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Abstract

In this paper I will give a brief history of knot theory. Then I will give an 

introduction to knot theory with an emphasis on a diagrammatic approach to studying 

knots. I will also review basic concepts and notions from graph theory. Next, I will show 

how these two fields are related. Particularly, given a knot diagram I will show how to 

associate a graph. I will discuss ambiguities in the process and how certain diagrammatic 

properties translate into the associated graph. In particular, I will analyze the effect of 

flypes on associated graphs. After introducing the 2-variable Tutte polynomial of a graph 

I will show that this polynomial is flype invariant. This coupled with the Tait Flyping 

Theorem shows that the 2-variable Tutte polynomial is invariant for alternating knots. 

I will also show one aspect of the Tutte polynomial and its relationship to its associated 

knot diagram. Specifically, I will begin investigating how to determine the number of k 

twists in a knot diagram from the terms of the Tutte polynomial.
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Chapter 1

Introduction

This paper will apply graph theoretical techniques to the study of alternating 

knots and links. In 1984 V. Jones introduced a very powerful technique for distinguishing 

knots and links known as the Jones polynomial. The Jones polynomial is a 1-variable 

Laurent polynomial. This “new” polynomial inspired new research and generalizations 

including many applications to physics and real world situations. Thistlethwaite proved 

that it is possible to produce a 1-variable Tutte polynomial expansion for the Jones 

polynomial. [7] In the case of alternating knots, the Jones polynomial is a specialization 

of the 2-variable Tutte polynomial of an associated graph. This paper will first show 

that the 2-variable Tutte polynomial without specialization is an invariant of alternating 
knots. This will allow us to recognize that two equivalent reduced alternating knots are 

isomorphic regardless of diagram. Secondly, I will begin to investigate diagrammatic 

properties that are captured by the Tutte polynomial. Specifically, I will initiate inves­

tigations that determine the number of k twists in a knot diagram from the terms of the 

Tutte polynomial.

1.1 History of Knot Theory

Knot theory has been around since the late 1800’s as scientists began to see 

the use of knots within nature. Lord Kelvin’s theory of the atom stated the chemical 

properties of elements were related to knotting that occurs between atoms. This mo­

tivated P.G. Tait to begin to assemble a list of knots. Tait published the first set of 
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papers describing the enumeration of knots in 1877. Tait viewed two knots as equiv­

alent if one could be deformed, without breaking, to appear as the other. In 1928 J. 

Alexander described a method, the Alexander polynomial, which associated each knot 

with a polynomial. If one knot can be deformed into another knot they will both have 
the same associated polynomial. Unfortunately, the Alexander polynomial is not unique 

to a given knot. It is possible for more than one given knot to have the same Alexander 

polynomial. In 1932 K. Reidemeister developed tools that are sufficient, in theory, to 

distinguish almost any pair of distinct knots. Regrettably, Reidemeister’s tools are too 

cumbersome and not practical however for large knots. The progress of topology as a 

mathematical field also helped in the advancements in knot theory. During the 1960’s 

the investigation of higher dimensional knots became a very significant topic. In 1970 

J. H. Conway introduced new combinatorial methods that began to lead to new invari­

ants. In 1984, V. Jones introduced the Jones polynomial which is yet another way to 

distinguish knots from each other. The search for efficient ways to differentiate between 

knots continues today. [3]

1.2 Knot Theory

Intuitively speaking a knot is simply a knotted loop of rope. Mathematically 

speaking a knot is a simple closed curve in $R3. A link is the finite union of disjoint 

knots. The Hopf link is an example of a link that is not a knot since it is two separate 

loops that are hooked together (Figure 1.1 a). In particular, a knot is a link with only 

one component.

One common technique for studying a three dimensional knot is to look at a 

two dimensional projected image of the knot. The function from 3-space to the plane 

that takes a triple (x, y, z} to the pair {x, y) is called the projection map. A projection of 

a knot is its planar image resulting from the projection map (Figure 1.1 b). A crossing 

is when two strands in a projection of a knot cross each other. A diagram of a knot 

is a projection of a knot where gaps have been left to see crossings as underpasses and 

overpasses (Figure 1.1 c). An underpass of a diagram crossing is the strand that breaks 

while the overpass is the strand that remains unbroken or continuous.



3

Figure 1.1: (a)Hopf link (b)knot projection and (c) knot diagram

Knot diagrams are not unique since it is possible to draw many different di­

agrams of the same knot (Figures 1.2 a and b). Reidemeister proved that his three 

equivalence moves, known as Reidemeister moves, are an acceptable way to deform any 

diagram without changing the knot that it is associated with (Figure 1.3). In fact, Reide­

meister proved that his three moves were the only moves necessary for any deformation 

between two diagrams of the same knot. [6] Unfortunately, there are practical limits 

based upon the size of the knot.

Figure 1.2: (a)unknot and (b)unknot resembling trefoil

The trivial knot is known as the unknot and it has a diagram without any 

crossings (Figure 1.2 a). Any diagram of a nontrivial knot has at least three crossings. 

The most basic knot is the trefoil which has a diagram with exactly three crossings 

(Figure 1.4 a). A knot diagram is alternating if as the knot is traversed, crossings 

alternate between an overpass and an underpass (Figure 1.4 b).
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(R 2)

Figure 1.3: Reidemeister moves

Figure 1.4: (a) trefoil and (b) alternating knot

When dealing with a knot diagram it can be useful to inspect limited portions of 

the diagram at a time. A tangle is a region of a knot diagram surrounded by a circle such 

that the diagram intersects with the circle exactly four times. From the intersections 

four arcs emerge pointing in the compass directions NW, NE, SW and SE (Figure 1.5). 

A diagram is considered reduced when there are no removable, also known as nugatory, 

crossings (Figure 1.6 a). A flype is a 180° rotation of a tangle (Figure 1.6 b).

Figure 1.5: tangle
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Figure 1.6: (a) nugatory crossing and (b) flype

A knot invariant is something that does not depend on the chosen diagram for 

a given knot. The minimal crossing number of a knot is the fewest number of crossings 

over all possible diagrams. Murasugi, and Thistlethwaite proved that if a knot has an 

alternating diagram, then all of its minimal crossing diagrams are alternating. [9] The 

minimal crossing number of a knot is an example of a knot invariant. Reducible crossings 

can be removed by twisting, and so cannot occur in a knot diagram of minimal crossing 

number. Other examples of knot invariants include knot colorings, the Jones polynomial 

and the Alexander polynomial; which will not be discussed at this time. Also, not all 

knots are alternating. A torus knot is one example of a knot that is non-alternating 

(Figure 1.7). In fact, it is conjectured that the proportion of knots which are alternating 

tends exponentially to zero with increasing crossing number. [9]

Figure 1.7: torus knots

P. Tait conjectured (known as the Tait Flype Theorem) that it was possible 

to transition from one diagram of a link to a different diagram of the same link by 

a finite number of flypes. This was later proven for alternating knots by Menasco and 

Thistlethwaite utilizing the Jones polynomial. [11] It is worth noting that the Tait Flype 

Theorem does not apply to non alternating knots such as torus knots.
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Theorem 1.1. (Tait Flype Theorem) Any two reduced alternating diagrams of a link 

are related by a finite number of flypes. [11]

One last knot diagram detail necessary for this paper is the notion of a checker­

board shading. A checkerboard shading is when a region within the knot diagram is 

shaded and then each region that touches “across” at a crossing is also shaded (as in 

Figure 1.8). There are two choices for a checkerboard shading depending on the initial 

region shaded.

Figure 1.8: checkerboard shading

Many methods have arisen in the last one hundred years to help with the 

distinction of knots. This paper will focus on the Tutte polynomial as one description of 

how to differentiate between two alternating knots. This paper will discuss how the Tutte 

polynomial can be used to differentiate between knots and prove that the 2-variable Tutte 

polynomial is a knot invariant for any alternating knot. In particular it will be shown 

that all reduced alternating diagrams of a given knot will give the same Tutte polynomial 

as a result. Thus the 2-variable Tutte polynomial is an invariant of alternating knots.

1.3 Graph Theory

A Graph G — (V, E) is a collection of vertices V and edges E. An edge is an 

unordered pair of vertices. Thus uv is the exact same edge as vu. Different aspects or 

properties of any graph will now be described. A loop is an edge that connects a single 

vertex to itself (Figure 1.9 a). A multiedge is when there exists multiple edges connecting 

two vertices (Figure 1.9 b). A simple graph is a graph that does not contain loops or 

multiedges (Figure 1.9 c). In a multigraph both loops and edges are allowed (Figure 1.9 

d). In this paper the word “graph” will refer to a multigraph.
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Figure 1.9: (a) loop, (b) multiedge, (c) simple graph and (d) multigraph

A complete graph, Kn, is a graph with n vertices where all vertices are adjacent 

(as seen in figures 1.10 a and b). A complete bipartite graph, Kp>q is a graph whose 

vertices are decomposed into two disjoint sets p and q such that no two vertices within 

the same set are adjacent but every pair of vertices in the two sets are adjacent (as seen 

in figures 1.10 c and d).[10]

Figure 1.10: (a) K4, (b) K5, (c) K2)2 and (d) K3,3

Here are some more graph theoretical definitions. Components of a graph are 

the different disjoint pieces of the graph. A graph is connected if for every distinct pair 

of vertices (u, i>) there is a path from u to v. A connected graph consists of only one 

component. A cutpoint is a vertex that when deleted increases the number of components 

(Figure 1.11 a). An edge of a graph is a bridge if its deletion increases the number of 

components (Figure 1.11 b).

It is possible to study a graph by looking at subsets of it. A subgraph of graph 

G is G' = (V', E') where V' C V and E' c E. Every graph has at least one subgraph, 

which would be the graph itself. Every graph in figures 1.12 and 1.13 are subgraphs. A 

spanning subgraph is a subgraph that contains every vertex of a graph (as seen in Figures
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**

(a) (b)

Figure 1.11: (a) cutpoint and (b) bridge

1.12 and 1.13 a, b, c and e). A tree is a graph in which any two vertices are connected 

by exactly one path. A tree has only one component and every edge is a bridge (as seen 

in Figures 1.12 and 1.13 c and d). A spanning tree is a tree that connects every vertex 

of the graph (as seen in Figure 1.12 c). Every spanning tree is a spanning subgraph. 

Notice figure 1.13 e has two components.

A A /
(a) (b) (c)

Figure 1.12: (a) graph, (b) spanning subgraph, (c) spanning tree

Figure 1.13: (d) tree and (e) two component subgraph

Two graphs are isomorphic if there is a correspondence between their vertex 

sets that preserves adjacency (Figure 1.14 a). An example of two non isomorphic graphs 

are Kq and A’2,2 since not all vertices in 7<2,2 are adjacent (Figure 1.14 b).
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(a) (b)

Figure 1.14: (a) different planar embeddings of the same graph (b) K4 and K2,2

A planar graph is a graph that can exist in a plane where all edges of the graph 

can be drawn between vertices without crossing any other edge. A planar graph can 

have multiple planar embeddings (Figure 1.14 a). Given a planar embedding of a graph 

G it’s dual graph Gd is obtained by placing a vertex in every open region of the graph 

G and connecting the “new” vertices with “new” edges that cross each original edge (as 

seen in the Figure 1.15). Dual graphs are not unique. Different planar embeddings of 

the same graph can lead to different dual graphs that are not isomorphic (Figure 1.16).

Figure 1.15: graph G and it’s dual graph G'

The graph is an example of a graph with two common isomorphic planar 

embeddings (Figure 1.17 a). Not all graphs are planar. Both and K5 are examples 

of non planar graphs (Figure 1.17 b and c). In fact, Kuratowski showed that any non 

planar graph essentially contains a copy of either or K$. [12]
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G

Figure 1.16: non isomorphic dual graphs associated to isomorphic graphs

Figure 1.17: (a) different planar representations of Ky (b) K^, and (c) K5

1.4 Knot Theory meets Graph Theory

It is possible to take any diagram of a knot and associate with it a planar em­

bedding of a graph. This association of a knot diagram to a planar graph is accomplished 

in the following way. First, create a checkerboard shading of a knot diagram. Second, 

put a vertex in the center of each shaded region. Finally, connect vertices (regions) by 

edges through each crossing of the knot diagram so that the two shaded regions are 

connected via an edge (Figure 1.18).

Figure 1.18: stages of knot diagram to planar graph association
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Any given planar knot diagram will give two distinct planar graphs depending 

on the checkerboard shading chosen. These graphs are dual to each other (Figure 1.19).

Figure 1.19: the other checkerboard shading results in the dual graph

Thus given any knot diagram, we can construct an associated planar graph. 

However, it is not possible to take any planar graph and find it’s associated link diagram 

without some extra details. In a knot’s associated graph each edge represents a crossing. 

Each crossing must be considered either a positive or negative crossing based on the 

type of crossing (as seen in Figure 1.20 a and b). Label each edge as positive or negative 

according to the sign of the associated crossing. This graph obtained is called a signed 

graph since each edge represents either a positive or negative crossing (Figure 1.21). [1]

Figure 1.20: signed crossings

Any link diagram can be recreated from a signed planar graph. This is accom­

plished by marking the appropriate crossing on each signed edge and then connecting 

each strand as in the figure 1.22.

In an alternating diagram the crossings are either all positive or all negative 

based on the chosen shading (Figure 1.23). Based on this fact, it is not necessary to 

use signed graphs when dealing with alternating diagrams. It is worth noting that 

any reduced graph G will be loopless since loops in a graph correspond to reducible
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Figure 1.21: (a) torus knot shading and (b) torus knot signed graph

Figure 1.22: signed graph to link diagram

crossings, specifically Reidemeister 1 moves, in the knot diagram. Similarly, any reduced 

graph G will be bridgeless since bridges correspond to nugatory crossings in a diagram. 

We will restrict our attention to reduced and alternating knot diagrams in the next 

section consequently, all graphs will be unsigned, loopless, bridgeless and all edges will 

be assumed to be positive. Thus any planar embedding of a graph gives rise to a unique 
link diagram.

Figure 1.23: signed graph and it’s associated alternating knot diagram
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We now want to investigate how graphs associated with knot diagrams change 

under flypes. Given any knot K then there exists a knot diagram D that is associated 

with K and there exists a graph G that is associated with diagram D. Suppose that 

D has a tangle with a crossing. The results of a flype of the tangle are the following 

diagrams D and Df (Figure 1.24).

Figure 1.24: (a) diagram D and (b) diagram Df

The associated graphs of D and Df would look like the following graphs G and 

Gf (Figure 1.25). The graph of a tangle and it’s rotated related tangle after a flype are 

isomorphic to each other since the adjacency of the edges is maintained (Figure 1.26). 

However, when inspecting the knot diagrams as a whole, the two associated graphs (pre- 

flype and post-flype) don’t have to be isomorphic. In fact, the flype of the tangle results 

in a “surgery” where the associated graph piece is cut, flipped, and then reattached as 

seen in figures 1.27 and 1.28.

Figure 1.25: (a) graph of G and (b) graph of Gf
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Figure 1.26: example of the graph (a) before the flype and (b) after the flype

Figure 1.27: preflype knot diagram to graph

Figure 1.28: post flype knot diagram to graph
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Figure 1.29: diagram of any alternating knot written as two tangles T and R

For this paper when a diagram is written as two tangles, tangle T will be the 

tangle to be flyped and tangle R will be for the rest of the knot (Figure 1.29).

Another relationship between knot diagrams and their associated graphs has to 

do with twists which are a major part of any knot diagram. It is easy to see that twists 

in a knot diagram will correspond to either a “chain” of edges or a multiedge with the 

number of edges or multiplicity of edges (in its associated graph) equal to the number of 

twists. Whether the graph has a chain or a multiedge depends on the initial checkerboard 

shading chosen. For example, a four twist tangle will result in a tree consisting of four 

edges or a multiedge with multiplicity of four (as seen in Figure 1.30 and 1.31). Later 

we shall see that the Tutte polynomial captures some of the twists in a diagram based 

on the checkerboard shading chosen.

'©c© ............
Figure 1.30: twists in a diagram correspond to bridges in a graph

Figure 1.31: twists in a diagram correspond to multiedges in a graph
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Chapter 2

Tutte Polynomial

In 1975 W. T. Tutte introduced what he called the Dichromatic polynomial 

(now known as the Tutte polynomial). The Tutte polynomial Tq(x, y) — Tq of a graph 

can be defined inductively by deleting (cutting) and fusing (contracting) edges. Let G 

== (V, E) be a multigraph where E is the set of all edges in G and e G E. The deleting 

operation is given by taking G — e = (V, E — e). Thus G — e is obtained from G by 

. cutting (deleting) the edge e. Similarly let G/e be the. multigraph obtained from G by 

fusing (contracting) the edge e. Thus if e e E is incident with u and v. (with u = v if a 

loop) then in G/e the vertices u and v are replaced by a, single vertex w. Each element f 

G E — e that is incident with either u or v is replaced by an edge or; loop incident with 

w. (Figure 2.1) ...

Figure 2.1: — e(cut or delete) and /e (fuse or contraction)
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Definition 2.1. 2-variable Tutte polynomial:

x(TG_e) if e is a bridge.

tg = y(7b_e) if e is a loop.

Ta-e + TG/e tf e ls neither a bridge nor a loop.

In the above definition if e is a loop or a bridge then = TG/e. The

deletion and fusion of the edges continues until all that is left is a collection of subgraphs 

each made up solely of bridges and loops. In the decomposed graphs x represents the

bridges and y represents the loops. The Tutte polynomial is found by summing all the 

polynomials associated with subgraphs together where each polynomial is the product of 

x’s and y’s for the corresponding bridges and loops. For example, the Tutte polynomial 

calculation of the graph associated with the figure eight knot is found in figure 2.2. (For 

ease of computation the up operation will be delete (—e) and the down operation will 

be fuse (/e) in the Tutte computational tree.)

Figure 2.2: example calculation of Tutte polynomial for figure eight knot

This paper will utilize a few properties of the Tutte polynomial. The Tutte 

polynomial of a graph G and its dual graph H are related. In fact, TG(x,y) = Tfj(y,x). 

[8] Another useful property of the Tutte polynomial is that it is multiplicative. Specifi­

cally, if a graph M consists of two graphs Mi and M% with exactly one vertex in common 

(a cutpoint), then Tm = [8]
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2.1 Alternating Knots are 2-variable Tutte Polynomial In­

variant

In this section it will be shown that the Tutte polynomial is an invariant of 

alternating knots. First, let two graphs G and Gf be graphs associated with reduced 

alternating diagrams of two knots related by a single flype. We will show the two graphs 

G and Gf have the same Tutte polynomial TG(x, y) or Tq. Next, we will apply the Tait 

Flyping Theorem to prove that reduced alternating knots are 2-variable Tutte polynomial 

invariant.

Theorem 2.2. Let G and Gf be graphs associated with reduced alternating diagrams of 

two knots related by a single flype. The Tutte polynomial of a graph G is equal to the 

Tutte polynomial of Gf, or Tq = Tq{.

Proof. First, assume that in the checkerboard shading of the diagram the flype crossing 

is shaded (as in Figure 2.3). Let the corresponding single edge of the flype crossing 

in the graphs G and Gy be labeled e and e' respectively (Figure 2.4). Note that the 

definition of the Tutte polynomial gives that Tq = Tc-e + TG/e which also implies that 

Tg5 = Tgs-&' +TGf/e'-

Figure 2.3: shading of flype crossing

By contraction G/e and Gf/e' are the same graph since all vertices maintain 

their adjacency as seen in figure 2.5.

Therefore TG/e = TG{/e>.
The deletion operation is a different story. G — e and Gf — e' may not be the 

same graph (Figure 2.6). For example, let T have a vertex that has three edges on the 

left and a vertex with four edges on the right and let R have a vertex with two edges 

on the left and a vertex with single edge on the right. Then G — e has a vertex with six
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Figure 2.4: (a) graph of G and (b) graph of Gy with edge e and e' labeled

Figure 2.5: (a) graph of G and (b) graph of Gy with edge e and e' contracted

edges (4+2) but Gf — e' would only have a vertex with only four edges (1+3). Clearly 

these two graphs are not isomorphic as seen in figure 2.7.

(a) (b)

Figure 2.6: (a) graph of G and (b) graph of Gy with edge e and e' deleted

However the edges e and e' when deleted create a cutpoints between the sub­

graphs of T and R of G and of R and Ty of Gy respectively. (In this situation the order 

matters as seen in the previous example.) Recall, if a graph M consists of two graphs 

My and M^ with exactly one vertex in common (a cutpoint), then Tm = (Tmi)(7m2)- 

That is to say the Tutte polynomial is multiplicative if the subgraphs share only one
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(a) (b)

Figure 2.7: example of (a) G and (b) Gj after deletion of edges e and e1

point in common. Keep in mind the graphs T and Tf are isomorphic.

Therefore Tb-e = TGf_e> ■

Since TG/e = TGf/el and TG_e = TGf_e> then TG = TGf

In the previous argument we decided on a specific shading for the “flype” edge 

e and e'. It is possible to show that the Tutte polynomial is invariant even if the other 

checkerboard shading is chosen by using the properties of dual graphs. Recall, the Tutte 

polynomial of a graph G and its dual graph H are related. In fact, TG(x,y) = Ty(y,x). 

Therefore if the “other” (non flype) shading is chosen we first find H the dual of G, then 

using the previous argument it follows that Ty = Tyf. Therefore by applying the dual 

relationship and the previous argument the following is true:

Tc(x,y) = Ty(y,x) = Tyf(y,x) =TGf(x,y)

Therefore for all cases the Tutte polynomial is flype invariant. □

Theorem 2.3. The 2-variable Tutte polynomial TG(x,y) is an invariant of alternating 

knots.

Proof. The Tait Flype Theorem states that any two reduced alternating diagrams of 

a link are related by a finite number of flypes. [11] Coupling this with Theorem 2.1 

shows that all reduced alternating projections of the same knot have the same Tutte 

polynomial. □

2.2 Multiplicity of Edges

Now that we know the Tutte polynomial is an invariant of alternating knots 

it is natural to ask what aspects of the polynomial are related to the diagram of the 
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knot. Recall, given a knot K and its associated graph G then if there are twists in K 

they show up as either a multiedge or as a “chain” of edges in G (Figure 2.8 a and 

b). Interestingly, the number of twists or the multiplicity of a multiedge can be found 

be inspecting the Tutte polynomial of the associated graph. For example, if there is a 

tangle containing five twists in K then it will show up as a multiedge with multiplicity 

five within the graph G and therefore within the terms of the Tutte polynomial. It is 

possible to count exact multiplicities of an edge. For example all tangles with five twists 

can be found explicitly by using the terms of the Tutte polynomial. Consequently, the 

Tutte polynomial counts the exact number of twists in a given tangle depending on the 

shading chosen.

Figure 2.8: (a) twist as a multiedge and (b) twist as a “chain” of bridges

Let G = (V, E) be multigraph with vertex set V and edge set E. For every 

subset A C E, its rank is r(A) = n — fc(G|A) where n = |V| and fc(G|A) is the number 

of connected components of the spanning subgraph (V, A). [4] Therefore, the rank of 

a graph is equal to the number of vertices less components. Notice that the number 
components of a graph associated to a knot will always be one since a knot by definition 

is a link with a single component.

Now, let G be the associated graph bf a reduced alternating knot diagram. 

Remember that G will be loopless and bridgeless since the knot diagram is reduced 

and has only one component. The following Lemma is true. Note that the coefficient 

mentioned in the Lemma is a polynomial in terms of y, in fact it is exactly the polynomial 

yl-

Lemma 2.4. The highest exponent of x in TQ(x,y) is r(E). Moreover, the coefficient of 
xrW is yl, where the graph has I loops, (follows from an argument found in [1])

First, here is some notation to go along with the following arguments. Let 
T* ’b = the coefficient of xayb G Ta(x,y). Therefore Lemma 2.4 implies:
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rpr(E'),k
1G

1 if there are k loops
<

0 otherwise

Using this lemma it is possible to find the number of different multiedges with 

different multiplicities. Before proving Theorem 2.5 and Corollary 2.6 lets illustrate 

them with example 2.9. This knot diagram has a multiedge with multiplicity three and 

a multiedge with multiplicity six. Its Tutte polynomial is

Figure 2.9: example of finding multiplicities in a graph

x2 + x + 2xy + 2xy2 + xy3 + xy4 + xy3 + y + 2y2 + 3y3 + 3y4 + 3y5 + 3y6 + 2y7 + y3.

The graph has three vertices and one component therefore the rank of the 

graph is two (3 — 1). Therefore, in the Tutte computational tree we are looking for 

graphs that are multiedges of k multiplicity that turn into graphs with k — 1 loops after 

the contraction operation. These graphs correspond to terms of the Tutte polynomial. 

Consequently, we need to inspect terms of the Tutte polynomial with xxyk terms. We 

want terms of x1 since the rank of the graph is two. In this case there are the following 

terms xy3, xy4, xy3,2xy2,2xy. Since xy3 is the first such term and it’s coefficient is 1 then 

there is one multiedge with multiplicity six. Notice that the term xye has a coefficient of 

zero and 1 — 0 = 1. Also notice that a multiedge with multiplicity six appears as a term 

of ary6-1. By continuing this process the next the next term without a coefficient of 1 is 

2xy2 which implies that there is one (2 — 1) multiedge of multiplicity three, since 2xy3-1. 

Notice that by subtracting the coefficients we get the exact number of multiedges (2 — 1) 

and that it has multiplicity three since y has a power of two (3 — 1). We now prove the 

following theorem.
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Theorem 2.5. Let G be a loopless graph then for k > 1 the coefficient of xr(E> is 

equal to the number of multiedges with multiplicity > k.

Proof. We will proceed by induction on |F|.

Let |E| = 2 then there exists two cases. Case 1, is when there is a multiedge 

with multiplicity two that has x + y as it’s Tutte polynomial. Case 2, is when there is 

a tree of two bridges which has a Tutte polynomial of x2 as seen in figure 2.10.

(a) case 1 (b) case 2

Figure 2.10: (a) x + y and (b) x2

In the first case |V[ = 2 and there is one component. Consequently, the rank 

of the graph is one (2 — 1). Hence, we are looking for the term of the Tutte polynomial 

with x° since 1 — 1 = 0. Notice the only term that meets this criteria is y1. Therefore 
there is a single multiedge of multiplicity two since the power of y is one less than the 

multiplicity of the multiedge. Consequently, the theorem holds in this case. Similarly, 

in the second case |H| = 3 and there is one component. Thus the rank of the graph 

is 2 (3 — 1). As a result, we are looking for the term of the Tutte polynomial with a;1 

since 2 — 1 = 1. Notice there are no terms of the Tutte polynomial with this criteria. 

Therefore there are no multiedges in the graph and the theorem also holds in this case.

Clearly the statement is true for both cases.

Assume that the statement is is true for \E\ — n.
Recall the notation, let T/b = the coefficient of xayb E Ta(x,y). Additional 

notation is still necessary, let m^G) — the number of multiedges of multiplicity more 

than k E G. Now let G be the graph such that |F| = n + 1 and let e be an edge of G 

(not a bridge) with multiplicity of j. Also let G — e — G' and let G/e = G" then Tq = 

Tqi + Tqh as seen in figure 2.11. Notice that r(G') = r(G) since e was not a bridge so 

the graph G' has the same number of vertices and components as G. This is true even if 
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j = 1 since j is not a bridge. Also notice that r(G") = r(G) — 1 since there is one less 

vertex but the same number of components in G" when compared to G.

r6(>O<) - T(XSX) * T(^)
/ / - 1 j - 1 loops

Figure 2.11: contraction and deletion on multiedge with multiplicity j

So

where TqG ^’k

^(GO-l.fc rrr(G"),k
JG' 1G"

1 if j — k + 1 and contraction creates k loops

0 otherwise 

by Lemma 2.4 T&G 1,k = m,k(G') (by the induction hypothesis)

In a loopless graph using the contraction operation is the only way to make 

loops. These loops correspond to the powers of y within the Tutte polynomial. Therefore 

we only find loops in the G" graph. Consequently, the only way to get k loops or a term of 

yk in the Tutte polynomial is to contract G" that contains a multiedge with multiplicity 

k + 1 e G.

Therefore we need to show that w.(G) = m^G') +
1
0

if j ~ k + 1 

otherwise
(2.5)

The process of showing the above argument consists of three cases. Case 1 is 

when j < k, case 2 is for j > k + 1 and case 3 is when j = k + 1.

Case j < k

Then the edge e does not contribute to mfc(G), nor will it in mfc(G'). Note, 

Tfn will be zero since j / k + 1. Therefore we get equality in equation 2.5.

Case j > k + 1

The multiedge containing e contributes to nifc(G). After deletion, the multiedge 

remaining contributes to mk(G'). As seen previously, mi/G) = m/fiG'). Note that 

T/h h will be zero since j f k + 1. Therefore we get equality in equation 2.5.



25

Case j = k + 1

The multiedge containing e contributes to mfc(G), but after deletion the re­

maining multiedge does not contribute to mUG'f so rrtfc(G) = + 1. Remember

from above TG), h = 1 when j = k+1. Therefore equation 2.5 is verified.

□

Corollary 2.6. If G is a loopless graph and k > 1, then.

number of multiedges of multiplicity exactly k E G.

Proof. By theorem 2.5, This is equal to

the number of multiedges E G with multiplicity exactly k. □

Using the duality properties of graphs it should also be similarly possible to 

locate all “chains” of bridges that represent tangles of multiple twists within a knot 

and it’s associated graph. This conjecture is not addressed in this paper and will be 

considered in future work.
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Chapter 3

Conclusion

Knot theory has been around for more than two hundred years. It has seen 

many approaches and advancements on the basic question of how to efficiently differ­

entiate between knots that look different but are actually the same. In 1984 V. Jones 

and his single variable Jones polynomial reinvigorated this search. However, this paper 

focused on one approach, the Tutte polynomial, which is without specialization, unlike 
the Jones polynomial, when dealing with alternating knots.

This paper began with a brief history of knot theory followed by an introduction 

to knot theory. Useful graph properties were also introduced which showed how these two 

fields, graph theory and knot theory, are related when using a diagrammatic approach. 

Then it was shown how a flype of a tangle effects the associated graph of a given knot 

diagram. Next the Tutte polynomial was introduced inductively. Some of the properties 

of the Tutte polynomial where also introduced. In particular, that the Tutte polynomial 

is multiplicative when the graph has a cutpoint. In addition, the relationship between the 

Tutte polynomials of dual graphs was described. Utilizing graph theoretical techniques 

it was shown that the Tutte polynomial is invariant for flypes. Combining this fact 

with the Tait Flype Theorem it was proven that the Tutte polynomial is invariant for 

all alternating knots. Next, using a given Tutte polynomial it was shown that certain 

features of a knot diagram could be discovered. Consequently, given a Tutte polynomial 

it is possible to discover some of the number of twists that exist in a given tangle of a 

knot diagram.
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This paper, however, leaves some unanswered questions and/or conjectures. 

The first obvious conjecture would be that it is possible to locate chains of k edges within 

the terms of the Tutte polynomial. Depending on the original checkerboard shading 

chosen in a diagram D a twist of k multiplicity would show up as either a multiedge or 

a “chain” of edges. We have shown that any multiedges of an associated graph would 

appear within the terms of the corresponding Tutte polynomial. We have also discussed 

the duality relationship of the Tutte polynomial where TQ(x,y) — Tn(y,x). Therefore 

it seems that the terms of the Tutte polynomial that correspond to a chain of edges 
would simply be xkyr(El. However, the rank of the graph G and it’s dual Gd are not 

always equal. Therefore more work is needed to show where the “chain” terms show up 

in an associated Tutte polynomial. It would be necessary to establish how the rank of 

G is related to the rank of Gd. Then using the dual property of the Tutte polynomial 

mentioned above it should be possible to show how the “chain” terms show up with in the 

polynomial. This would then allow for us to find all tangles of twists of any multiplicities 

of any diagram regardless of initial checkerboard shading. This and other questions will 

have to wait for a later work.
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