3) the user-choice mode, where annotators first choose between
(1) and (2) before submitting their annotation. In any case, annotators are
presented the source sentence, the target sentence and an instruction to either
mark or correct (aka post-edit) the translation or choose an editing mode. They
also had the option to pause and resume the session. No document-level context
was presented, i.e., translations were judged in isolation, but in consecutive order
like they appeared in the original documents. They received detailed instructions
(see Appendix E.1) on how to proceed with the annotation. Each annotator
worked on 300 sentences, 100 for each mode, and an extra 15 sentences for
intra-annotator agreement measures that were repeated after each mode. After
the completion of the annotation task they answered a survey about the preferred
mode, the perceived editing/marking speed, user-choice policies, and suggestions
for improvement.

Data. We selected a subset of 30 TED talks to create the three data sets from
the IWSLT17 machine translation training corpus for English to German.3 The
talks were filtered by the following criteria: containing only a single speaker, no
music/singing, low intra-line final-sentence punctuation (indicating bad segmen-
tation), length between 80 and 149 sentences. One additional short talk was
selected for testing the inter- and intra-annotator reliability. We filtered out
those sentences where model hypothesis and references were equal, in order to
save annotation effort where it is clearly not needed, and also removed the last
line from every talk (usually “thank you”). For each talk, one topic of a set of
keywords provided by TED was selected.

6.1.2 Analysis

In the following analysis we compare markings and corrections with the focus on
three aspects:

1. How much effort and time do markings or corrections take?

2. How do they differ in terms of quality?

3. Do they express the same thing? And which of them is preferable?

Effort and Time

Correcting one translated sentence took on average approximately 5 times longer
than marking errors, and required 42 more actions, i.e., clicks and keystrokes.
That is 0.6 actions per character for post-edits, while only 0.03 actions per

3https://sites.google.com/site/iwsltevaluation2017/

124

https://sites.google.com/site/iwsltevaluation2017/

0

200

400

600

800

marking post_edit
Feedback Mode

D
ur

at
io

n

(a) Edit duration per sentence (seconds).

0

10

20

30

marking post_edit
Feedback Mode

K
S

M
R

(b) Editing effort per sentence (KSMR).

Figure 15: Duration and effort per sentence for both feedback modes: error
markings (left) and error corrections (post-edits, right). Means are marked with
diamonds.

character for markings. This measurement aligns with the unanimous subjective
impression of the participants that they were faster in marking mode. Figures 15a
and 15b compare the edit duration per sentence and the Keystroke Mouse Action
Ratio (KSMR) across modes, respectively. There is much more variation in time
and effort needed for post-editing, and mean values are higher than for marking.

To investigate the sources of variance affecting time and effort, we train
a LMEM for KSMR and total edit duration (excluding breaks) as respective
response variables, and with the editing mode (correcting vs. marking) as fixed
effect. For both response variables, we model users, talks and target lengths4 as
random effects, here e.g. the one for KSMR:

KSMR ∼ mode + (1 | user id) + (1 | talk id) + (1 | trg length) (84)

We use the implementation in the R package lmer4 (Bates et al., 2015) and
fit the models with residualized maximum likelihood. Inspecting the intercepts
of the fitted models, we confirm that KSMR is significantly (p = 0.01) higher
for post edits than for markings (+3.76 on average). The variance due to the
user (0.69) is larger than due to the talk (0.54) and the length (0.05)5. Longer

4Target lengths measured by number of characters were binned into two groups at the limit
of 176 characters.

5Note that KSMR is already normalized by reference length, hence the small effect of target

125

sentences have a slightly higher KSMR than shorter ones. When modeling the
topics as random effects (rather than the talks), the highest KSMR (judging by
individual intercepts) was obtained for physics and biodiversity and the lowest
for language and diseases. This might be explained by e.g. the MT training data
or the raters expertise.

Analyzing the LMEM for editing duration, we find that post-editing takes on
average 42s longer than marking, which is significant at p = 0.01. The variance
due to the target length is the largest, followed by the one due to the talk and
the one due to the user is smallest. Long sentences have a six time higher editing
duration on average than shorter ones. When modeling by topic instead of talk,
the longest editing was done for topics like physics and evolution, shortest for
diseases and health.

Annotation Quality

The error corrections increased the quality by 2.1 points in BLEU and 1 point in
TER (measured against the reference). While this indicates a general improve-
ment, it has to be taken with a grain of salt, since the error corrections are heavily
biased by the structure, word choice etc. by the machine translation, which
might not necessarily agree with the translations, while still being accurate.

Quality of error corrections. We therefore manually inspect the post-edits
to get insights into the differences between post-edits and references. Table 25
(page 127) provides a set of examples6 with their analysis in the caption. Besides
the effect of “literalness” (Koponen, 2016), we observe three major problems:

1. Over-editing : Editors edited translations even though they are adequate
and fluent.

2. “Telephone game” effect : Semantic mistakes introduced by the MT sys-
tem flow into the post-edit and remain uncorrected, when more obvious
corrections are needed elsewhere in the sentence. Guerberof Arenas (2008)
explain this by the lack of attention to detail of post-editors when they are
presented with fluent and superficially fine looking translations.

3. Missing information: Since editors only observe a portion of the complete
context, i.e., they do not see the video recording of the speaker or the full
transcript of the talk, they are not able to convey as much information as
the reference translations.

length. In a LMEM for the raw action count (clicks+key strokes), this effect had a larger
impact.

6Selected because of their differences to references.

126

Source I am a nomadic artist.
Hypothesis Ich bin ein nomadischer Künstler.
Correction Ich bin ein nomadischer Künstler.
Reference Ich wurde zu einer nomadischen Künstlerin.

Source I look at the chemistry of the ocean today.
Hypothesis Ich betrachte heute die Chemie des Ozeans.
Correction Ich erforsche täglich die Chemie der Meere.

Reference Ich untersuche die Chemie der Meere der Gegenwart.

Source There’s even a software called cadnano that allow . . .
Hypothesis Es gibt sogar eine Software namens Caboano, die . . .
Correction Es gibt sogar eine Software namens Caboano, die . . .
Reference Es gibt sogar eine Software namens ”cadnano”, . . .

Source It was a thick forest.
Hypothesis Es war ein dicker Wald.
Correction Es handelte sich um einen dichten Wald.
Reference Auf der Insel war dichter Wald.

Table 25: Examples of post-editing of model hypotheses to illustrate differences
between reference translations and corrections/post-edits. Example 1: The
gender in the German translation could not be inferred from the context, since
speaker information is unavailable to the post-editor. Example 2: “today” is
interpreted as adverb by the NMT, this interpretation is kept in the correction
(“telephone game” effect). Example 3: Another case of the “telephone game”
effect: the name of the software is changed by the NMT, and not corrected by
the annotators. Example 4: Over-editing, and more information in the reference
translation than in the source.

Quality of error markings. Markings, in contrast, are less prone to over-
editing, since they have fewer degrees of freedom. They are equally exposed to
problem (3) of missing context, and another limitation is added: Word omissions
and word order problems cannot be annotated. Table 26 (page 128 gives a set
of examples that illustrate these problems. While annotators were most likely
not aware of problems (1) and (2), they might have sensed that information
was missing, as well as the additional limitations of markings. Furthermore, we
see that the simulation of markings from references as used in previous work
(Petrushkov et al., 2018; Marie and Max, 2015) can be overly harsh for the
generated target translations, e.g., marking “Hazara-Bevölkerung” as incorrect,
even though it is a valid translation of “Hazara population”.

127

Source Each year, it sends up a new generation of shoots.
Annotated Marking Jedes Jahr sendet es eine neue Generation von

Shoots.
Simulated Marking Jedes Jahr sendet es eine neue

Generation von Shoots.
Reference Jedes Jahr wachsen neue Triebe.

Source He killed 63 percent of the Hazara population.
Annotated Marking Er starb 63 Prozent der Bevölkerung Hazara.
Simulated Marking Er starb 63 Prozent der Bevölkerung Hazara.

Reference Er tötete 63% der Hazara-Bevölkerung.

Source They would ordinarily support fish and other
wildlife.

Annotated Marking Sie würden Fisch und andere wild lebende Tiere
unterstützen.

Simulated Marking Sie würden Fisch und andere wild lebende Tiere
unterstützen.

Reference Normalerweise würden sie Fisch und andere
Wildtiere ernähren.

Table 26: Examples of markings to illustrate differences between human markings
and simulated markings. Marked parts are underlined. Example 1: “es” not
clear from context, less literal reference translation. Example 2: Word omission
(preposition after “Bevölkerung”) or incorrect word order is not possible to
mark. Example 3: Word order differs between MT and references, word omission
(“ordinarily”) not marked.

Inter-agreement for corrections and markings. In addition to the abso-
lute quality of the annotations, we are interested in measuring their reliability:
Do annotators agree on which parts of a translation to mark or edit? While
there are many possible valid translations, and hence many ways to annotate one
given translation, it has been shown that learnability profits from annotations
with less conflicting information (Chapter 5). In order to quantify agreement
for both modes on the same scale, we reduce both annotations to sentence-level
quality judgments. For markings it is the ratio of words that were marked as
incorrect in a sentence, and for corrections the ratio of words in the translation
that was actually edited. If the hypothesis was perfect, no markings nor edits
would be required, and if it was completely wrong, all of it had to be marked
or edited. After this reduction, we measure agreement with Krippendorff’s α
(Krippendorff, 2013). Table 27 shows that corrections have a consistently higher
reliability. However, this reliability metric does not capture whether annotators

128

Mode Intra-Rater α Inter-Rater α
Mean Std.

Marking 0.522 0.284 0.201
Correction 0.820 0.171 0.542
User-Chosen 0.775 0.179 0.473

Table 27: Intra- and Inter-rater agreement for markings, corrections and the
user-chosen combination of both, calculated by Krippendorff’s α.

agreed on their edit actions, but only on the portion on the translation that
need editing, which omits insertions. The overall editing ratio is also much
higher for post-edits than for markings, so there is naturally less variance (see
Section 6.1.2). While these agreement scores seem low, they are—just like the
ones reported in Section 5.2.1—within the expected range (see also the discussion
on the agreement of error annotation by Lommel et al. (2014)).

Direct Comparison of Marking

Empirical preference. In the user-choice mode, where annotators can choose
for each sentence whether they would like to mark or correct it, markings were
chosen much more frequently than post-edits (61.9%). Annotators did not
agree on the preferred choice of mode for the repeated sentences (α = −0.008),
which indicates that there is no obvious policy when one of the modes would
be advantageous over the other. In the post-annotation questionnaire, however,
60% of the participants said they generally preferred post-edits over markings,
despite markings being faster and hence resulting in a higher hourly pay.

Subjective preference. To better understand the differences in modes, we
asked them about their policies in the user-choice mode. The most commonly
described policy is to decide economically based on error types and frequency:
choose post-edits when insertions or re-ordering is needed, and markings prefer-
ably for translations with word errors (less effort than doing a lookup or re-
placement). One person preferred post-edits for short translations, markings for
longer ones, another three generally preferred markings for any sentence, while
one person generally preferred post-edits. Where annotators found the interface
to need improvements was (1) in the presentation of inter-sentential context,
(2) in the display of overall progress and (3) an option to edit previously edited
sentences. Specifically for the marking mode they requested an option to mark
missing parts or areas for re-ordering. While (2) and (3) indicate directions for
improvement of the annotation interface, the last request points to the need of
an “extended” marking mode with a feature to mark omissions or re-ordering.

129

0.00

0.25

0.50

0.75

1.00

marking post_edit
Editing Mode

C
or

re
ct

io
n

R
at

e

Figure 16: Correction rate by annotation mode. The correction rate describes
the ratio of words in the translation that were marked as incorrect (in marking
mode) or edited (in correction/post-editing mode). Means are indicated with
diamonds.

Inferred translation quality judgment. In both modes we can interpret
the amounts of edits/markings as a signal of how content the annotator was
with the machine translation, i.e., a quality estimate. If a translation contains
many errors, it should receive a high number of markings, and analogously, a
high number of edits. Hence, we measure which portion of the translations is
considered incorrect (marked, deleted or replaced) in both modes, to find out
whether the choice of annotation interface has an impact on what is considered
correct or not. Table 28 compares how many tokens of the translations were
considered incorrect in each mode. In total, annotators find more than twice
as many token corrections in the post-edit mode than in the marking mode.7

In the user-choice mode, the individual tendency for the two modes continues,
with a slight increase in corrections in the post-edit mode, which aligns with the
policies reported in the previous section.

This is partially caused by the reduced degrees of freedom in marking mode,
but also underlines the general trend towards over-editing when in post-edit
mode. Figure 16 illustrates, that, if markings and post-edits were used to
compute a quality score (correction rate), translations would be judged poorer
in post-editing mode. It also holds for whole sentences, where 273 (26.20%) were
left un-edited in marking mode, compared to 3 (0.29%) in post-editing mode.

7The automatically assessed translation quality for the baseline model does not differ
drastically between the portions selected per mode.

130

Mode #incorrect #correct Correction Rate

Markings 2,197 15,400 12.49%
PE 4,652 13,193 26.07%
User-choice (total) 3,520 14,417 19.62%
. . . Markings 1,578 9,932 13.71%
. . . PE 1,942 4,485 30.22%

Table 28: Correction statistics: count of incorrect and correct tokens in transla-
tions according to annotation mode. The correction rate expresses the percentage
of tokens in the translations the raters found worthy to correct.

6.2 Adapting MT with Error Corrections and Mark-

ings

The hypotheses presented to the annotators were generated by a neural machine
translation model. The annotations can then be used to improve the underlying
model, with the annotators serving as teachers in an interactive human-in-the-
loop machine learning scenario. This section describes the fine-tuning objectives
to adapt the NMT to human corrections and markings.

6.2.1 Objectives

Learning from Error Corrections. The standard supervised learning mode
in interactive machine translation assumes a fully corrected output y∗ for an
input x that is treated similar to a gold standard reference translation (Turchi
et al., 2017). Model adaptation can be performed by maximizing the likelihood
of the user-provided corrections where

J(θ)Corr =
∑
x,y∗

T∑
t=1

log pθ(y
∗
t | x; y∗<t), (85)

using stochastic gradient descent techniques.

Learning from Error Markings. A weaker feedback mode is to let a human
teacher mark the correct parts of the machine-generated output ŷ (Marie and
Max, 2015; Petrushkov et al., 2018; Domingo et al., 2017). As a consequence
every token in the output receives a reward δmt , either δ+

t if marked as correct,
or δ−t otherwise. Petrushkov et al. (2018) proposed a model with δ+

t = 1 and
δ−t = 0, but this weighting schemes leads to the ignorance of incorrect outputs in
the gradient. Instead, we find it beneficial to penalize incorrect tokens, with e.g.
δ−t = −0.5, and reward correct tokens δ+

t = 0.5, which aligns with the findings

131

Domain Train Dev Test

WMT17 5,919,142 2,169 3,004
IWSLT17 206,112 2,385 1,138
Selected Talks 1035 corr / 1042 mark 1,043

Table 29: Data sizes (en-de). From the IWLST17 training data we use 3,120
sentences contained in a selection of talks.

from Lam et al. (2019). The objective of the learning system is to maximize the
likelihood of the correct parts of the output and penalize the incorrect ones:

J(θ)Mark =
∑
x,ŷ

T∑
t=1

δmt log pθ(ŷt | x; ŷ<t). (86)

Note the similarity to the token-level expected matching objective (62) that
was used in the eBay experiments with online feedback induced from the log of
queries (Section 4.1.2). Here we are limited to feedback for one logged output
each, so the objective looks rather like a weighted MLE loss than a reinforcement
learning objective with token-level rewards. If this token-based feedback was
obtained online from humans (or from a reward estimator), expected reward
training could be applied here.

6.3 Experiments

6.3.1 Setup

NMT Model and Data. The goal is to adapt a general-domain NMT model
(WMT17) to the new domain of TED talks from IWSLT17 (see Table 29) with
either corrections or markings. For the general-domain NMT system, we use
the pre-trained 4-layer LSTM encoder-decoder Joey NMT WMT17 model for
translations from English to German (Kreutzer et al., 2019). The model is
trained on a joint vocabulary with 30k subwords (Sennrich et al., 2016c). With
the help of the human annotations we adapt this model to the domain of TED
talk transcripts by continuing learning on the annotated data. Hyperparameters
including learning rate schedule, dropout and batch size for this fine-tuning
step are tuned on the IWSLT17 dev set. For the marking mode, the weights δ+

and δ− may be tuned in addition (see Appendix B.5 for an ablation). As test
data, we use the split of the selected talks that was annotated in the user-mode,
since the purpose of this split was the evaluation of user preference. There is
no overlap in the three data splits, but they share topics so that we can both
measure local adaptation and draw comparisons between modes.

132

System TER ↓ BLEU ↑ METEOR ↑

WMT baseline 58.6 23.9 42.7

Error Corrections

Full 57.4? 24.6? 44.7?

Small 57.9? 24.1 44.2?

Error Markings

0/1 57.5? 24.4? 44.0?

-0.5/0.5 57.4? 24.6? 44.2?

random 58.1? 24.1 43.5?

Quality Judgments

from corrections 57.4? 24.6? 44.7?

from markings 57.6? 24.5? 43.8?

Automatic Error Corrections

BERT 56.6? 26.4? 45.1?

Table 30: Results on the test set with feedback collected from humans. Decoding
with beam search of width 5 and length penalty of 1. Significant (p <= 0.05)
improvements over the baseline are marked with ?. Full error corrections and
error markings only significantly differ in terms of METEOR. Small: smaller
subset of error corrections that consumed the same time as error markings.
Random: Marking a random selection of tokens per sentence. Quality judgments
are inferred from either feedback mode. Automatic error corrections are obtained
from an error correction model trained on human error corrections.

Evaluation. The models are evaluated automatically with TER (Snover et al.,
2006), BLEU (Papineni et al., 2002) and METEOR (Lavie and Denkowski, 2009)
against references translations.8

6.3.2 Results

Corrections, Markings and Quality Judgments. Table 30 compares the
models after fine-tuning with corrections and markings with the original WMT
out-of-domain model (with exception of the last row which is discussed in
Section 6.3.2). The “small” model trained with error corrections is trained on
one fifth of the data, which is comparable to the effort it takes to collect the
error markings. Both error corrections and markings can be reduced to sentence-

8Computed with MultEval v0.5.1 (Clark et al., 2011) on tokenized outputs.

133

System > BL = BL < BL

Markings 43.0% 21.0% 36.4%
Corrections 49.1% 16.1% 34.7%

Table 31: Human preferences for 300 comparisons between baseline (BL) trans-
lations and the NMT system fine-tuned on error markings and corrections. >:
better than the baseline, < worse than the baseline.

level quality judgments, where all tokens receive the same weight in Eq. 86:
δ = #marked

hyptokens or δ = #corrected
hyptokens . In addition, we compare the markings against a

random choice of marked tokens per sentence.9 We find (1) that both models
trained on corrections and markings improve significantly over the baseline
(“Error Corrections Full”, “Error Markings 0/1”), (2) that tuning the weights
for (in)correct tokens matters for learning from markings (“Error Markings
-0.5/0.5”), (3) that they perform better than random markings (“Error Markings
random”), and (4) a uniform treatment of weights through the reduction of
quality judgments (“Quality Judgments”) results in no loss in comparison to
error corrections, and a small loss for markings. We suspect that the small
margin between corrections and markings is due to the fact that the models
are evaluated against reference translations. Post-edits—which are further away
from model outputs than markings, and can also also be further away from
references—will be rated more poorly than deserved (and at least METEOR
captures some of it).

Human Evaluation. It is infeasible to collect markings or corrections for all
our systems for a more appropriate comparison than to references. Nevertheless,
we conduct a small human evaluation study. Three bilingual raters receive 120
translations of the test set (∼10%) and the corresponding source sentences for
each mode and judge whether the translation is better, as good as, or worse
than the baseline: 64% of the translations obtained from learning from error
markings are judged as good or better than the baseline, compared to 65.2% for
the translations obtained from learning from error corrections. Table 31 shows
the detailed proportions excluding identical translations.

Effort vs. Translation Quality. Figure 17 illustrates the relation between
the total time spent on annotations and the resulting translation quality for
corrections and markings trained on a selection of subsets of the full annotated
data: The overall trend shows that both modes benefit from more training data,
with more variance for the marking mode, but also a steeper descent. The point

9Each token is marked with probability pmark = 0.5.

134

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

58.0

58.5

59.0

0 20000 40000 60000

Annotation Duration [s]

T
E

R
mode

● mark
pe

size
●

●

●

●
●

0
250
500
750
1000

Figure 17: Improvement in TER with training data of varying size: lower
is better. Scores are collected across two runs with a random selection of
k ∈ [125, 250, 375, 500, 625, 750, 875] data points each for training.

from where on markings the more efficient choice lies at approximately 20,000s
in terms of cumulative annotation time (≈ 5.5h).

Simulated Adaptation To put the observed improvements better into per-
spective, we train systems on the same data splits but with (a) references or
(b) model hypotheses simulating corrections and markings.10 Table 32 shows
that training from references, despite the small data size and the same training
objective and hyperparameters, is more successful than from the collected cor-
rections (Table 30), which supports our hypothesis of the qualitative differences
of corrections and references. Furthermore, treating the model hypotheses as
references, the NMT makes surprisingly high improvements, at least on the split
(row “hyp mark”) that was used for corrections as well. These models are still
0.4 TER / 0.5 BLEU / 0.5 METEOR behind the custom-weighted tokens in
learning from markings, which is confirming that the credit assignment by the
annotator actually helped the NMT model. Simulating markings from references
(as done in previous work (Petrushkov et al., 2018)) or corrections11 results in

10Treating the model output as correction is equivalent to a uniform weighting for all tokens
δ = 1.

11Error markings were simulated by marking the words that would have to get edited
according to minimum edit distance between model hypothesis and reference or correction.

135

System TER ↓ BLEU ↑ METEOR ↑

WMT baseline 58.6 23.9 42.7

No Corrections / Markings

hyp corr 57.4? 24.6? 43.9?

hyp mark 57.8? 24.1 43.7?

Simulated Error Corrections

ref corr 56.1? 25.2? 44.3?

ref mark 55.9? 25.2? 44.4?

Simulated Error Markings

sim ref 57.5? 24.3? 43.5?

sim corr 57.7? 24.3? 43.7?

Table 32: Results on the test set after fine-tuning on the splits used for markings
(mark) and corrections (corr) with either out-of-domain hypotheses (hyp) or
reference translations (ref) as simulated corrections, and markings simulated
(sim) from either the references or the corrections. Scores are averaged across 3
runs. Significant (p ≤ 0.05) improvements over the baseline are marked with ?.

slightly lower scores than the actual collected markings, which illustrates the
weaknesses of this simulation technique (see the examples in Table 26).

Automatic Corrections and Markings

In our previous experiments (simulation experiments of Chapter 4 and real-world
experiments in Chapter 5) reward estimators, i.e. regressions models trained
on human judgments, were one of the key ingredients to generalization when
working with logged data. Analogously, we train an automatic marker and an
automatic corrector model on the human feedback.

Both models are based on pre-trained multilingual BERT (Devlin et al., 2019;
Wolf et al., 2019), where the auto-marker adds two feed-forward layers on top of
the contextual representations and makes binary predictions, and APE has a
Transformer decoder with an output layer over the BERT vocabulary using the
model proposed by Correia and Martins (2019) implemented with OpenNMT
(Klein et al., 2018). The pre-trained embeddings are fine-tuned on the collection
of corrections and markings described above. Training and architecture details
are provided in Appendix B.6.

136

The last line in Table 30 (page 133) reports the result from applying the
automatic corrector to the MT output, which improves the translation quality
furthest, benefiting from the large training resources distilled into multilingual
BERT presentations (Pires et al., 2019). The automatic marker trained on the
collected markings achieved an overall 99% accuracy on the training set and 87%
accuracy on the validation set, but performed poorly for the class of incorrect
tokens. Using its predictions to replace human markings, it fails to improve the
MT output, presumably because of the low precision for incorrect tokens.

LMEM: Sentence-level Quality

We fit an LMEM (see Section 5.2.2) for sentence-level quality scores of the
baseline, and three runs each for the NMT systems fine-tuned on markings and
post-edits respectively, and inspect the influence of the system as a fixed effect,
and sentence id, topic and source length as random effects.

TER ∼system + (1 | talk id/sent id) + (1 | topic) + (1 | src length)

The fixed effect is significant at p = 0.05, i.e., the quality scores of the three
systems differ significantly under this model. The global intercept lies at 64.73,
the one for marking 1.23 below, and the one for post-editing 0.96 below. The
variance in TER is for the largest part explained by the sentence, then the talk,
the source length, and the least by the topic.

6.4 Conclusion

This chapter presented the first user study on the annotation process and the
machine learnability of human error markings of translation outputs. This
annotation mode has so far been given less attention than error corrections
or quality judgments, and has until now only been investigated in simulation
studies.

We found that both according to automatic evaluation metrics and by human
evaluation, fine-tuning of NMT models achieved comparable gains by learning
from error corrections and markings, however, error markings required several
orders of magnitude less human annotation effort. Furthermore, we showed
how to learn automatic error correction and marking models, with best results
obtained by fine-tuning a Transformer-based error correction model on small
amounts of human error corrections. If the automatic error marking model
had higher quality, other techniques of adapting NMT systems with learned
error markings could be applied, e.g., priming automatic error corrections with
automatic markings as proposed for human markings by Grangier and Auli
(2018).

137

In addition, it would be interesting to investigate online adaptation from
error markings to test how fast the models adapt and if they succeed in proposing
better alternatives after having received negative feedback, similar to what (Lam
et al., 2019) proposed for interactive-predictive MT.

138

Part III

Learning to Learn in Interaction

Chapter 7

Self-Regulated Supervision for Interactive MT

In the three preceding chapters we studied interfaces for gathering feedback
signals from humans in various forms: relative and absolute, explicit and implicit,
for complete sequences and for single tokens. We observed that weak feedback, in
any of these forms—given a certain level of quality—can help to customize and
adapt NMT systems. However, supervised learning is often more effective than
reinforcement learning, even with little or noisy data (as observed for example in
Section 4.3 with the success of the bandit-to-supervised method). Self-training
might also bring some benefits (for free, in terms of human feedback costs), as
reported for example by Wu et al. (2018a) who leverage “forward” translations
for reinforcement learning.

We pursue the goal of making interactive learning as efficient as possible, e.g.,
by minimizing feedback costs or effort, increasing sample efficiency, or speeding
up convergence. So if supervised training and self-training provide more efficient
model updates they should not be ignored in our interactive learning. To this
aim, the work in this chapter develops a more holistic view on interactive machine
learning that integrates fully supervised, weakly supervised and self-training into
a joint meta-learning objective. This new algorithm is tested in simulation with
online interactions (like in Chapter 3) and can be seen as a pilot to more efficient
interactive learning in real-world applications. The question regarding the choice
of feedback modes or interfaces that emerged in the preceding part of the thesis,
is now shifted from the interface designer to a meta-learning policy, which we
call the regulator.

The concept of self-regulation has been studied in educational research (Hattie
and Timperley, 2007; Hattie and Donoghue, 2016), psychology (Zimmerman
and Schunk, 1989; Panadero, 2017), and psychiatry (Nigg, 2017), and was
identified as central to successful human learning. “Self-regulated students” can
be characterized as “becoming like teachers”, in that they have a repertoire of
strategies to self-assess and self-manage their learning process, and they know
when to seek help and which kind of help to seek. While there is a vast literature
on machine learning approaches to meta-learning (Schmidhuber et al., 1996),
learning-to-learn (Thrun and Pratt, 1998), or never-ending learning (Mitchell
et al., 2015), the aspect of learning when to ask for which kind of feedback has
so far been neglected in this field.

140

Seq2Seq

Figure 18: Diagram of human-in-the-loop self-regulated learning.

We propose a machine learning algorithm that uses self-regulation in order
to balance the cost and effect of learning from different types of feedback. This
is particularly relevant for human-in-the-loop machine learning, where human
supervision is costly. The consideration of feedback cost connects our work to
active learning, for example, reinforcement learning approaches to learn dynamic
active learning strategies (Fang et al., 2017), or to learn a curriculum to order
noisy examples (Kumar et al., 2019), or imitation learning approaches for selecting
batches of data to be labeled Liu et al. (2018). However, the action space of these
approaches is restricted to the decision whether or not to select particular data
points for fully-supervised labeling (not any other labeling options), and they
are designed for a fixed budget. As we will show, our self-regulation strategy
outperforms active learning based on uncertainty sampling (Settles and Craven,
2008; Peris and Casacuberta, 2018), and our reinforcement learner is rewarded
in such a way that it will produce the best system as early as possible.

The self-regulation module automatically learns which kind of feedback to
apply when in training—full supervision by teacher demonstration or correc-
tion, weak supervision in the form of positive or negative rewards for student
predictions, or a self-supervision signal generated by the student. Figure 18
illustrates this learning scenario. The learner, in our case a sequence-to-sequence
(Seq2Seq) learner, aims to solve a certain task with the help of a human teacher.
For every input it receives for training, it can ask the teacher for feedback to its
own output, or supervise itself by training on its own output, or skip learning on
the input example altogether. The self-regulator’s policy for choosing feedback
types is guided by their cost and by the performance gain achieved by learning
from a particular type of feedback.

The incorporation of a query’s cost into reinforcement learning has been ad-
dressed, for example, in the framework of active reinforcement learning (Krueger
et al., 2016). The central question in active reinforcement learning is to quantify

141

the long-term value of reward information, however, assuming a fixed cost for
each action and every round. Our framework is considerably more complicated
by the changing costs for each feedback type on each round. Previous work on
human reinforcement learning (see Section 2.2.1) have completely ignored the
costs that are incurred when eliciting rewards from humans, nor do any of these
approaches consider multiple feedback modes.

For the application of machine translation adaptation, feedback in the form
of corrections (Turchi et al., 2017), error markings (Domingo et al., 2017), or
translation quality judgments (Lam et al., 2018) or the combination of both (Lam
et al., 2019), has been successfully integrated in simulation experiments into
interactive-predictive machine translation. However, these works do not consider
automatic learning of a policy for the optimal choice of feedback. We apply
the self-regulation algorithm to interactive machine translation where an NMT
system functions as a student which receives feedback simulated from a human
reference translation or supervises itself. The intended real-world application is
a machine translation personalization scenario where the goal of the human is
to teach the NMT system to adapt to in-domain data with the best trade-off
between feedback cost and performance gain. It can be transferred to other
interactive sequence-to-sequence learning tasks such as conversational AI for
question-answering, geographical navigation, or information retrieval.

Our analysis of different configurations of self-regulation yields the following
insights: Perhaps unsurprisingly, the self-regulator learns to balance all types
of feedback instead of relying only on the strongest or cheapest option. This
is an advantage over active learning strategies that only consider the choice
between no supervision and full supervision. Interestingly, though, we find that
the self-regulator learns to trade off exploration and exploitation similar to
a context-free ε-greedy strategy that optimizes ε for fastest learning progress.
Lastly, we show that the learned regulator is robust in a cold-start transfer to
new domains, and even shows improvements over fully supervised learning on
domains such as literary books where reference translations provide less effective
learning signals.

Contributions. This chapter contributes the following:

1. In the preceding chapters the question emerged, which supervision mode,
and consequently user interface, is best to be used for which case (level of
noise, quality of outputs, reliability and availability of raters). Instead of
making this decision manually according to best guesses, it is now passed
to a regulator module which meta-learns to choose supervision modes.

2. The combination of supervision modes into one joint objective allows to
consider not only their effectiveness but also their costs as optimization
target.

142

3. The empirical evaluation on NMT domain adaptation in interaction with
a simulated human teacher shows that learning to supervise is an attrac-
tive alternative to standard stream-based active learning or any of the
supervision modes in isolation.

Publications. This work was published in (Kreutzer and Riezler, 2019); all
experiments and analyses were conducted by the author.

Outline. Section 7.1 starts with an overview of learning objectives under
various levels of supervision (Section 7.1.1), subsumed in the meta-algorithm for
self-regulation (Section 7.1.2). Its effectiveness is evaluated in Section 7.2, which
covers empirical benchmark results and comparisons against active learning
(Section 7.2.2), and also the analysis of the learned self-regulation strategies
(Section 7.2.2). Section 7.3 closes this chapter with a summary of the findings.

7.1 Self-Regulated Interactive Learning

We model the aspect of self-regulated learning that concerns the ability to decide
which type of feedback to query from a teacher (or oneself). This decision should
be optimized for most efficient learning, and it should be made depending on the
context. In our human-in-the-loop machine learning formulation, we focus on
two contextual aspects that can be measured precisely: quality and cost. The
self-regulation task is to optimally balance human effort and output quality.

We model self-regulation as an active reinforcement learning problem with
dynamic costs, where in each state, the regulator has to choose an action, here
a feedback type, and pay a cost. The learner receives feedback of the chosen
type from the human to improve its prediction. Based on the effectiveness of
this learning update (defined in Eq. 97), the regulator’s actions are reinforced or
penalized, so that it improves its choice for future inputs.

In the following, we first compare training objectives for a Seq2Seq learner
from various types of feedback (Section 7.1.1), then introduce the self-regulator
module (Section 7.1.2), and finally combine both in the self-regulation algorithm.

7.1.1 Seq2Seq Learning with Various Levels of Supervision

Seq2Seq models can be trained with various levels of supervision. Here, we
first consider learning from the two options we investigated in the previous
chapter, error corrections and error markings. We further include learning by
self-supervision, where the model produces the targets itself. These three modes
do not only involve different levels of human interaction, but also require different
objectives and gradient updates, which we will present in the following.

143

Learning from corrections (Full). The Seq2Seq learner models the probabil-
ity p(y | x) of an output sequence y given an input sequence x (see Section 2.1.3).
Its parameters θ can be trained with cross-entropy minimization (equivalent to
maximizing the likelihood of the data D under the current model, see Equa-
tion 15), if it receives full supervision, i.e., a fully corrected output y∗:

JFull(θ) =
1

|D|
∑

(x,y∗)∈D

− log pθ(y
∗ | x). (87)

The stochastic gradient of this objective is

gFullθ (x, y∗) = −∇θ log pθ(y
∗ | x), (88)

constituting an unbiased estimate of the gradient

∇θJFull =E(x,y∗)∼D
[
gFullθ (x, y∗)

]
. (89)

A local minimum can be found by performing stochastic gradient descent on
gFullθ (x, y∗). This training objective is the standard in supervised learning when
training with human-generated references or for online adaptation to post-edits
(Turchi et al., 2017) and equivalent to the one used in Chapter 6 when learning
from offline corrections (Equation (85)).

Learning from error markings (Weak). Petrushkov et al. (2018) presented
chunk-based binary feedback as a low-cost alternative to full corrections, and we
confirmed with our user study in Chapter 6 that time and effort are much lower
for error markings, but that the baseline MT model could still be improved by
it. In this scenario the human teacher marks the correct parts of the machine-
generated output ŷ. As a consequence, every token in the output receives a
reward δt, here either δt = 1 if marked as correct, or δt = 0 otherwise.1 The
objective of the learner is to maximize the likelihood of the correct parts of the
output, or equivalently, to minimize

JWeak(θ) = 1
|D|
∑

(x,ŷ)∈D
∑T

t=1−δt log pθ(ŷt | x; ŷ<t) (90)

where the stochastic gradient is

gWeak
θ (x, ŷ) = −

T∑
t=1

δt · ∇θ log pθ(ŷt | x; y<t), (91)

which constitutes an unbiased estimate of the gradient

∇θJWeak = E(x,ŷ)∼D
[
gWeak
θ (x, ŷ)

]
. (92)

1We abstain from tuning δ here, but the experiments in the previous Chapter in Section 6.3
showed that there might be a slight benefit doing so.

144

The tokens ŷt that receive δt = 1 are part of the correct output y∗, so the
model receives a hint of what a corrected output should look like. Although the
likelihood of the incorrect parts of the sequence does not weigh into the sum,
they are contained in the context of the correct parts (in y<t). This objective
is equivalent to the one used to learn from offline corrections in Chapter 6
(Equation (86)).

Self-supervision (Self). Instead of querying the teacher for feedback, the
learner can also choose to learn from its own output, effectively supervising
itself (Schwenk, 2008). The simplest option is to treat the learner’s output as if
it was correct, but that quickly leads to overconfidence and degeneration (see
Section 6.3 for empirical results). Clark et al. (2018) proposed a cross-view
training method: The learner’s original prediction is used as a target for a weaker
model that shares parameters with the original model. The advantage of this
artificial weakening is that it forces the representations to be more robust, and
thereby helps generalization, just like standard dropout (Srivastava et al., 2014a).
We adopt this strategy by first producing a target sequence ŷ with beam search
and then weaken the decoder through attention dropout with probability patt.
The objective is to minimize the negative likelihood of the original target under
the weakened model

JSelf(θ) =
1

|D|
∑

(x,ŷ)∈D

− log ppattθ (ŷ | x), (93)

where the stochastic gradient is

gSelfθ (x, ŷ) = −∇θ log ppattθ (ŷ | x), (94)

(95)

an unbiased estimate of the gradient

∇θJSelf = E(x,ŷ)∼D
[
gSelfθ (x, ŷ)

]
. (96)

Joint formulation. For self-regulated learning, we also consider a fourth
option (None): the option to ignore the current input. Figure 19 summarizes
the stochastic gradients for all cases of feedback choices s with a joint formulation.
In practice, Seq2Seq learning shows greater stability for mini-batch updates than
online updates on single training samples. Mini-batch self-regulated learning
can be achieved by accumulating stochastic gradients for a mini-batch of size B
before updating θ with an average of these stochastic gradients, which we denote
as g

s[1:B]
θ (x[1:B], y[1:B]) = 1

B
∑B

i=1 g
si
θ (xi, yi).

145

gsθ(x, y) = −
T∑
t=1

ft · ∇θ log pdropθ (yt | xt; y<t),

with y =

{
y∗ if s = Full

ŷ otherwise,

drop =

{
patt if s = Self

0 otherwise,

and ft =

1 if s ∈ {Full,Self}
δt if s = Weak

0 if s = None

Figure 19: Stochastic gradients for Seq2Seq depending on feedback type s.

7.1.2 Learning to Self-Regulate

The regulator is another neural model qφ that is optimized for the quality-cost
trade-off of the Seq2Seq learner. Given an input xi and the Seq2Seq’s hypothesis
ŷi, it chooses an action, here a supervision mode si ∼ qφ(s | xi, ŷi). This choice
of feedback determines the update of the Seq2Seq learner (Figure 19).

The regulator is rewarded by the ratio between the cost ci of obtaining the
feedback si and the change in quality ∆(θi, θi−1) caused by updating the Seq2Seq
learner with the feedback:

r(si, xi, θi) =
∆(θi, θi−1)

ci + α
. (97)

∆(θi, θi−1) is measured as the difference in validation score achieved before and
after the learner’s update (Fang et al., 2017), and ci as the cost of user edits.
Adding a small constant cost α to the actual feedback cost ensures numerical
stability. This meta-parameter can be interpreted as representing a basic cost
for model updates of any kind.

The objective for the regulator is to maximize the expected reward defined
in Equation 97:

JMeta(φ) = Ex∼p(x),s∼qφ(s|x,ŷ) [r(s, x, θ)] . (98)

The full gradient of this objective is estimated by the stochastic gradient for
sampled actions (Williams, 1992):

gMeta
φ (x, ŷ, s) = r(s, x, θ)∇φ log qφ(s | x, ŷ). (99)

Note that the reward contains the immediate improvement after one update
of the Seq2Seq learner and not the overall performance in hindsight. This is

146

Algorithm 6 Self-Regulated Interactive Seq2Seq

Input: Initial Seq2Seq θ0, regulator φ0, mini-batch size B
1: j ← 0
2: while inputs and human available do
3: j ← j + 1
4: for i← 1 to B do
5: Observe input xi, Seq2Seq output ŷi
6: Choose feedback: si ∼ qφ(s | xi, ŷi)
7: Obtain feedback fi of type si at cost ci

8: Update θ with g
s[1:B]
θ (x[1:B], ŷ[1:B])

9: Measure improvement ∆(θj , θj−1)
10: Update φ with gMeta

φ (x[1:B], ŷ[1:B], s[1:B])

an important distinction to classic expected reward objectives in reinforcement
learning since it biases the regulator towards actions that have an immediate
effect. This is desirable in the case of interaction with a human.

However, since Seq2Seq learning requires updates and evaluations based
on mini-batches, the regulator update also needs to be based on mini-batches
of predictions, leading to the following specification of Equation (99) for a
mini-batch j:

gMeta
φ (x[1:B], ŷ[1:B], s[1:B])

=
1

B

B∑
i=1

gMeta
φ (xi, ŷi, si)

= ∆(θj , θj−1)
1

B

B∑
i=1

∇φ log qφ(si | xi, ŷi)
ci + α

. (100)

While mini-batch updates are required for stable Seq2Seq learning, they hinder
the regulator from assigning credit for model improvement to individual elements
within the mini-batch.

Algorithm Algorithm 6 presents the proposed online learning algorithm with
model updates accumulated over mini-batches. On arrival of a new input, the
regulator predicts a feedback type in line 6. According to this prediction, the
environment/user is asked for feedback for the Seq2Seq’s prediction at cost ci
(line 7). The Seq2Seq model is updated on the basis of the feedback and mini-
batch of stochastic gradients computed as summarized in Figure 19. In order to
reinforce the regulator, the Seq2Seq model’s improvement (line 9) is assessed, and
the parameters of the regulator are updated (line 10, Equation 100). Training
ends when the data stream or the provision of feedback ends. The intermediate

147

Seq2Seq evaluations can be re-used for model selection (early stopping). In
practice, these evaluations can either be performed by validation on a held-
out set (as in the simulation experiments below) or by human assessment.
Figure 20 visualizes the interleaved training procedure for the Seq2Seq learner
and regulating meta-learner in interaction with the human teacher.

Figure 20: Learning procedure of MT and regulator.

Practical considerations. The algorithm does not introduce any additional
hyperparameters beyond standard learning rates, architecture design and mini-
batch sizes that have to be tuned. As proposed in Petrushkov et al. (2018) or
Clark et al. (2018), targets ŷ are pre-generated offline with the initial θ0, which
we found crucial for the stability of the learning process. The evaluation step
after the Seq2Seq update is an overhead that comes with meta-learning, incurring
costs depending on the decoding algorithm and the evaluation strategy. However,
Seq2Seq updates can be performed in mini-batches, and the improvement is
assessed after a mini-batch of updates, as discussed above.

7.2 Experiments

The research question to be answered in our experiments is threefold:

1. Which strategies does the regulator develop?

2. How well does a trained regulator transfer across domains?

3. How do these strategies compare against (active) learning from a single
feedback type?

We perform experiments for interactive NMT, where a general-domain NMT
model is adapted to a specific domain by learning from the feedback of a human
translator. This is a realistic interactive learning scenario where cost-free pre-
training on a general domain data is possible, but each feedback generated by the
human translator in the personalization step incurs a cost. In our experiment,

148

de→en WMT IWSLT Books

Train 5,889,699 206,112 46,770
Dev 2,169 2,385 2,000
Test 3,004 1,138 2,000

Table 33: Number of sentences for parallel corpora used for pre-training (WMT),
regulator training (IWSLT) and domain transfer evalution (Books).

we use human-generated reference translations to simulate the cost of human
feedback and to measure the performance gain achieved by model updates.

7.2.1 Architectures

Seq2Seq architecture. Both the Seq2Seq learner and the regulator are based
on LSTMs (Hochreiter and Schmidhuber, 1997). The Seq2Seq has four bi-
directional encoder and four decoder layers with 1,024 units each, embedding
layers of size 512. It uses Luong et al. (2015a)’s input feeding and output layer,
and global attention with a single feed forward layer (Bahdanau et al., 2015).

Regulator architecture. The regulator consists of LSTMs on two levels:
Inspired by Siamese Networks (Bromley et al., 1994), a bi-directional LSTM
encoder of size 512 separately reads in both the current input sequence and the
beam search hypothesis generated by the Seq2Seq. The last state of encoded
source and hypothesis sequence and the previous output distribution are con-
catenated to form the input to a higher-level regulator LSTM of size 256. This
LSTM updates its internal state and predicts a score for every feedback type for
every input in the mini-batch. The feedback for each input is chosen by sampling
from the distribution obtained by softmax normalization of these scores. The
embeddings of the regulator are initialized by the Seq2Seq’s source embeddings
and further tuned during training. The model is implemented in the Joey NMT
framework (Kreutzer et al., 2019) based on PyTorch (Paszke et al., 2017).

Data. We use three parallel corpora for German-to-English translation: a
general-domain data set from the WMT2017 translation shared task for Seq2Seq
pre-training, TED talks from the IWSLT2017 evaluation campaign for training
the regulator with simulated feedback, and the Books corpus from the OPUS
collection (Tiedemann, 2012) for testing the regulator on another domain. The
joint vocabulary for Seq2Seq and the regulator consists of 32k BPE sub-words
(Sennrich et al., 2016c) trained on WMT. The WMT data is obtained from the

149

WMT 2017 shared task website2 and pre-processed as described in Hieber et al.
(2017). The pre-processing pipeline is used for IWSLT and Books data as well.
IWSLT2017 is obtained from the evaluation campaign website.3 For validation on
WMT, we use the newstest2015 data, for IWSLT tst2014+tst2015, for testing
on WMT newstest2017 and tst2017 for IWSLT. Since there is no standard
split for the Books corpus, we randomly select 2k sentences for validation and
testing each. Table 33 gives an overview of the size of the three resources.

Training. The Seq2Seq model is first trained on WMT with Adam (Kingma
and Ba, 2015) on mini-batches of size 64, an initial learning rate 1× 10−4 that is
halved when the loss does not decrease for three validation rounds. Training ends
when the validation score does not increase any further (scoring 29.08 BLEU on
the WMT test set). This model is then adapted to IWSLT with self-regulated
training for one epoch, with online human feedback simulated from reference
translations. The mini-batch size is reduced to 32 for self-regulated training to
reduce the credit assignment problem for the regulator. The constant cost α
(Eq. 97) is set to 1.4 When multiple runs are reported, the same set of random
seeds is used for all models to control the order of the inputs. The best run is
evaluated on the Books domain for testing generalization.

Simulation of cost and performance. In our experiments, human feedback
and its cost, and the performance gain achieved by model updates, is simulated
by using human reference translations. Inspired by the keystroke mouse-action
ratio (KSMR) (Barrachina et al., 2009), a common metric for measuring human
effort in interactive machine translation, we define feedback cost as the sum of
costs incurred by character edits and clicks, similar to Peris and Casacuberta
(2018). The cost of a full correction (Full) is the number of character edits
between model output and reference, simulating the cost of a human typing.5

Error markings (Weak) are simulated by comparing the hypothesis to the
reference and marking the longest common sub-strings as correct, as proposed by
Petrushkov et al. (2018). As an extension to Petrushkov et al. (2018) we mark
multiple common sub-strings as correct if all of them have the longest length.
The cost is defined as the number of marked words, assuming an interface that
allows markings by clicking on words. For self-training (Self) and skipping
training instances we naively assume zero cost, thus limiting the measurement of
cost to the effort of the human teacher, and neglecting the effort on the learner’s
side. Table 34 illustrates the costs per feedback type on a randomly selected set
of examples.

2http://www.statmt.org/wmt17/translation-task.html
3https://sites.google.com/site/iwsltevaluation2017/
4Values 6= 1 distort the rewards for self-training.
5As computed by the Python library difflib.

150

http://www.statmt.org/wmt17/translation-task.html
https://sites.google.com/site/iwsltevaluation2017/

Mode Cost Input / Output

Self 0
x Sie greift in ihre Geldbörse und gibt ihm einen Zwanziger.
ŷ It attacks their wallets and gives him a twist.
y∗ She reaches into her purse and hands him a 20.

Weak 9
x Und als ihr Vater sie sah und sah, wer sie geworden ist,

in ihrem vollen Mädchen-Sein, schlang er seine Arme
um sie und brach in Tränen aus.

ŷ And when her father saw them and saw who became
them, in their full girl’s, he swallowed his arms around
them and broke out in tears.

y∗ When her father saw her and saw who she had become,
in her full girl self, he threw his arms around her and
broke down crying.

Full 59
x Und durch diese zwei Eigenschaften war es mir möglich,

die Bilder zu erschaffen, die Sie jetzt sehen.
ŷ And through these two features, I was able to create the

images you now see.
y∗ And it was with those two properties that I was able to

create the images that you’re seeing right now.

Table 34: Examples from the IWSLT17 training set, cost and feedback decisions
made by a regulator. For weak feedback, marked parts are underlined. For full
feedback, the corrections are marked by underlining the parts of the reference
that got inserted and the parts of the hypothesis that got deleted.

Evaluation. We measure the model improvement by evaluating the held-out
set translation quality of the learned model at various time steps with corpus
BLEU (cased SacreBLEU (Post, 2018)) and measure the accumulated costs. The
best model is considered the one that delivers the highest quality at the lowest
cost. This trade-off is important to bear in mind since it differs from the standard
evaluation of machine translation models, where the overall best-scoring model,
regardless of the supervision cost, is considered best. Finally, we evaluate the
strategy learned by the regulator on an unseen domain, where the regulator
decides which type of feedback the learner gets, but is not updated itself.

7.2.2 Results

We compare learning from one type of feedback in isolation against regulators
with the following set of actions:

1. Reg2 : Full, Weak

151

0 10000 20000 30000 40000 50000 60000 70000 80000
Cumulative Cost

28.3

28.4

28.5

28.6

28.7

28.8

28.9

29.0

BL
EU

type
full
full/weak
full/weak/self
full/weak/self/none

(a) BLEU over cumulative costs.

200 300 400 500 600 700
Iterations +1.001e6

28.3

28.4

28.5

28.6

28.7

28.8

28.9

29.0

BL
EU

type
full
full/weak
full/weak/self
full/weak/self/none

(b) BLEU over time.

Figure 21: Regulation variants evaluated in terms of BLEU over time (a) and
cumulative costs (b). Iteration counts start from the iteration count of the
baseline model. One iteration on IWSLT equals training on one mini-batch of
32 instances. The BLEU score is computed on the tokenized validation set with
greedy decoding. In (b) the lines correspond to the means over three runs, the
shaded area depicts the estimated 95% confidence interval.

2. Reg3 : Full, Weak, Self

3. Reg4 : Full, Weak, Self, None

Cost vs. Quality

Figure 21a compares the improvement in corpus BLEU (Papineni et al., 2002)
(corresponding to results in Translation Error Rate (TER, computed by pyTER6)
(Snover et al., 2006)) of regulation variants and full feedback over cumulative
costs of up to 80k character edits and time. Using only full feedback (blue) as
in standard supervised learning or learning from post-edits, the overall highest
improvement can be reached (visible only after the cutoff of 80k edits, see
Figure 21b). However, it comes at a very high cost (417k characters in total to
reach +0.6 BLEU).

The regulated variants offer a much cheaper improvement, at least until a
cumulative cost between 80k (Reg4) and 120k (Reg2), depending on the feedback
options available. The regulators do not reach the quality of the full model since
their choice of feedback is oriented towards costs and immediate improvements.
By finding a trade-off between feedback types for immediate improvements, the
regulators sacrifice long-term improvement.

6https://pypi.org/project/pyter/

152

https://pypi.org/project/pyter/

Model IWSLT dev IWSLT test
BLEU↑ Cost↓ BLEU↑ TER↓

Baseline 28.28 - 24.84 62.42

Full 28.93±0.02 417k 25.60±0.02 61.86±0.03

Weak 28.65±0.01 32k 25.10±0.09 62.12±0.12

Self 28.58±0.02 - 25.33±0.06 61.96±0.05

Reg4 28.57±0.04 68k 25.23±0.05 62.02±0.12

Reg3 28.61±0.03 18k 25.23±0.09 62.07±0.06

Reg2 28.66±0.06 88k 25.27±0.09 61.91±0.06

Table 35: Evaluation of models at early stopping points. Results for three
random seeds on IWSLT are averaged, reporting the standard deviation in the
subscript. The translation of the dev set is obtained by greedy decoding (as
during validation) and of the test set with beam search of width five. The costs
are measured in character edits and clicks, as described in Section 7.2.

Comparing regulators, Reg2 (orange) reaches the overall highest improvement
over the baseline model, but until the cumulative cost of around 35k character
edits, Reg3 (green) offers faster improvement at a lower cost since it has an
additional, cheaper feedback option. Adding the option to skip examples (Reg4,
red) does not give a benefit.

Table 35 reports the offline held-out set evaluations for the early stopping
points selected on the dev set for all feedback modes. All models notably improve
over the baseline, using only full feedback leads to the overall best model on
IWSLT (+0.6 BLEU / -0.6 TER), but costs a massive amounts of edits (417k
characters).

Self-regulating models still achieve improvements of 0.4-0.5 BLEU/TER with
costs reduced up to a factor of 23 in comparison to the full feedback model. Reg3
also notably reduces the effort compared to weak feedback only. The reduction
in cost is enabled by the use of cheaper feedback, here markings and self-training,
which in isolation are successful as well. Self-training works surprisingly well,
which makes it attractive for cheap but effective unsupervised domain adaptation.

It has to be noted that both weak and self-supervision worked only well
when targets were pre-computed with the baseline model and held fixed during
training. We suspect that the strong reward signal (ft = 1) for non-reference
outputs leads otherwise to undesired local overfitting effects that a learner with
online-generated targets cannot recover from.

153

Analysis: Self-Regulation Strategies

200 300 400 500 600 700 800
Iterations +1.001e6

28.3

28.4

28.5

28.6

BL
EU

full/weak/self

200 300 400 500 600 700 800
+1.001e6

0

20

40

60

80

100

%
 o

f f
ee

db
ac

k

self
weak
full

Figure 22: Reg3 actions chosen over time, and the corresponding BLEU score,
depicted for each iteration. Counting of iterations starts at the previous iteration
count of the baseline model.

Figure 22 (page 154) shows which actions Reg3 chooses over time when
trained on IWSLT. Most often it chooses to do self-training on the current
input. The choice of feedback within one batch varies only slightly during
training, with the exception of an initial exploration phase within the first 100
iterations. In general, we observe that all regulators are highly sensitive to
balancing cost and performance, and mostly prefer the cheapest option (e.g.,
Reg4 by choosing mostly None) since they are penalized heavily for choosing
(or exploring) expensive options (see Eq. 97). Figures 23a (page 155) and 23b
(page 155) additionally show the ratio of feedback types for self-regulation during
training with Reg2 and Reg4 respectively.

A further research question is whether and how the self-regulation module
takes the input or output context into account. We therefore compare its decisions
to a context-free ε-greedy strategy. The ε-greedy algorithm is a successful
algorithm for multi-armed bandits (Watkins, 1989). In our case, the arms are
the four feedback types. They are chosen based on their reward statistics,
here the average empirical reward per feedback type Qi(s) = 1

Ni(s)

∑
0,...,i r(si),

where N is the number of previous interaction rounds. With probability 1 −
ε, the algorithm selects the feedback type with the highest empirical reward
(exploitation), otherwise picks one of the remaining arms at random (exploration).

In contrast to the neural regulator model, ε-greedy decides solely on the

154

200 300 400 500 600 700 800
Iterations +1.001e6

28.3

28.4

28.5

28.6

28.7

BL
EU

full/weak

200 300 400 500 600 700 800
+1.001e6

0

20

40

60

80

100

%
 o

f f
ee

db
ac

k

weak
full

(a) Reg2

200 300 400 500 600 700 800
Iterations +1.001e6

28.3

28.4

28.5

28.6

BL
EU

full/weak/self/none

200 300 400 500 600 700 800
+1.001e6

0

20

40

60

80

100

%
 o

f f
ee

db
ac

k

none
self
weak
full

(b) Reg4

Figure 23: Feedback chosen by Reg2 and Reg4 on IWSLT.

basis of the reward statistics and has no internal contextual state representation.
The comparison of Reg3 with ε-greedy for a range of values for ε in Figure 24
(page 156) shows that the learned regulator behaves indeed very similar to
an ε-greedy strategy with ε = 0.25. ε-greedy variants with higher amounts of
exploration show a slower increase in BLEU, while those with more exploitation
show an initial steep increase that flattens out, leading to overall lower BLEU
scores. The regulator has hence found the best trade-off, which is an advantage
over the ε-greedy algorithm where ε requires dedicated tuning.

Considering the ε-greedy-like strategy of the regulator and the strong role of
the cost factor shown in Figure 22 (page 154), the regulator module does not
appear to choose individual actions based e.g., on the difficulty of inputs, but
rather composes mini-batches with a feedback ratio according to the feedback
type’s statistics. This confirms the observations of Peris and Casacuberta (2018),
who find that the subset of instances selected for labeling is secondary—it is rather
the mixing ratio of feedback types that matters. This finding is also consistent
with the mini-batch update regime that forces the regulator to take a higher-
level perspective and optimize the expected improvement at the granularity of
(mini-batch) updates rather than at the input level.

Domain Transfer

After training on IWSLT, we evaluate the regulators on the Books domain: Can
they choose the best actions for an efficient learning progress without receiving
feedback on the new domain?

We evaluate the best run of each regulator type (i.e., φ trained on IWSLT),
with the Seq2Seq model reset to the WMT baseline. The regulator is not further
adapted to the Books domain, but decides on the feedback types for training

155

0 5000 10000 15000 20000 25000 30000 35000 40000
Cumulative Cost

28.3

28.4

28.5

28.6

28.7

28.8

BL
EU

type
full/weak/self
eps0.1
eps0.25
eps0.5
eps0.75
eps0.9

Figure 24: BLEU and cumulative costs on IWSLT for Reg3 and ε-greedy with
ε ∈ [0.1, 0.25, 0.5, 0.75, 0.9].

the Seq2Seq model for a single epoch on the Books data. Figure 25 (page 157)
visualizes the regulated training process of the Seq2Seq model. As before, Reg3
performs best, outperforming weak, full and self-supervision (reaching 14.75
BLEU, not depicted since zero cost).

Learning from full feedback improves much later in training and reaches 14.53
BLEU.7 One explanation is that the reference translations in the Books corpus
are less literal than the ones for IWSLT, such that a weak feedback signal allows
the learner to learn more efficiently than from full corrections.

Table 36 reports results for test set evaluation on the Books domain of the
best model from the IWSLT domain each. The best result in terms of BLEU
and TER is achieved by the Reg2 model, even outperforming the model with full
feedback. As observed for the IWSLT domain (cf. Section 7.2.2), self-training is
very effective, but is outperformed by the Reg2 model and roughly on par with
the Reg3 model.

Comparison to Active Learning

A classic active learning strategy is to sample a subset of the input data for full
labeling based on the uncertainty of the model predictions (Settles and Craven,
2008). The size of this subset, i.e. the amount of human labeling effort, has to
be known and determined before learning.

7With multiple epochs it would improve further, but we want to avoid showing the human
the same inputs multiple times.

156

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative Cost 1e8

14.0

14.2

14.4

14.6

14.8
BL

EU

type
full
weak
full/weak
full/weak/self
full/weak/self/none

Figure 25: Domain transfer of regulators trained on IWSLT to the Books domain
in comparison to full and weak feedback only.

Here, we use a fixed ratio γ, that determines which percentage of samples
per mini-batch are fully-labeled. Figures 26a and 26b (page 159) compare the
self-regulators on the Books domain (γ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]) over cumulative
costs and time with models that learn from a fixed ratio of fully-labeled instances
in every batch. These are chosen according to the model’s uncertainty, here
measured by the average token entropy of the model’s best-scoring beam search
hypothesis.

The regulated models with a mix of feedback types clearly outperform the
active learning strategies, both in terms of cost-efficient learning (Figure 26a on
page 159) as well as in overall quality. We conclude that mixing feedback types,
especially in the case where full feedback is less reliable, offers large improvements
over standard stream-based active learning strategies.

7.2.3 Prospects for Field Studies

Our experiments were designed as a pilot study to test the possibilities of self-
regulated learning in simulation. In order to advance to field studies where
human users interact with Seq2Seq models, several design choices have to be
adapted with caution.

Firstly, we simulate both feedback cost and quality improvement by measuring
distances to static reference outputs. The experimental design in a field study
has to account for a variation of feedback strength and cost, and performance
assessments across time, across sentences, and across human users (Settles et al.,

157

Model Books test
BLEU↑ TER↓ Cost↓

Baseline 14.19 79.81 -

Full 14.87 79.12 1B
Weak 14.74 78.14 93M
Self 14.73 78.86 -

Reg4 14.80 79.02 57M
Reg3 14.80 78.70 41M
Reg2 15.00 78.21 142M

Table 36: Evaluation of models at early stopping points on the Books test set
(beam search with width five).

2008). One desideratum for field studies is thus to analyze this variation by
analyzing the experimental results in a mixed effects model that accounts for
variability across sentences, users, and annotation sessions (Baayen et al., 2008;
Karimova et al., 2018), similar to the LMEMs in Sections 5.2.2 and 6.1.2.

Secondly, our simulation of costs considers only the effort of the human
teacher, not the machine learner. The strong preference for the cheapest feedback
option might be a result of overestimating the cost of human post-editing and
underestimating the cost of self-training. Thus, a model for field studies where
data is limited, like the case presented in Chapter 5, might greatly benefit from
learned estimates of feedback cost and quality improvement.

7.3 Conclusion

In this chapter we proposed a cost-aware algorithm for interactive sequence-to-
sequence learning, with a self-regulation module at its core that learns which type
of feedback to query from a human teacher. The empirical study on interactive
NMT with simulated human feedback showed that this self-regulated model finds
more cost-efficient solutions than models learning from a single feedback type
and uncertainty-based active learning models, also under domain shift.

While this setup abstracts away from certain confounding variables to be
expected in real-life interactive machine learning, it should be seen as a pilot
experiment focused on our central research questions under an exact and noise-
free computation of feedback cost and performance gain. The proposed framework
can naturally be expanded to integrate more feedback modes suitable for the
interaction with humans, e.g., pairwise comparisons or output rankings.

Future research directions will involve the development of reinforcement

158

0.0 0.2 0.4 0.6 0.8 1.0
Cumulative Cost 1e8

14.0

14.2

14.4

14.6

14.8

BL
EU

type
full
90%
70%
50%
30%
10%
full/weak
full/weak/self
full/weak/self/none

(a) BLEU over cumulative costs

1001200 1001400 1001600 1001800 1002000 1002200 1002400
Iterations

14.0

14.2

14.4

14.6

14.8

BL
EU

type
full
90%
70%
50%
30%
10%
full/weak
full/weak/self
full/weak/self/none

(b) BLEU over time

Figure 26: Learned self-regulation strategies in comparison to uncertainty-based
active learning with a fixed percentage γ of full feedback on the Books domain:
development of validation BLEU against costs (a) and time (b). Counting of
iterations for (b) starts at the previous iteration count of the baseline model.

learning model with multi-dimensional rewards, and modeling explicit credit
assignment for improving the capabilities of the regulator to make context-
sensitive decisions in mini-batch learning.

159

Chapter 8

Thesis Conclusion

8.1 Summary

In this thesis, we introduced and evaluated policy learning algorithms for human-
in-the-loop NMT in various learning scenarios.

Chapter 3 focused on finding sample-efficient and well-generalizing algorithms
learning from online feedback in simulation, with neural and statistical models
with absolute and relative judgments that are simulated by comparing proposed
translations to reference translations. The algorithms are built on the REIN-
FORCE algorithm (Williams, 1992), adapted for bandit feedback for structured
outputs. The resulting models were evaluated on domain adaptation tasks for
English-German and English-French translations from Parliament discussions to
news, TED talks and e-commerce products. The evaluation focused on general-
ization performance, online regret, and convergence speed. Pairwise preference
learning was found to be more efficient for statistical models, but expected reward
training from absolute judgments yielded better results for neural models. We
identified control variates such as reward baselines, large amounts of exploration,
and clean feedback as the ingredients to successful learning.

Since online feedback and a lot of exploration is challenging to obtain in
practice (production systems for example cannot effort to lose users due to
exploration of worse alternatives) Chapter 4 addressed the counterfactual learn-
ing scenario: on the basis of a set of user-rated logged translations, learn to
generate translations that, if deployed in the same way, would have achieved
even higher ratings. The translations (English-to-Spanish) for these experiments
were collected through deterministic logging of product titles on the Spanish
eBay website. Ratings were either (1) directly collected from users who express
their judgment of product title translation quality by giving one to five stars, or
(2) indirectly inferred by comparing Spanish user queries to Spanish translations
for (successfully) retrieved product titles.

Algorithms for counterfactual off-policy learning of statistical translation
models were adapted to neural models and their quality first showed success in
simulations on the same domain, but failed to improve over baseline models with
the collection of direct eBay user ratings. In the second use case, where rewards
for reinforcement can be inferred for multiple translations per input (since only

160

indirectly computed), minimum-risk training approaches yielded the best results.
Just as in Chapter 3, control variates (additive and now also multiplicative)
proved themselves very effective, and newly introduced neural reward estimators
had a stabilizing effect in this challenging domain. In addition, we discovered
the effectiveness of the simple bandit-to-supervised technique that demonstrated
that self-training should be considered as a strong baseline.

Puzzled by the large mismatch between the success of the same algorithms in
simulation and in practice in the eBay use case, we deepened the investigations
in the reliability of absolute vs relative machine translation quality ratings and
their influence on down-stream off-policy learning. In a small-scale annotation
study, we collected five-point and pairwise preference ratings for TED talk
translations from German to English from semi-professional translators. These
ratings, were used to (1) quantify and analyze reliability in terms of inter- and
intra-rater agreement per rating type, then (2) train neural reward estimation
models (regression models for five-point rations and Bradley-Terry models for
pairwise ratings), and finally (3) to adapt an NMT model by reinforcing sampled
translations with the trained reward estimators.

While the pairwise preference interface performed only slightly weaker in
terms of reliability, it showed clearer disadvantages compared to the absolute
ratings further down-stream. Comparing this reward-estimator-led learning with
simulated and human ratings to the algorithms proposed in Chapter 4, we learned
that the reward estimators help crucially to reduce noise and guide the learning
MT model through reinforcement.

One of the incentives for developing algorithms for bandit structured predic-
tion was the hope to lower feedback costs in comparison to full supervision. While
previous chapters solely investigated weak supervision, Chapter 6 eventually
quantified the differences in feedback cost and effectiveness between learning
from error corrections (full supervision) and error markings (weak supervision).
In an annotation study with semi-professional translators we analyzed their
annotation actions, agreement, and the overall effort, (dis-)advantages of both
feedback modes, and the learning opportunities for the underlying NMT model.

The novel interaction mode with error markings, that has previously only
been used in simulations, shifts the task of credit/blame assignment to the
human—as opposed to sentence-level feedback, where the machine is left to solve
it. The study showed that this mode requires several magnitudes fewer effort
and therefore lower costs than classic post-editing, but still leads to significant
improvements in a domain adaptation task from news to TED translations from
English to German. Moreover, it might constitute the sweet spot between post-
edits that usually come with high cost and human over-editing, and sentence-level
ratings (as in Chapters 4 and 5) that lack specificity.

The final chapter provided a more abstract and global perspective on the
question which types of supervision are the most efficient in terms of feedback

161

cost and model improvement for training NMT models. In human learning,
the idea which kind of feedback should be requested from a teacher, is one
aspect of self-regulated learning. Instead of committing to one feedback type
(e.g. five-star ratings or corrections), the model, equipped with a meta-learning
regulator module, learns to choose supervision types balancing costs vs. effective-
ness of resulting gradient updates. In the experiments, we added self-training
and fully-supervised learning to our previously investigated weakly-supervised
learning mode, in order to give the model the freedom to choose between each of
them based on the current context, the learning experience, and the individual
supervision costs. Translation models for English-to-German were adapted to
TED talks and a books domain, with the regulator deciding on their supervision
and being trained through reinforcement with the ratio of model improvement
to supervision costs.

We showed in the evaluations that the regulator was able to find cheaper
feedback modes than fully-supervised or stream-based active learning by com-
bining the given supervision modes in batch updates. The trained regulator was
shown to operate similar to a ε-greedy algorithm tuned for ε, due to the problem
of assigning credit for model improvement to individual samples contained in a
batch update.

In summary, this thesis investigated online policy learning for bandit NMT in
simulation, off-policy learning with direct and indirect e-commerce user feedback,
delivered insights into reliability and learnability of absolute and pairwise, token-
level and sequence-level judgments and corrections, and proposed a novel meta-
learning algorithm for self-regulation that smoothly integrates and balances fully,
weakly and self-supervised interactive policy learning.

8.2 Limitations and Future Directions

Besides the positive outcomes and successful algorithms, this thesis also uncovered
the following limitations of the approach of reinforcement learning for NMT,
which simultaneously point to promising future directions of research.

Superiority of supervised learning. We found a number of techniques that
allowed us to turn the reinforcement learning problem into a problem that can
be addressed with supervised training objectives, for example the bandit-to-
supervised conversion in Section 4.3, which was a strong baseline for model
adaptation that did not require any human feedback, and the self-training option
which was largely preferred by the regulator in Section 7.2.2. The token-level
reinforced objective from Section 6.2 was also discovered in the context of
supervised domain adaptation by instance weighting (Yan et al., 2018). It can be
considered safer in practice to collect feedback, use it to assess the overall quality

162

of the system, and only then use parts of the rated data to carefully curate new
training or test instances for supervised re-training, than to directly trust the
feedback for online or offline updates. These less sophisticated techniques of
exploiting feedback, might seem more attractive on the risk-benefit scale for
industrial adoption than reinforcement learning, and do not require any change
of the standard training procedures.

Dependence on the reward distribution. Relative scaled rewards that are
dependent on the reward history consistently outperformed absolute, history-
agnostic rewards (see Chapter 3). The neural models were sensitive to the
choice between training with -sBLEU vs 1-BLEU (see Section 3.1.2), which
differ in the scale of the updates. And if the model’s quality is too weak to
begin with, learning completely fails (e.g., in the case of starting from scratch).
These cases illustrate how dependent the neural models are on “well-distributed”
rewards, that come in not too sparse and with the right scale. In Chapter 4
we also observed the effect of noise: if it is dominating the reward signal, our
models failed to improve. However, it is unlikely to find noise-free rewards
in the wild, and, as translation quality estimation is in most of the cases only
vaguely defined and context-dependent (illustrated in the study on human-chosen
rewards in Chapter 6), future methods should aim to acknowledge and model
this uncertainty in the reward signal.

Evaluation. In expected reward training, the reward should express the desired
evaluation metric that one seeks to maximize. In practice, however, we treated
the rewards obtained from humans rather as an auxiliary reward and mainly
seek to improve automatic metrics like BLEU or METEOR. And if they did
not align (see Chapter 4), we failed to find any improvement. The reasons for
this training-evaluation mismatch are scalability and human effort: Ideally, each
model trained with human rewards would also be tested in an evaluation with
humans, under the same conditions and with the same interface as during training.
This is infeasible if multiple models need to get evaluated or tuned, and due to
the variance in the human reward function, one would have to collect a large
amount of rewards to obtain reliable measurements (and probably pre-process,
filter or normalize them). An online evaluation procedure like in the shared
task evaluation (Section 3.5) would be a better solution, but rarely satisfies the
production deployment criteria for MT industry, where the standard procedure is
to regularly evaluate against benchmarks to ensure that newly deployed models
actually improve over the previous ones—not as in ad placement, where online
evaluation metrics like click-through-rate are widely adopted (Joachims, 2002).
Finding evaluation interfaces that scale and at the same time satisfy production
requirements and ideally also allow replication, would greatly facilitate the

163

adoption of reward-trained and evaluated NLP models.

On- vs. off-policy learning. Off-policy learning has the advantage over
online learning of allowing for pre-processing (e.g., filter by variance, normalize
by user) before the actual learning process. Similarly, hyperparameters over
multiple training runs can be tuned. However, it suffers from limited exploration
and hence immediate online improvement, which might desirable in use cases
with expert users (Wuebker and Simianer, 2019). In our experiments with online
policy updates (Chapters 3 and 7), we discarded the information about the
interaction after one update with the gathered reward. This might be a missed
opportunity to collect a log like in off-policy learning. This log could be used to
make stabilizing batch updates to the policy (much like a replay memory (Mnih
et al., 2015)), and for reward estimator training and tuning, that do not involve
any new feedback requests. Future work should hence consider interleaved online
and offline updates to improve both sample efficiency and implementation in
production environments.

164

Bibliography

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). Savannah, GA, USA.

Alekh Agarwal, Ofer Dekel, and Liu Xiao. 2010. Optimal algorithms for online
convex optimization with multi-point bandit feedback. In The 23rd Annual
Conference on Learning Theory (COLT). Haifa, Israel.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E.
Schapire. 2014. Taming the monster: A fast and simple algorithm for contextual
bandits. In Proceedings of the 31st International Conference on Machine
Learning (ICML). Beijing, China.

Cem Akkaya, Alexander Conrad, Janyce Wiebe, and Rada Mihalcea. 2010.
Amazon mechanical turk for subjectivity word sense disambiguation. In
Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and
Language Data with Amazon’s Mechanical Turk . Los Angeles, CA, USA.

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman. 2019. Deep
reinforcement learning from policy-dependent human feedback. arXiv preprint
arXiv:1902.04257 .

Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3(Nov):397–422.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. 2002.
The nonstochastic multiarmed bandit problem. SIAM J. on Computing
32(1):48–77.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain adaptation
via pseudo in-domain data selection. In Proceedings of the Conference on

165

Empirical Methods in Natural Language Processing (EMNLP). Edinburgh,
Scotland.

Wilker Aziz, Ruslan Mitkov, and Lucia Specia. 2013. Ranking machine translation
systems via post-editing. In International Conference on Text, Speech and
Dialogue. pages 410–418.

R Harald Baayen, Douglas J Davidson, and Douglas M Bates. 2008. Mixed-
effects modeling with crossed random effects for subjects and items. Journal
of memory and language 59(4):390–412.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,
Joelle Pineau, Aaron Courville, and Yoshua Bengio. 2017. An actor-critic algo-
rithm for sequence prediction. In Proceedings of the International Conference
on Learning Representations (ICLR). Toulon, France.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
International Conference on Learning Representations (ICLR). San Diego,
California.

Sergio Barrachina, Oliver Bender, Francisco Casacuberta, Jorge Civera, Elsa
Cubel, Shahram Khadivi, Antonio Lagarda, Hermann Ney, Jesús Tomás, En-
rique Vidal, and Juan-Miguel Vilar. 2009. Statistical approaches to computer-
assisted translation. Computational Linguistics 35(1).

Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting
linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1–
48.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003.
A neural probabilistic language model. Journal of machine learning research
3(Feb):1137–1155.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and Marcello Federico. 2016.
Neural versus phrase-based machine translation quality: a case study. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Austin, Texas.

Nicola Bertoldi, Patrick Simianer, Mauro Cettolo, Katharina Wäschle, Marcello
Federico, and Stefan Riezler. 2014. Online adaptation to post-edits for phrase-
based statistical machine translation. Machine Translation 29:309–339.

Dimitri P. Bertsekas and John N. Tsitsiklis. 1996. Neuro-Dynamic Programming .
Athena Scientific.

166

Ondřej Bojar, Yvette Graham, Amir Kamran, and Miloš Stanojević. 2016a.
Results of the WMT16 metrics shared task. In Proceedings of the First
Conference on Machine Translation (WMT). Berlin, Germany.

Ondřej Bojar, Roman Sudarikov, Tom Kocmi, Jindřich Helcl, and Ondřej Cıfka.
2016b. UFAL submissions to the IWSLT 2016 MT track. In Proceedings of
the 13rd International Workshop on Spoken Language Translation (IWSLT).
Seattle, WA.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry
Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aurelie Neveol, Mariana Neves,
Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri. 2016c. Findings of the
2016 conference on machine translation. In WMT . Berlin, Germany.

Léon Bottou. 2004. Stochastic learning. In Olivier Bousquet, Ulrike von Luxburg,
and Gunnar Rätsch, editors, Advanced Lectures on Machine Learning , Springer,
Berlin, Heidelberg, pages 146–168.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles,
D. Max Chickering, Elon Portugaly, Dipanakar Ray, Patrice Simard, and
Ed Snelson. 2013. Counterfactual reasoning and learning systems: The example
of computational advertising. Journal of Machine Learning Research 14:3207–
3260.

Ralph Allan Bradley and Milton E. Terry. 1952. Rank analysis of incomplete block
designs: I. the method of paired comparisons. Biometrika 39(3-4):324–345.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak
Shah. 1994. Signature verification using a ”siamese” time delay neural network.
In Advances In Neural Information Processing Systems (NeurIPS). Denver,
CO, USA.

Peter Brown, John Cocke, S Della Pietra, V Della Pietra, Frederick Jelinek,
Robert Mercer, and Paul Roossin. 1988. A statistical approach to language
translation. In Proceedings of the 12th Conference on Computational Linguistics
(COLING). Budapest, Hungary.

Peter Brown, Stephen Della Pietra, Vincent Pietra, and Robert Mercer. 1993.
The mathematics of statistical machine translation: Parameter estimation.
Computational Linguistics 19:263–311.

Sébastian Bubeck and Nicolò Cesa-Bianchi. 2012. Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. Foundations and Trends in
Machine Learning 5(1):1–122.

167

Róbert Busa-Fekete and Eyke Hüllermeier. 2014. A survey of preference-based
online learning with bandit algorithms. In International Conference on Algo-
rithmic Learning Theory (ALT). Bled, Slovenia, pages 18–39.

Iacer Calixto, Daniel Stein, Evgeny Matusov, Pintu Lohar, Sheila Castilho, and
Andy Way. 2017. Using images to improve machine-translating e-commerce
product listings. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics (EACL). Valencia, Spain.

Michael Carl, Barbara Dragsted, Jakob Elming, Daniel Hardt, and Arnt Lykke
Jakobsen. 2011. The process of post-editing: a pilot study. Copenhagen Studies
in Language 41:131–142.

Asuncion Castano and Francisco Casacuberta. 1997. A connectionist approach to
machine translation. In Fifth European Conference on Speech Communication
and Technology (EUROSPEECH). Rhodes, Greece.

Carlos Celemin, Javier Ruiz-del Solar, and Jens Kober. 2019. A fast hybrid rein-
forcement learning framework with human corrective feedback. Autonomous
Robots 43(5):1173–1186.

Nicolò Cesa-Bianchi and Gábor Lugosi. 2012. Combinatorial bandits. Journal
of Computer and System Sciences 78:1401–1422.

Olivier Chapelle, Eren Masnavoglu, and Romer Rosales. 2014. Simple and
scalable response prediction for display advertising. ACM Trans. on Intelligent
Systems and Technology 5(4).

Boxing Chen and Colin Cherry. 2014. A systematic comparison of smoothing
techniques for sentence-level BLEU. In Proceedings of the Ninth Workshop on
Statistical Machine Translation (WMT). Baltimore, Maryland, USA.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish
Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and
Macduff Hughes. 2018. The best of both worlds: Combining recent advances
in neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (ACL). Melbourne, Australia.

David Chiang. 2005. A hierarchical phrase-based model for statistical machine
translation. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL). Ann Arbor, MI, USA.

David Chiang. 2012. Hope and fear for discriminative training of statistical
translation models. Journal of Machine Learning Research 12:1159–1187.

168

Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using rnn encoder–decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri Abend. 2019. On the
weaknesses of reinforcement learning for neural machine translation. arXiv
preprint arXiv:1907.01752 .

Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and
Dario Amodei. 2017. Deep reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems (NeurIPS). Long Beach,
CA, USA.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
eprint arXiv:1412.3555 .

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A. Smith. 2011. Better
hypothesis testing for statistical machine translation: Controlling for optimizer
instability. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies (ACL-HLT).
Portland, OR, USA.

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc Le. 2018.
Semi-supervised sequence modeling with cross-view training. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Brussels, Belgium.

Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost)
from scratch. Journal of Machine Learning Research 12:2461–2505.

Gonçalo M. Correia and André F. T. Martins. 2019. A simple and effective
approach to automatic post-editing with transfer learning. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics
(ACL). Florence, Italy.

Corinna Cortes, Mehryar Mohri, and Asish Rastogi. 2007. Magnitude-preserving
ranking algorithms. In Proceedings of the 24th International Conference on
Machine Learning (ICML). Corvallis, OR, USA.

Koby Crammer and Yoram Singer. 2003. Ultraconservative online algorithms for
multiclass problems. Journal of Machine Learning Research 3(Jan):951–991.

169

Hoang Cuong and Khalil Sima’an. 2014. Latent domain translation models in mix-
of-domains haystack. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics. Dublin, Ireland.

Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. 2007. The price of
bandit information for online optimization. In Advances In Neural Information
Processing Systems (NeurIPS). Vancouver, Canada.

Michael Denkowski, Chris Dyer, and Alon Lavie. 2014. Learning from post-
editing: Online model adaptation for statistical machine translation. In
Proceedings of the 14th Conference of the European Chapter of the Association
for Computational Linguistics (EACL). Gothenburg, Sweden.

Michael Denkowski and Alon Lavie. 2011. Meteor 1.3: Automatic metric for
reliable optimization and evaluation of machine translation systems. In Pro-
ceedings of the Sixth Workshop on Statistical Machine Translation (WMT).
Edinburgh, Scotland.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL). Minneapolis, Minnesota.

Christos Dimitrakakis, Guangliang Li, and Nikolaos Tziortziotis. 2014. The
reinforcement learning competition 2014. AI Magazine 35(3):61–65.

Miguel Domingo, Álvaro Peris, and Francisco Casacuberta. 2017. Segment-based
interactive-predictive machine translation. Machine Translation 31(4):163–185.

Yue Dong, Yikang Shen, Eric Crawford, Herke van Hoof, and Jackie Chi Kit
Cheung. 2018. Banditsum: Extractive summarization as a contextual bandit. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Brussels, Belgium.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono.
2015. Optimal rates for zero-order convex optimization: The power of two
function evaluations. IEEE Translactions on Information Theory 61(5):2788–
2806.

Audrey Durand, Charis Achilleos, Demetris Iacovides, Katerina Strati, Geor-
gios D Mitsis, and Joelle Pineau. 2018. Contextual bandits for adapting
treatment in a mouse model of de novo carcinogenesis. In Machine Learning
for Healthcare Conference. pages 67–82.

170

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil
Blunsom, Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. 2010. cdec:
A decoder, alignment, and learning framework for finite-state and context-
free translation models. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations (ACL
Demo). Uppsala, Sweden.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14(2):179–
211.

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning how to active learn: A
deep reinforcement learning approach. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Copenhagen,
Denmark.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. 2005.
Online convex optimization in the bandit setting: gradient descent without a
gradient. In SODA. Philadelphia, PA, USA.

Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76(5):378.

John Fox. 2002. Linear mixed models. Appendix to An R and S-PLUS Companion
to Applied Regression .

Markus Freitag and Yaser Al-Onaizan. 2016. Fast domain adaptation for neural
machine translation. arXiv preprint arXiv:1612.06897 .

Yoav Freund, Ray Iyer, Robert E. Schapire, and Yoram Singer. 2003. An efficient
boosting algorithm for combining preferences. Journal of Machine Learning
Research 4:933–969.

Michael C. Fu. 2006. Gradient estimation. In S.G. Henderson and B.L. Nelson,
editors, Handbook in Operations Research and Management Science, Elsevier,
volume 13, pages 575–616.

Johannes Fürnkranz and Eyke Hüllermeier. 2010. Preference learning and ranking
by pairwise comparison. In Johannes Fürnkranz and Eyke Hüllermeier, editors,
Preference Learning , Springer.

Y Gal and Z Ghahramani. 2016. Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In Proceedings of the 33rd
International Conference on Machine Learning (ICML). New York City, NY.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning (ICML). Vancouver, Canada.

171

Saeed Ghadimi and Guanghui Lan. 2012. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM J. on Optimization
4(23):2342–2368.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-margin training for struc-
tured log-linear models. Technical Report CMU-LTI-10-008, Carnegie Mellon
University, Pittsburgh, PA.

Keith Godwin and Paul Piwek. 2016. Collecting reliable human judgements on
machine-generated language: The case of the QG-STEC data. In Proceedings
of the 9th International Natural Language Generation conference (INLG).
Edinburgh, UK.

Yoav Goldberg. 2016. A primer on neural network models for natural language
processing. Journal of Artificial Intelligence Research 57:345–420.

David Grangier and Michael Auli. 2018. QuickEdit: Editing text & translations
by crossing words out. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). New Orleans, LA, USA.

Spence Green, Sida I. Wang, Jason Chuang, Jeffrey Heer, Sebastian Schuster,
and Christopher D. Manning. 2014. Human effort and machine learnability
in computer aided translation. In Proceedings the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. 2017. Deep
reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In 2017 IEEE International Conference on Robotics and Automation
(ICRA). Marina Bay Sands, Singapur.

Ana Guerberof Arenas. 2008. Productivity and quality in the post-editing of
outputs from translation memories and machine translation. Localisation Focus
The International Journal of Localisation 7(1):11–21.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A
new estimation principle for unnormalized statistical models. In AISTATS .
Sardinia, Italy.

Francisco Guzmán, Ahmed Abdelali, Irina Temnikova, Hassan Sajjad, and
Stephan Vogel. 2015. How do humans evaluate machine translation. In
Proceedings of the Tenth Workshop on Statistical Machine Translation (WMT).
Lisbon, Portugal.

172

Kazuma Hashimoto, Akiko Eriguchi, and Yoshimasa Tsuruoka. 2016. Domain
adaptation and attention-based unknown word replacement in chinese-to-
japanese neural machine translation. In COLING Workshop on Asian Trans-
lation. Osaka, Japan.

John Hattie and Gregory M. Donoghue. 2016. Learning strategies: a synthesis
and conceptual model. NPJ Science of Learning 1:16013–16013.

John Hattie and Helen Timperley. 2007. The power of feedback. American
Educational Research Association 77(1):81–112.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-Ying
Ma. 2016. Dual learning for machine translation. In Advances In Neural
Information Processing Systems (NeurIPS). Barcelona, Spain.

Xiaodong He and Li Deng. 2012. Maximum expected BLEU training of phrase
and lexicon translation models. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (ACL). Jeju Island, Korea.

Jindřich Helcl and Jindřich Libovický. 2017. Neural Monkey: An Open-source
Tool for Sequence Learning. The Prague Bulletin of Mathematical Linguistics
107:5–17.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 2000. Large margin rank
boundaries for ordinal regression. In Advances in Large Margin Classifiers,
MIT Press Cambridge, Cambridge, MA, pages 115–132.

Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov,
Ann Clifton, and Matt Post. 2017. Sockeye: A toolkit for neural machine
translation. arXiv preprint arXiv:1712.05690 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural Computation 9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models
for sequence tagging. arXiv eprint arXiv:1508.01991 .

W John Hutchins. 2000. Early years in machine translation: memoirs and
biographies of pioneers, volume 97. John Benjamins Publishing.

Edward L. Ionides. 2008. Truncated importance sampling. J. of Comp. and
Graph. Stat. 17(2):295–311.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (ACL). Vancouver, Canada.

173

Emily Jamison and Iryna Gurevych. 2015. Noise or additional information?
leveraging crowdsource annotation item agreement for natural language tasks.
In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Lisbon, Portugal.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015a.
On using very large target vocabulary for neural machine translation. In
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (ACL-IJCNLP). Beijing, China.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua
Bengio. 2015b. Montreal neural machine translation systems for WMT’15. In
WMT . Lisbon, Portugal.

Laura Jehl, Carolin Lawrence, and Stefan Riezler. 2019. Learning neural sequence-
to-sequence models from weak feedback with bipolar ramp loss. Transactions
of the Association for Computational Linguistics 7:233–248.

Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.
In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining KDD . New York, NY.

Sham M Kakade. 2002. A natural policy gradient. In Advances in Neural
Information Processing Systems (NeurIPS . Vancouver, Canada, pages 1531–
1538.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent continuous translation
models. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Seattle, WA, USA.

Sariya Karimova, Patrick Simianer, and Stefan Riezler. 2018. A user-study on
online adaptation of neural machine translation to human post-edits. Machine
Translation 32(4):309–324.

Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel Vera, António Góis,
M. Amin Farajian, António V. Lopes, and André F. T. Martins. 2019. Unba-
bel’s participation in the WMT19 translation quality estimation shared task.
In Proceedings of the Fourth Conference on Machine Translation (WMT).
Florence, Italy.

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na. 2017. Predictor-estimator using
multilevel task learning with stack propagation for neural quality estimation.
In Proceedings of the Second Conference on Machine Translation (WMT).
Copenhagen, Denmark.

174

Hyun Kim, Joon-Ho Lim, Hyun-Ki Kim, and Seung-Hoon Na. 2019. QE BERT:
Bilingual BERT using multi-task learning for neural quality estimation. In Pro-
ceedings of the Fourth Conference on Machine Translation (WMT). Florence,
Italy.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR). San Diego, CA, USA.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent Nguyen, Jean Senellart,
and Alexander Rush. 2018. OpenNMT: Neural machine translation toolkit. In
Proceedings of the 13th Conference of the Association for Machine Translation
in the Americas (AMTA). Boston, MA.

Kevin Knight. 1999. Decoding complexity in word-replacement translation
models. Computational Linguistics 25(4):607–615.

W. Bradley Knox and Peter Stone. 2009. Interactively shaping agents via human
reinforcement: The TAMER framework. In Proceedings of the International
Conference on Knowledge Capture (K-CAP). Redondo Beach, CA, USA.

Philipp Koehn. 2009. Statistical machine translation. Cambridge University
Press.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-
erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for statistical machine trans-
lation. In Proceedings of the 45th Annual Meeting of the Association for
Computational Linguistics (ACL). Prague, Czech Republic.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based
translation. In Proceedings of the 2003 Human Language Technology Confer-
ence of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL). Edmonton, Canada.

Philipp Koehn and Josh Schroeder. 2007. Experiments in domain adaptation for
statistical machine translation. In WMT . Prague, Czech Republic.

Augustine Kong. 1992. A note on importance sampling using standardized
weights. University of Chicago, Dept. of Statistics, Tech. Rep 348.

175

Maarit Koponen. 2016. Machine Translation Post-Editing and Effort. Empirical
Studies on the Post-Editing Process. Ph.D. thesis, University of Helsinki.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler. 2019. Joey NMT: A
minimalist NMT toolkit for novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System
Demonstrations. Hong Kong, China.

Julia Kreutzer, Nathaniel Berger, and Stefan Riezler. 2020. Correct me if you
can: Learning from error corrections and markings. In Proceedings of the
22nd Annual Conference of the European Association for Machine Translation
(EAMT). Virtual.

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. 2018a.
Can neural machine translation be improved with user feedback? In Proceed-
ings of the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies -
Industry Track (NAACL-HLT). New Orleans, LA, USA.

Julia Kreutzer and Stefan Riezler. 2019. Self-regulated interactive sequence-to-
sequence learning. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL). Florence, Italy.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler. 2017. Bandit structured
prediction for neural sequence-to-sequence learning. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (ACL).
Vancouver, Canada.

Julia Kreutzer, Joshua Uyheng, and Stefan Riezler. 2018b. Reliability and
learnability of human bandit feedback for sequence-to-sequence reinforcement
learning. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL). Melbourne, Australia.

Klaus Krippendorff. 2013. Content Analysis. An Introduction to Its Methodology .
Sage, third edition.

David Krueger, Jan Leike, Owain Evans, and John Salvatier. 2016. Active
reinforcement learning: Observing rewards at a cost. In Advances In Neural
Information Processing Systems (NeurIPS). Barcelona, Spain.

Gaurav Kumar, George Foster, Colin Cherry, and Maxim Krikun. 2019. Reinforce-
ment learning based curriculum optimization for neural machine translation.
In Proceedings of the Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL). Minneapolis, MN,
USA.

176

Tsz Kin Lam, Julia Kreutzer, and Stefan Riezler. 2018. A reinforcement learning
approach to interactive-predictive neural machine translation. In Proceed-
ings of the 21st Annual Conference of the European Association for Machine
Translation (EAMT). Alicante, Spain.

Tsz Kin Lam, Shigehiko Schamoni, and Stefan Riezler. 2019. Interactive-
predictive neural machine translation through reinforcement and imitation. In
Proceedings of the Machine Translation Summit MTSUMMIT XVII .

John Langford, Alexander Strehl, and Jennifer Wortman. 2008. Exploration
scavenging. In Proceedings of the 25th International Conference on Machine
Learning (ICML). Helsinki, Finland.

John Langford and Tong Zhang. 2007. The epoch-greedy algorithm for contextual
multi-armed bandits. In Advances In Neural Information Processing Systems
(NeurIPS). Vancouver, Canada.

Richard Larsen and Morris Marx. 2012. An Introduction to Mathematical
Statistics and Its Applications. Prentice Hall, fifth edition.

Alon Lavie and Michael J. Denkowski. 2009. The meteor metric for automatic
evaluation of machine translation. Machine Translation 23(2-3):105–115.

Carolin Lawrence, Pratik Gajane, and Stefan Riezler. 2017a. Counterfactual
learning for machine translation: Degeneracies and solutions. In Proceedings
of the NeurIPS WhatIF Workshop. Long Beach, CA.

Carolin Lawrence and Stefan Riezler. 2018. Improving a Neural Semantic Parser
by Counterfactual Learning from Human Bandit Feedback. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(ACL). Melbourne, Australia.

Carolin Lawrence, Artem Sokolov, and Stefan Riezler. 2017b. Counterfactual
learning from bandit feedback under deterministic logging: A case study in
statistical machine translation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Copenhagen, Denmark.

Florian Laws, Christian Scheible, and Hinrich Schütze. 2011. Active learning
with Amazon mechanical turk. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Edinburgh,
Scotland.

Hoa T. Le, Christophe Cerisara, and Alexandre Denis. 2017. Do convolutional net-
works need to be deep for text classification? arXiv preprint arXiv:1707.04108
.

177

Anton Leuski, Chin-Yew Lin, and Eduard Hovy. 2003. ineats: interactive multi-
document summarization. In Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics (ACL). Sapporo, Japan.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng
Gao. 2016. Deep reinforcement learning for dialogue generation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Austin, TX, USA.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky.
2017. Adversarial learning for neural dialogue generation. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Copenhagen, Denmark.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A contextual-
bandit approach to personalized news article recommendation. In WWW .
Raleigh, NC.

Zhifei Li and Jason Eisner. 2009. First-and second-order expectation semirings
with applications to minimum-risk training on translation forests. In Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Edinburgh, UK.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. 2017.
Neural symbolic machines: Learning semantic parsers on freebase with weak
supervision. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL). Vancouver, Canada.

Jindřich Libovickỳ, Jindřich Helcl, Marek Tlustỳ, Pavel Pecina, and Ondřej
Bojar. 2016. CUNI system for WMT16 automatic post-editing and multimodal
translation tasks. In WMT . Berlin, Germany.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971 .

Zachary C Lipton, John Berkowitz, and Charles Elkan. 2015. A critical re-
view of recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019 .

Nick Littlestone. 1989. From on-line to batch learning. In Proceedings of the
25th Annual Conference on Learning Theory (COLT). Santa Cruz, CA.

Ming Liu, Wray Buntine, and Gholamreza Haffari. 2018. Learning to actively
learn neural machine translation. In Proceedings of the 22nd Conference on
Computational Natural Language Learning (CoNLL). Brussels, Belgium.

178

Shixia Liu, Michelle X Zhou, Shimei Pan, Weihong Qian, Weijia Cai, and
Xiaoxiao Lian. 2009. Interactive, topic-based visual text summarization and
analysis. In Proceedings of the 18th ACM conference on Information and
knowledge management . pages 543–552.

Arle Lommel, Maja Popovic, and Aljoscha Burchardt. 2014. Assessing inter-
annotator agreement for translation error annotation. In MTE: Workshop on
Automatic and Manual Metrics for Operational Translation Evaluation.

Adam Lopez. 2008. Statistical machine translation. ACM ACM Computing
Surveys 40.

Minh-Thang Luong and Christopher D. Manning. 2015. Stanford neural ma-
chine translation systems for spoken language domains. In Proceedings of the
International Workshop on Spoken Language Translation (IWSLT). Da Nang,
Vietnam.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015a. Effective
approaches to attention-based neural machine translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Lisbon, Portugal, pages 1412–1421.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech Zaremba.
2015b. Addressing the rare word problem in neural machine translation. In
Proceedings of the 53th Annual Meeting of the Association for Computational
Linguistics ACL. Beijing, China.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinear-
ities improve neural network acoustic models. In ICML Workshop on Deep
Learning for Audio, Speech and Language Processing . Atlanta, GA, USA.

James MacGlashan, Mark K. Ho, Robert Loftin, Bei Peng, Guan Wang, David L.
Roberts, Matthew E. Taylor, and Michael L. Littman. 2017. Interactive
learning from policy-dependent human feedback. In Proceedings of the 34th
International Conference on Machine Learning (ICML). Sydney, Australia.

Benjamin Marie and Aurélien Max. 2015. Touch-based pre-post-editing of
machine translation output. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Lisbon, Portugal.

André Martins, Marcin Junczys-Dowmunt, Fabio Kepler, Ramón Astudillo,
Chris Hokamp, and Roman Grundkiewicz. 2017. Pushing the limits of transla-
tion quality estimation. Transactions of the Association for Computational
Linguistics (TACL) 5:205–218.

179

Jeff Michels, Ashutosh Saxena, and Andrew Y. Ng. 2005. High speed obstacle
avoidance using monocular vision and reinforcement learning. In Proceedings
of the 22nd International Conference on Machine Learning (ICML).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient esti-
mation of word representations in vector space. arXiv preprint arXiv:1301.3781
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and their compositionality. In
Advances In Neural Information Processing Systems (NeurIPS). Lake Tahoe,
CA.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge,
A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao,
K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves,
and J. Welling. 2015. Never-ending learning. In Proceedings of the 29th
Conference on Artificial Intelligence (AAAI). Austin, TX, USA.

Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training
neural probabilistic language models. In Proceedings of the 29th International
Conference on Machine Learning (ICML). Edinburgh, Scotland.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International Conference
on Machine Learning (ICML). New York City, NY, USA, pages 1928–1937.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. In NeurIPS Deep Learning Workshop. Lake
Tahoe, NV, USA.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. 2015. Human-level control through deep reinforcement
learning. Nature 518:529–533.

Michael C Mozer. 1995. A focused backpropagation algorithm for temporal.
Backpropagation: Theory, architectures, and applications 137.

180

Ramon P Neco and Mikel L Forcada. 1997. Asynchronous translations with
recurrent neural nets. In Proceedings of International Conference on Neural
Networks (ICNN). volume 4, pages 2535–2540.

Barry L Nelson. 1987. On control variate estimators. Computers & Operations
Research 14(3):219–225.

Khanh Nguyen, Hal Daumé, and Jordan Boyd-Graber. 2017. Reinforcement
learning for bandit neural machine translation with simulated feedback. In
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP). Copenhagen, Denmark.

Joel T. Nigg. 2017. Annual research review: On the relations among self-
regulation, self-control, executive functioning, effortful control, cognitive con-
trol, impulsivity, risk-taking, and inhibition for developmental psychopathology.
Journal of Child Psychology and Psychiatry 58(4):361–383.

Eric W. Noreen. 1989. Computer Intensive Methods for Testing Hypotheses. An
Introduction. Wiley, New York.

Mohammad Norouzi, Samy Bengio, zhifeng Chen, Navdeep Jaitly, Mike Schuster,
Yonghui Wu, and Dale Schuurmans. 2016. Reward augmented maximum
likelihood for neural structured prediction. In Advances In Neural Information
Processing Systems (NeurIPS). Barcelona, Spain.

Franz Josef Och. 2003. Minimum error rate training in statistical machine trans-
lation. In Proceedings of the 2003 Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics
(HLT-NAACL). Edmonton, Canada.

Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum
entropy models for statistical machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics (ACL).
Philadelphia, PA, USA.

Ernesto Panadero. 2017. A review of self-regulated learning: Six models and
four directions of research. Frontiers in Psychology 8(422):1–28.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics (ACL).
Philadelphia, PA, USA.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013a. On the difficulty
of training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning (ICML). Atlanta, GA.

181

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013b. On the difficulty
of training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning (ICML). Atlanta, GA, USA.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In NeurIPS Autodiff Workshop.

Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304 .

Álvaro Peris and Francisco Casacuberta. 2018. Active learning for interactive
neural machine translation of data streams. In Proceedings of the 22nd
Conference on Computational Natural Language Learning (CONLL). Brussels,
Belgium.

Pavel Petrushkov, Shahram Khadivi, and Evgeny Matusov. 2018. Learning from
chunk-based feedback in neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (ACL).
Melbourne, Australia.

Patrick M. Pilarski, Michael R. Dawson, Thomas Degris, Farbod Fahimi, Jason P.
Carey, and Richard S. Sutton. 2011. Online human training of a myoelectric
prosthesis controller via actor-critic reinforcement learning. In Proceedings
of the IEEE International Conference on Rehabilitation Robotics. Zürich,
Switzerland.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multi-
lingual BERT? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL). Florence, Italy.

Boris T. Polyak. 1964. Some methods of speeding up the convergence of iteration
methods. USSR Comp. Math. and Math. Phys. 4(5):1–17.

Boris T. Polyak. 1987. Introduction to Optimization. Optimization Software,
Inc., New York.

Maja Popović. 2015. chrf: character n-gram f-score for automatic mt evaluation.
In Proceedings of the Tenth Workshop on Statistical Machine Translation
(WMT). Lisbon, Portugal.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of
the Third Conference on Machine Translation (WMT). Brussels, Belgium.

S Avinesh PV, Benjamin Hättasch, Orkan Özyurt, Carsten Binnig, and Chris-
tian M Meyer. 2018. Sherlock: A system for interactive summarization of large
text collections. Proceedings of the VLDB Endowment 11(12):1902–1905.

182

Rajesh Ranganath, Sean Gerrish, and David M. Blei. 2014. Black box variational
inference. In AISTATS . Reykjavik, Iceland.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2016. Sequence level training with recurrent neural networks. In Proceedings
of the International Conference on Learning Representation (ICLR). San Juan,
Puerto Rico.

Kenneth Rose. 1998. Deterministic annealing for clustering, compression, classi-
fication, regression and related optimization problems. IEEE 86(11).

Sheldon M. Ross. 2013. Simulation. Elsevier, fifth edition.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. Nature 323(6088):533–536.

Germán Sanchis-Trilles, Vicent Alabau, Christian Buck, Michael Carl, Francisco
Casacuberta, Mercedes Garćıa-Mart́ınez, Ulrich Germann, Jesús González-
Rubio, Robin L. Hill, Philipp Koehn, Luis A. Leiva, Bartolomé Mesa-Lao,
Daniel Ortiz-Mart́ınez, Herve Saint-Amand, Chara Tsoukala, and Enrique
Vidal. 2014. Interactive translation prediction versus conventional post-editing
in practice: a study with the casmacat workbench. Machine Translation
28(3):217–235.

Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. 1996. Simple principles
of metalaerning. Technical Report 69 96, IDSIA, Lugano, Switzerland.

Holger Schwenk. 2008. Investigations on large-scale lightly-supervised training
for statistical machine translation. In Proceedings of the 5th International
Workshop on Spoken Language Translation (IWSLT).

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow,
Julian Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde. 2017. Nematus: a toolkit
for neural machine translation. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics (EACL).
Valencia, Spain.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Edinburgh neural
machine translation systems for wmt 16. In Proceedings of the First Conference
on Machine Translation (WMT). Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Improving neural
machine translation models with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL).
Berlin, Germany.

183

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016c. Neural machine
translation of rare words with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (ACL).
Berlin, Germany.

Christophe Servan, Josep Crego, and Jean Senellart. 2016. Domain specialization:
a post-training domain adaptation for neural machine translation. eprint
arXiv:1612.06141 .

Burr Settles and Mark Craven. 2008. An analysis of active learning strategies
for sequence labeling tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Honolulu, Hawaii.

Burr Settles, Mark Craven, and Lewis Friedland. 2008. Active learning with real
annotation costs. In Proceedings of the NeurIPS Workshop on Cost-Sensitive
Learning . Vancouver, Canada.

Shai Shalev-Shwartz. 2012. Online learning and online convex optimization.
Foundations and Trends in Machine Learning 4(2):107–194.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. 2010.
Learnability, stability and uniform convergence. Journal of Machine Learning
Research 11:2635–2670.

Ori Shapira, Hadar Ronen, Meni Adler, Yael Amsterdamer, Judit Bar-Ilan,
and Ido Dagan. 2017. Interactive abstractive summarization for event news
tweets. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing (EMNLP): System Demonstrations . Copenhagen,
Denmark.

Amr Sharaf and Hal Daumé III. 2017. Structured prediction via learning to
search under bandit feedback. In Workshop on Structured Prediction for NLP .
Copenhagen, Denmark.

Amr Sharaf, Shi Feng, Khanh Nguyen, Kiante Brantley, and Hal Daumé III.
2017. The umd neural machine translation systems at wmt17 bandit learning
task. In Proceedings of the Second Conference on Machine Translation (WMT).
Copenhagen, Denmark.

Shiqi Shen, Yong Cheng, Zongjun He, Wei He, Hua Wu, Maosong Sun, and
Yang Liu. 2016. Minimum risk training for neural machine translation. In
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (ACL). Berlin, Germany.

184

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game
of go with deep neural networks and tree search. Nature 529:484–489.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In In-
ternational Conference on Machine Learning (ICML). Beijing, China, pages
387–395.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without human knowledge.
Nature 550(7676):354–359.

Patrick Simianer, Sariya Karimova, and Stefan Riezler. 2016. A post-editing
interface for immediate adaptation in statistical machine translation. In Pro-
ceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: System Demonstrations. Osaka, Japan.

Patrick Simianer, Stefan Riezler, and Chris Dyer. 2012. Joint feature selection
in distributed stochastic learning for large-scale discriminative training in
SMT. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (ACL). Jeju Island, Korea.

David A. Smith and Jason Eisner. 2006. Minimum risk annealing for training
log-linear models. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics (COLING-ACL). Sydney, Australia.

Noah A. Smith. 2011. Linguistic Structure Prediction. Morgan and Claypool.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. 2006. A study of translation edit rate with targeted human an-
notation. In Proceedings of the Conference of the Association for Machine
Translation in the Americas (AMTA). Cambridge, MA, pages 223–231.

Artem Sokolov, Julian Hitschler, and Stefan Riezler. 2018. Sparse stochastic
zeroth-order optimization with an application to bandit structured prediction.
arxiv preprint arxiv:1806.04458 .

Artem Sokolov, Julia Kreutzer, Christopher Lo, and Stefan Riezler. 2016a.
Learning structured predictors from bandit feedback for interactive NLP. In

185

Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics. Berlin, Germany.

Artem Sokolov, Julia Kreutzer, Stefan Riezler, and Christopher Lo. 2016b.
Stochastic structured prediction under bandit feedback. In Advances in Neural
Information Processing Systems (NeurIPS). Barcelona, Spain.

Artem Sokolov, Julia Kreutzer, Kellen Sunderland, Pavel Danchenko, Witold
Szymaniak, Hagen Fürstenau, and Stefan Riezler. 2017. A shared task on bandit
learning for machine translation. In Proceedings of the Second Conference on
Machine Translation (WMT). Copenhagen, Denmark.

Artem Sokolov, Stefan Riezler, and Tanguy Urvoy. 2015. Bandit structured
prediction for learning from user feedback in statistical machine translation.
In MT Summit XV . Miami, FL.

Mikhail V. Solodov. 1998. Incremental gradient algorithms with stepsizes bounded
away from zero. Computational Optimization and Applications 11:23–35.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010. Machine translation evaluation
versus quality estimation. Machine translation 24(1):39–50.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014a. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research 15(1):1929–1958.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014b. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research 15:1929–1958.

Miloš Stanojević and Khalil Sima’an. 2014. Fitting sentence level translation
evaluation with many dense features. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar.

Alexander L. Strehl, John Langford, Lihong Li, and Sham M. Kakade. 2010.
Learning from logged implicit exploration data. In Advances in Neural Infor-
mation Processing Sytems (NeurIPS). Vancouver, Canada.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. 2013. On
the importance of initialization and momentum in deep learning. In Proceedings
of the 30th International Conference on Machine Learning (ICML). Atlanta,
GA.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence
learning with neural networks. In Advances In Neural Information Processing
Systems (NeurIPS). Montreal, Canada.

186

Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning. An
Introduction. The MIT Press.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 2000a.
Policy gradient methods for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processings Systems (NeurIPS).
Vancouver, Canada.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
2000b. Policy gradient methods for reinforcement learning with function approx-
imation. In Advances in Neural Information Processing Systems (NeurIPS).
Denver, Colorado.

Adith Swaminathan and Thorsten Joachims. 2015a. Counterfactual risk mini-
mization: Learning from logged bandit feedback. In Proceedings of the 32nd
International Conference on Machine Learning (ICML). Lille, France.

Adith Swaminathan and Thorsten Joachims. 2015b. The self-normalized estima-
tor for counterfactual learning. In Advances in Neural Information Processing
Systems (NeurIPS). Montreal, Canada.

Csaba Szepesvári. 2009. Algorithms for Reinforcement Learning . Morgan &
Claypool.

William R Thompson. 1933. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika 25(3/4):285–
294.

Sebastian Thrun and Lorien Pratt, editors. 1998. Learning to Learn. Kluwer,
Dortrecht, MA, USA.

Louis Leon Thurstone. 1927. A law of comparative judgement. Psychological
Review 34:278–286.

Jörg Tiedemann. 2009. News from opus-a collection of multilingual parallel
corpora with tools and interfaces. In Recent advances in natural language
processing . volume 5, pages 237–248.

Jörg Tiedemann. 2012. Parallel data, tools and interfaces in opus. In Proceedings
of the Eight International Conference on Language Resources and Evaluation
(LREC). Istanbul, Turkey.

Marco Turchi, Matteo Negri, M Amin Farajian, and Marcello Federico. 2017.
Continuous learning from human post-edits for neural machine translation.
The Prague Bulletin of Mathematical Linguistics 108(1):233–244.

187

Joseph P Turian, Luke Shea, and I Dan Melamed. 2003. Evaluation of machine
translation and its evaluation. Proceedings of MT Summit, 2003 pages 386–393.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems (NeurIPS).
Long Beach, CA, USA.

Suzan Verberne, Emiel Krahmer, Iris Hendrickx, Sander Wubben, and Antal
van den Bosch. 2018. Creating a reference data set for the summarization of
discussion forum threads. Language Resources and Evaluation 52(2):461–483.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. 2018.
Deep tamer: Interactive agent shaping in high-dimensional state spaces. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI).

Katharina Wäschle and Stefan Riezler. 2012. Structural and topical dimensions
in multi-task patent translation. In Proceedings of the 13th Conference of the
European Chapter of the Association for Computational Linguistics (EACL).

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki. 2007. Online
large-margin training for statistical machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL). Prague,
Czech Republic.

Christopher Watkins. 1989. Learning from delayed rewards. PhD thesis, Cam-
bridge University .

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola Mrkšić, Pei-Hao Su, David
Vandyke, and Steve Young. 2015. Stochastic language generation in dialogue
using recurrent neural networks with convolutional sentence reranking. In
Proceedings of the 16th Annual Meeting of the Special Interest Group on
Discourse and Dialogue. Prague, Czech Republic.

Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8:229–256.

James R Wilson. 1984. Variance reduction techniques for digital simulation.
American Journal of Mathematical and Management Sciences 4(3-4):277–312.

Bodo Winter. 2013. Linear models and linear mixed effects models in R with
linguistic applications. arXiv preprint arXiv:1308.5499 .

188

Guillaume Wisniewski. 2017. Limsi submission for wmt’17 shared task on bandit
learning. In Proceedings of the Second Conference on Machine Translation
(WMT). Copenhagen, Denmark.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Fun-
towicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771 .

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. 2018a. A study
of reinforcement learning for neural machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Brussels, Belgium.

Lijun Wu, Yingce Xia, Fei Tian, Li Zhao, Tao Qin, Jianhuang Lai, and Tie-Yan
Liu. 2018b. Adversarial neural machine translation. In Asian Conference on
Machine Learning (ACML). Beijing, China.

Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2017. Adversarial neural machine translation. arXiv preprint
arXiv:1704.06933 .

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. 2016. Google’s neural machine translation system: Bridging the
gap between human and machine translation. arXiv preprint arXiv:1609.08144
.

Joern Wuebker, Spence Green, and John DeNero. 2015. Hierarchical incremental
adaptation for statistical machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Lisbon, Portugal.

Joern Wuebker and Patrick DeNero John Simianer. 2019. Compact personalized
models for neural machine translation. In Proceedings of the 2019 Annual Con-
ference of the North American Chapter of the Association for Computational
Linguistics (NAACL). Minneapolis, MN, USA.

Lijun Wun, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jianhuang Lai, and
Tie-Yan Liu. 2018. Learning to teach with dynamic loss functions. In Advances
In Neural Information Processing Systems (NeurIPS). Montreal, Canada.

189

Shen Yan, Leonard Dahlmann, Pavel Petrushkov, Sanjika Hewavitharana, and
Shahram Khadivi. 2018. Word-based domain adaptation for neural machine
translation. Proceedings of the 15th International Workshop on Spoken Lan-
guage Translation (IWSLT) .

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018. Improving neural machine
translation with conditional sequence generative adversarial nets. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT).
New Orleans, LA, USA.

Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian Sadler, and Huan Sun. 2019. Interactive
semantic parsing for if-then recipes via hierarchical reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
Honolulu, HI, USA.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017a. Seqgan: Sequence
generative adversarial nets with policy gradient. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (AAAI). San Francisco, CA,
USA.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017b. Seqgan: Sequence
generative adversarial nets with policy gradient. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (AAAI). San Francisco, CA,
USA.

Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information
retrieval systems as a dueling bandits problem. In Proceedings of the 26th
International Conference on Machine Learning (ICML). Montreal, Canada.

Alan Yuille and Xuming He. 2012. Probabilistic models of vision and max-margin
methods. Frontiers of Electrical and Electronic Engineering 7(1):94–106.

Barry J. Zimmerman and Dale H. Schunk, editors. 1989. Self-Regulated Learning
and Academic Achievement . Springer, New York, NY, USA.

190

Acknowledgments

I am very grateful for the support I received during my PhD from many sides.
First of all, I would like to thank my advisor Stefan Riezler for introducing

me to research, machine translation and machine learning, for giving me lots
of freedom and support to go on internships/summer schools/conferences, and
guiding me through the PhD jungle.

In addition, I would like to thank my internship supervisors André, Artem,
Shahram, Evgeny, George and Colin and their colleagues. They inspired me and
helped me discover new (work)places and angles to research.

I was very lucky to work with awesome colleagues in Heidelberg—Artem,
Carolin, Ana, Sariya, Hiko, Mayumi, Rafael, Tsz Kin, Patrick, Laura, inter alia.
Special thanks to Michi, Nathan and φlipp (Ehrengast) for making Bürotimes so
much fun. And big thanks to Sabrina and Cata for sharing the Coli journey till
the very end. I’m glad we had so many years in HD together. Carolin, Cata,
Sabrina, Michi, Nathan—thanks for proofreading parts of this thesis.

I am lucky to have met amazing friends who make Feierabend and Wochenende
the best time of the week. Alina, Gwen, Laurent, Sophia, Cathy, Sabrina, Cata
(triple mention!), Jenny and Daniel—Merci beaucoup! And thanks to the Auftakt
crew for the (mostly) beautiful music and game nights. Thanks, Jasmijn, for
being a partner in PhD-crime, and for building Joey NMT with me.

And most importantly, I would like to express huge thanks to my family for
the decades of support, lots of love and the right amount of craziness.

191

Appendix

Appendix A

Detailed Gradient Derivatives

A.1 Derivative of the Score Function

The ER gradient update (Eq. 35) is composed of the score function (36) and the
reward. In this section we will further derive the gradient of the score function to
analyze the components of it in practice. In the following, N = |Vtrg| describes
the size of the output vocabulary.

∇ log pθ(y = j | x) = ∇θ log [softmax(o)]j

=
∇θ [softmax(o)]j

[softmax(o)]j
(101)

The nominator of (101), the gradient of the softmax-normalized output score, is

∇θ [softmax(o)]j =
∂ [softmax(o)]j

∂o
× ∂o

∂θ

=
∂ exp(oj)/

∑N
i=1 exp(oi)

∂o
× ∂o

∂θ

=
∑
k

[
∂ exp(oj)/

∑N
i=1 exp(oi)

∂ok
× ∂ok

∂θ

]
. (102)

We can then apply the quotient rule for f(x) = g(x)
h(x) : f ′(x) = g′(x)h(x)−h′(x)g(x)

[h(x)]2

with g = exp(oj) and h =
∑N

i=1 exp(oi) and

g′ =
∂g

∂ok
= exp(ok) ifj = k else 0, (103)

h′ =
∂
∑N

i=1 exp(oi)

∂ok
=

N∑
i=1

∂ exp(oi)

∂ok

=
∑
i 6=k

∂ exp(oi)

∂ok
+
∂ exp(ok)

∂ok
(104)

= exp(ok).

Further calculations need to differentiate between j = k and j 6= k:

193

1. j = k:

exp(oj)×
∑N

i=1 exp(oi)− exp(ok)× exp(oj)[∑N
i=1 exp(oi)

]2

=
exp(oj)∑N
i=1 exp(oi)

×
∑N

i=1 exp(oi)− exp(ok)∑N
i=1 exp(oi)

= [softmax(o)]j × (1− [softmax(o)]k) (105)

2. j 6= k:

− exp(ok)× exp(oj)[∑N
i=1 exp(oi)

]2

= − [softmax(o)]k × [softmax(o)]j (106)

Both cases can be summarized as

([[k = j]]− [softmax(o)]k)× [softmax(o)]j . (107)

Placing (107) back into (101), we obtain

∇θ log pθ(y = j | k) =

∑
k

[
([[k = j]]− [softmax(o)]k)× [softmax(o)]j ×

∂ok
∂θ

]
[softmax(o)]j

=
∑
k

[
([[k = j]]− [softmax(o)]k)×

∂ok
∂θ

]
. (108)

194

Appendix B

Hyperparameters

B.1 SMT Hyperparameters

ER CE PR

News (n-best, dense) γt = 10−5 γt = 10−4.75 γt = 10−5

News (h-graph, sparse) γt = 10−5 γt = 10−4 λ = 10−6, c = 5 · 10−3, γt = 10−6

Table 37: Hyperparameter settings determined on validation sets for constant
learning rate γt, momentum coefficient min{1− 1/(t/2 + 2), µ} (Polyak, 1964;
Sutskever et al., 2013), clipping constant c , `2 regularization constant λ. Un-
specified parameters are set to zero.

B.2 NMT Hyperparameters (Ch. 4)

The out-of-domain model in Chapter 4 is trained with mini-batches of size 100
and L2 regularization with weight 1× 10−7, optimized with Adam (Kingma
and Ba, 2015) with initial α = 0.0002, then decaying α by 0.9 each epoch.
The remaining models are trained with constant learning rates and mini-batch
size 30, regularization and dropout stays the same. The settings for the other
hyperparameters are listed in Table 38. The estimator loss weight is only relevant
for DC, where the pre-trained estimator gets further fine-tuned during DC
training.

B.3 Reward Estimator Hyperparameters (Ch. 4)

We find that for reward estimation a shallow CNN architecture with wide filters
performs superior to a deeper CNN architecture (Le et al., 2017) and also to
a recurrent architecture. Hence, we use one convolutional layer with ReLU
activation of nf filters each for filter sizes from 2 to 15, capturing both local and
more global features. For reward estimation on star ratings, nf = 100 and on
simulated sBLEU nf = 20 worked best. Dropout with p = 0.5 is applied before
the output layer for the simulation setting. We set Tmax = 60. The loss of each

195

Model Adam’s α Length-Normalization MRT α Sample Size k MIX λ Estimator Loss Weight

Simulated Feedback

MLE 0.002 - - - - -
MIX 0.002 - 0.005 5 0.05 -
ER 2× 10−6 - - - - -
DPM 2× 10−6 x - - - -
DPM-random 2× 10−6 x - - - -
DC 0.002 - - 5 - 1000

Explicit Star Rating Feedback

DPM 2× 10−6 x - - - -
DPM-random 2× 10−6 x - - - -
DC 2× 10−6 x - 5 - 1000
MLE (all) 0.002 - - - - -
MIX (all) 0.002 - 0.005 5 0.05 -
MIX (small) 0.002 - 0.005 5 0.05 -
MIX (stars=5) 0.002 - 0.005 5 0.05 -

Implicit Task-Based Feedback

MLE (all) 0.002 - - - - -
MIX (all) 0.002 - 0.005 5 0.05 -
MIX (small) 0.002 - 0.005 5 0.05 -
MIX (recall=1) 0.002 - 0.005 5 0.05 -
W-MIX 0.002 - 0.005 5 0.05 -

Table 38: Hyperparameter settings for training of the models in Section 4.3.

item in the batch is weighted by inverse frequency of its feedback in the current
batch (counted in 10 buckets) to counterbalance skewed feedback distributions.
The model is optimized with Adam (Kingma and Ba, 2015) (constant α = 0.001
for star ratings, α = 0.002 for the simulation) on mini-batches of size 30. Note
that the differences in hyper-parameters between both settings are the result of
tuning and do not cause the difference in quality of the resulting estimators. We
do not evaluate on a separate test set, since their final quality can be measured
in how much well they serve as policy evaluators in counterfactual learning.

B.4 NMT Hyperparameters (Ch. 5)

For the MLE training of the out-of-domain model, we optimize the parameters
with Adam (α = 10−4, β1 = 0.9, β2 = 0.999, ε = 10−8) (Kingma and Ba, 2015).
For further in-domain tuning (supervised, DPM and RL), α is reduced to 10−5.
To prevent the models from overfitting, dropout with probability 0.2 (Srivastava
et al., 2014b) and l2-regularization with weight 10−8 are applied during training.
The gradient is clipped to its norm when its norm exceeds 1.0 (Pascanu et al.,
2013b). Early stopping points are determined on the respective development
sets. For MLE and DPM models, mini-batches of size 60 are used. For the RL
models, we reduce the batch size to 20 to fit k = 5 samples for each source into
memory. The temperature is furthermore set to τ = 0.5. We found that learning
rate and temperature were the most critical hyperparameters and tuned both on
the development set.

196

δ+ δ− TER(1) TER(2)

10 -0.1 58.01 58.33
1 -1 58.19 58.53

0.9 -0.1 58.41 58.06
0.8 -0.2 58.43 58.02
0.7 -0.3 58.1 57.81
0.6 -0.2 58.14 58.41
0.5 -0.5 58.16 57.9
0.1 -0.2 58.65 58.89

Table 39: Impact of marked token weights on translation quality. (1) and (2)
indicate the splits of the talks that were not used for training. Note that the TER
computation here is not by MultEval (reported in the main paper, lowercased)
but by PyTer (cased).

B.5 Tuning Token-level Weights

Table 39 documents the results for various settings of δ− and δ+ as evaluated
with TER on the two splits it was not trained on.

B.6 Hyperparameters for Automatic Marking and Cor-

rections

Automatic corrector. The OpenNMT-APE implementation by Correia and
Martins (2019) was used. It uses multilingual BERT embeddings provided by
(Wolf et al., 2019) to initialize a dual-source encoder and a decoder, that are then
fine-tuned on the concatenated sources and MT hypotheses as encoder input,
and the corrected hypotheses as decoder input. The configuration used in our
experiments shares the self-attention between encoder and decoder. The model
was trained for 5000 iterations with batches of 512 tokens. For inference, beam
search with a beam width of 8 and average length penalty is used.

Automatic marker. Our automatic marking model is built on top of BERT
(Devlin et al., 2019; Wolf et al., 2019) to take advantage of its contextualized
word embeddings. The English source sentence and the German target sentence
are concatenated together with a ’[SEP]’ token between the two sentences and
with a ’[CLS]’ token at the beginning of the sequence. BERT pools sentence
level information to the representation of the ’[CLS]’ token which is then used
for downstream classification tasks. In order to classify individual tokens, we use
both the individual token embedding and the ’[CLS]’ representation, combining

197

token specific information and sentence level information. Using both features
allows the model to condition the marking probability on not only individual
tokens but on sentence semantics as well. The marking head for BERT is a two
layer feed-forward neural network with relu activations and sizes of 768. Due
to the large class imbalance, words with a ground truth marking of 0, incorrect
tokens, receive a weight of 20x in the loss. No fine tuning of the underlying
BERT model was performed.

198

Appendix C

Examples

C.1 eBay Title Translation

Title (en) hall linvatec pro2070 powerpro ao drill synthes dhs &
dcs attachment / warranty

Ref-0 hall linvatec pro2070 powerpro ao taladro synthes dhs
& dcs accesorio / garant́ıa

Ref-1 hall linvatec pro2070 powerpro synthes , perforación ,
accesorio de dhs y dcs , todo original , garant́ıa

OD BL hall linvatec pro2070 powerpro ao perforadora synthes
dhs & dcs adjuntos / garant́ıa

MIX (all ratings) hall linvatec pro2070 powerpro ao perforadora synthes
dhs & dcs adjuntos / garant́ıa

MIX (small) hall linvatec pro2070 powerpro ao perforadora synthes
dhs & dcs adjuntos / garant́ıa

MIX (all queries) hall linvatec pro2070 powerpro ao taladro synthes dhs
& dcs adjuntos / garant́ıa

T-MIX hall linvatec pro2070 powerpro ao taladro synthes dhs
& dcs accesorio / garant́ıa

Table 40: Example for product title translation (en-es) from the test set where
T-MIX improved the lexical choice over BL and MIX on in-domain title set and
MIX on full query-title set (“perforadora” vs. “taladro” as translation for “drill”,
“adjuntos” vs. “accesorio” as translation for “attachment”).

Table 40 gives an example where T-MIX training improved lexical translation
choices. Table 41 lists two examples of T-MIX translations. They are compared
to the baseline and logged translations for given queries and product titles,
illustrating the specific difficulties of the domain.

C.2 Human Ratings

199

Title (en) Unicorn Thread 12pcs Makeup Brushes Set Gorgeous Colorful
Foundation Brush

Query (es) unicorn brushes // makeup brushes // brochas de unicornio
// brochas unicornio

Query (en) unicorn brushes // makeup brushes
OD BL galletas de maquillaje de 12pcs

Logged Unicorn Rosca 12 un. Conjunto de Pinceles para Maquillaje
Hermosa Colorida Base Cepillo

T-MIX unicornio rosca 12pcs brochas maquillaje conjunto precioso
colorido fundación cepillo

Title (en) 12 × Men Women Plastic Shoe Boxes 33*20*12cm Storage
Organisers Clear Large Boxes

Query (es) cajas plasticas para zapatos

Query (en) plastic shoe boxes
OD BL 12 × hombres mujeres zapatos de plástico cajas de almace-

namiento 33*20*12cm organizadores de gran tamaño
Logged 12 × Zapato De Hombre Mujer De Plástico Cajas Organi-

zadores de almacenamiento 33*20*12cm cajas Grande Claro
T-MIX 12 × para hombres zapatos de plástico cajas de plástico

33*20*12cm almacenamiento organizador transparente grandes
cajas

Table 41: Examples for product title translations (en-es) of the logged query
test set. In the first example, the T-MIX model improves the translation of
“brushes”, but also chooses a worse translation for “foundation” (“fundación”
vs “base”). In the second example, one of the tricky parts is to translate the
sequence of nouns “Men Women Plastic Shoe Boxes” and to disambiguate the
relations between them. The BL model translates “shoes of plastic”, the Log
has “woman of plastic” and the T-MIX model makes it “shoes of plastic” and
“boxes of plastic”. The T-MIX model learns to use “para” from the query, but
omits the translation of “women”.

200

Src Diese könnten Kurierdienste sein, oder Techniker zum Beispiel, nur
um sicherzustellen, dass der gemeldete AED sich immer noch an
seiner Stelle befindet.

Hyp These could be courier services, or technicians like, for example,
just to make sure that the abalone aed is still in its place.

Rating σ = 0.46, ∅ = −0.30

Src Es muss für mich im Hier und Jetzt stimmig sein, sonst kann ich
mein Publikum nicht davon überzeugen, dass das mein Anliegen
ist.

Hyp It must be for me here and now, otherwise i cannot convince my
audience that my concern is.

Rating σ = 0.46, ∅ = −0.70

Src Finden Sie heraus, wie Sie überleben würden.
Die meisten unserer Spieler haben die im Spiel gelernten
Gewohnheiten beibehalten.

Hyp Find out how you would survive.
Rating σ = 1.31, ∅ = −0.79

Src Sie können das googlen, aber es ist keine Infektion des Rachens
sondern der oberen Atemwege und verursacht den Verschluss der
Atemwege.

Hyp You can googlen, but it’s not an infection of the rag, but the upper
respiratory pathway, and it causes respiratory traction.

Rating σ = 1.31, ∅ = −0.52

Table 42: Items with lowest (top) and highest (bottom) deviation in 5-point rat-
ings. Mean normalized rating and standard deviation are reported. Problematic
parts of source and target are underlined, namely hallucinated or inadequate
target words (#1, #3), over-literal translations (#2), and omissions (#3).

201

Src Zu diesem Zeitpunkt haben wir mehrzellige Gemeinschaften,
Gemeinschaften von vielen verschiedlichen Zellentypen, welche
zusammen als einzelner Organismus fungieren.

Hyp1 At this time we have multi-tent communities, communities of many
different cell types, which act together as individual organism.

Hyp2 At this point, we have multicellular communities, communities of
many different cell types, which act together as individual organism.

Rating σ = 0.0, ∅ = 1.0

Src Wir durchgehen dieselben Stufen, welche Mehrzellerorganismen
durchgemacht haben – Die Abstraktion unserer Methoden, wie wir
Daten festhalten, präsentieren, verarbeiten.

Hyp1 We pass the same steps that have passed through multi-cell or-
ganisms to process the abstraction of our methods, how we record
data.

Hyp2 We go through the same steps that multicellular organisms have
gone through – the abstraction of our methods of holding data,
representing, processing.

Rating σ = 0.0, ∅ = 1.0

Src So in diesen Plänen, wir hatten ungefähr 657 Plänen die den Men-
schen irgendetwas zwischen zwei bis 59 verschiedenen Fonds anboten.

Hyp1 So in these plans, we had about 657 plans that offered the people
something between two to 59 different funds.

Hyp2 So in these plans, we had about 657 plans that offered people
anything between two to 59 different funds.

Rating σ = 0.99, ∅ = 0.14

Src Wir fingen dann an, über Musik zu sprechen, angefangen von Bach
über Beethoven, Brahms, Bruckner und all die anderen Bs, von
Bartók bis hin zu Esa-Pekka Salonen.

Hyp1 We then began to talk about music, starting from bach on
Beethoven, Brahms, Bruckner and all the other bs, from Bartók to
esa-pekka salons.

Hyp2 We started talking about music from bach, Beethoven, Brahms,
Bruckner and all the other bs, from Bartok to esa-pekka salons.

Rating σ = 0.99, ∅ = −0.14

Table 43: Items with lowest (top) and highest (bottom) deviation in pairwise
ratings. Preferences of target1: -1, target2: 1, tie: 0. Problematic parts of source
and targets are underlined, namely hallucinated or inadequate target words (#1,
#2, #3), incorrect target logic (#2), ungrammatical source (#3), capitalization
(#4), over-literal translations (#4).

202

Appendix D

Reliability

D.1 Rater and Item Variance Filtering

Figure 27 shows how the the population diminishes when the intra-rater consis-
tency or item-variance threshold is increased for filtering.

(a) intra-rater consistency filtering (b) item-variance filtering

Figure 27: Filtering: Filtering by intra-rater and item-variance threshold. Plots
by Joshua Uyheng.

203

Appendix E

Rating Tasks

E.1 Error Marking and Correction Annotator Instruc-

tions

The annotators received the following instructions:

• You will be shown a source sentence, its translation and an instruction.

• Read the source sentence and the translation.

• Follow the instruction by either marking the incorrect words of the trans-
lation by clicking on them or highlighting them, correcting the translation
by deleting, inserting and replacing words or parts of words, or choosing
between modes (i) and (ii), and then click “submit”.

– In (ii), if you make a mistake and want to start over, you can click on
the button “reset”.

– In (i), to highlight, click on the word you would like to start high-
lighting from, keep the mouse button pushed down, drag the pointer
to the word you would like to stop highlighting on, and release the
mouse button while over that word.

• If you want to take a short break (get a coffee, etc.), click on “pause” to
pause the session. We’re measuring time it takes to work on each sentence,
so please do not overuse this button (e.g. do not press pause while you’re
making your decisions), but also do not feel rushed if you feel uncertain
about a sentence.

• Instead, if you want to take a longer break, just log out. The website will
return you return you to the latest unannotated sentence when you log
back in. If you log out in the middle of an annotation, your markings or
post-edits will not be saved.

• After completing all sentences (ca. 300), you’ll be asked to fill a survey
about your experience.

204

• Important:

– Please contact us [our email here] immediately if you have any ques-
tions or problems with the interface.

– Please do not use any external dictionaries or translation tools.

– You might notice that some sentences re-appear, which is desired.
Please try to be consistent with repeated sentences.

– There is no way to return and re-edit previous sentences, so please
make sure you’re confident with the edits/markings you provided
before you click “submit”.

205

	Abstract
	Kurzfassung
	Introduction
	Contributions
	Publications
	Released Software and Data
	Outline

	Background
	Machine Translation
	Task Definition
	Statistical Machine Translation
	Neural Machine Translation

	Learning from Interaction
	Reinforcement vs. Bandit Learning
	Policy Optimization
	Variance Reduction by Control Variates
	Human-in-the-Loop Reinforcement Learning

	Reinforced Machine Translation
	Challenges
	Previous Approaches

	Part I: Online Learning with Simulated Bandit Feedback
	Online Bandit Structured Prediction for MT
	Algorithms
	Full information vs. bandit feedback
	Bandit Expected Reward Maximization
	Bandit Pairwise Preference Learning
	Bandit Cross-Entropy Minimization

	Convergence Analysis
	Reward Baselines
	Additive Control Variate
	Relativizing Rewards

	Domain Adaptation Experiments
	Experiments for SMT
	Experiments for NMT

	WMT Shared Task Evaluation
	Task Setup
	Systems
	Results

	Conclusion

	Part II: Offline Learning with Human Bandit Feedback
	Learning from E-commerce User Feedback
	User Feedback
	Explicit Feedback via Star Ratings
	Task-Based Implicit Feedback

	Learning from User Feedback
	On- vs. Off-Policy Learning
	Reward Functions
	Training Objectives

	Experiments
	Setup
	Reward Estimation Quality
	Simulation: Online vs. Offline Feedback
	Explicit Star Rating Feedback
	Task-Based Implicit Feedback

	Conclusion

	Reliability and Learnability of Human Feedback
	Human MT Rating Task
	Data
	Rating Task

	Reliability of Human MT Ratings
	Inter-rater and Intra-rater Reliability
	Rater and Item Variance
	Qualitative Analysis

	Learnability of a Reward Estimator
	Learning a Reward Estimator
	Experiments

	Reinforcing MT with Direct and Estimated Rewards
	Training Objectives
	Experiments

	Conclusion

	Learning from Error Corrections and Markings
	Annotation Study
	Setup
	Analysis

	Adapting MT with Error Corrections and Markings
	Objectives

	Experiments
	Setup
	Results

	Conclusion

	Part III: Learning to Learn in Interaction
	Self-Regulated Supervision for Interactive MT
	Self-Regulated Interactive Learning
	Seq2Seq Learning with Various Levels of Supervision
	Learning to Self-Regulate

	Experiments
	Architectures
	Results
	Prospects for Field Studies

	Conclusion

	Thesis Conclusion
	Summary
	Limitations and Future Directions

	Bibliography
	Acknowledgments
	Detailed Gradient Derivatives
	Derivative of the Score Function

	Hyperparameters
	SMT Hyperparameters
	NMT Hyperparameters (Ch. 4)
	Reward Estimator Hyperparameters (Ch. 4)
	NMT Hyperparameters (Ch. 5)
	Tuning Token-level Weights
	Hyperparameters for Automatic Marking and Corrections

	Examples
	eBay Title Translation
	Human Ratings

	Reliability
	Rater and Item Variance Filtering

	Rating Tasks
	Error Marking and Correction Annotator Instructions

