247 research outputs found

    A Penrose polynomial for embedded graphs

    Get PDF
    We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can not be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion-contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable checkerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph G can be expressed as a sum of chromatic polynomials of twisted duals of G. This allows us to obtain a new reformulation of the Four Colour Theorem

    Knot invariants and the Bollobas-Riordan polynomial of embedded graphs

    Get PDF
    For a graph G embedded in an orientable surface \Sigma, we consider associated links L(G) in the thickened surface \Sigma \times I. We relate the HOMFLY polynomial of L(G) to the recently defined Bollobas-Riordan polynomial of a ribbon graph. This generalizes celebrated results of Jaeger and Traldi. We use knot theory to prove results about graph polynomials and, after discussing questions of equivalence of the polynomials, we go on to use our formulae to prove a duality relation for the Bollobas-Riordan polynomial. We then consider the specialization to the Jones polynomial and recent results of Chmutov and Pak to relate the Bollobas-Riordan polynomials of an embedded graph and its tensor product with a cycle.Comment: v2: minor corrections, to appear in European Journal of Combinatoric

    Types of embedded graphs and their Tutte polynomials

    Get PDF

    Simple realizability of complete abstract topological graphs simplified

    Full text link
    An abstract topological graph (briefly an AT-graph) is a pair A=(G,X)A=(G,\mathcal{X}) where G=(V,E)G=(V,E) is a graph and X⊆(E2)\mathcal{X}\subseteq {E \choose 2} is a set of pairs of its edges. The AT-graph AA is simply realizable if GG can be drawn in the plane so that each pair of edges from X\mathcal{X} crosses exactly once and no other pair crosses. We show that simply realizable complete AT-graphs are characterized by a finite set of forbidden AT-subgraphs, each with at most six vertices. This implies a straightforward polynomial algorithm for testing simple realizability of complete AT-graphs, which simplifies a previous algorithm by the author. We also show an analogous result for independent Z2\mathbb{Z}_2-realizability, where only the parity of the number of crossings for each pair of independent edges is specified.Comment: 26 pages, 17 figures; major revision; original Section 5 removed and will be included in another pape

    Knot Graphs

    Get PDF
    We consider the equivalence classes of graphs induced by the unsigned versions of the Reidemeister moves on knot diagrams. Any graph which is reducible by some finite sequence of these moves, to a graph with no edges is called a knot graph. We show that the class of knot graphs strictly contains the set of delta-wye graphs. We prove that the dimension of the intersection of the cycle and cocycle spaces is an effective numerical invariant of these classes
    • …
    corecore