7 research outputs found

    GLARE-SSCPM: an Intelligent System to Support the Treatment of Comorbid Patients

    Get PDF
    The development of software tools supporting physicians in the treatment of comorbid patients is a challenging goal and a hot topic in Medical Informatics and Artificial Intelligence. Computer Interpretable Guidelines (CIGs) are consolidated tools to support physicians with evidence-based recommendations in the treatment of patients affected by a specific disease. However, the applications of two or more CIGs on comorbid patients is critical, since dangerous interactions between (the effects of) actions from different CIGs may arise. GLARE-SSCPM is the first tool supporting, in an integrated way, (i) the knowledge-based detection of interactions, (ii) the management of the interactions, and (iii) the final merge of (part of) the CIGs operating on the patient. GLARE-SSCPM is characterized by being very supportive to physicians, providing them support for focusing, interaction detection, and for an hypothesize and test approach to manage the detected interactions. To achieve such goals, it provides advanced Artificial Intelligence techniques. Preliminary tests in the educational context, within the RoPHS project, have provided encouraging results

    Personalized conciliation of clinical guidelines for comorbid patients through multi-agent planning

    Full text link
    [EN] The conciliation of multiple single-disease guidelines for comorbid patients entails solving potential clinical interactions, discovering synergies in the diagnosis and the recommendations, and managing clinical equipoise situations. Personalized conciliation of multiple guidelines considering additionally patient preferences brings some further difficulties. Recently, several works have explored distinct techniques to come up with an automated process for the conciliation of clinical guidelines for comorbid patients but very little attention has been put in integrating the patient preferences into this process. In this work, a Multi-Agent Planning (MAP) framework that extends previous work on single-disease temporal Hierarchical Task Networks (HTN) is proposed for the automated conciliation of clinical guidelines with patient-centered preferences. Each agent encapsulates a single-disease Computer Interpretable Guideline (CIG) formalized as an HTN domain and conciliates the decision procedures that encode the clinical recommendations of its CIG with the decision procedures of the other agents' CIGs. During conciliation, drug-related interactions, scheduling constraints as well as redundant actions and multiple support interactions are solved by an automated planning process. Moreover, the simultaneous application of the patient preferences in multiple diseases may potentially bring about contradictory clinical decisions and more interactions. As a final step, the most adequate personalized treatment plan according to the patient preferences is selected by a Multi-Criteria Decision Making (MCDM) process. The MAP approach is tested on a case study that builds upon a simplified representation of two real clinical guidelines for Diabetes Mellitus and Arterial Hypertension.This work has been partially supported by Spanish Government Projects MINECO TIN2014-55637-C2-2-R and TIN2015-71618-R.Fernández-Olivares, J.; Onaindia De La Rivaherrera, E.; Castillo Vidal, L.; Jordán, J.; Cózar, J. (2019). Personalized conciliation of clinical guidelines for comorbid patients through multi-agent planning. Artificial Intelligence in Medicine. 96:167-186. https://doi.org/10.1016/j.artmed.2018.11.003S1671869

    Temporal detection and analysis of guideline interactions

    Get PDF
    Background Clinical practice guidelines (CPGs) are assuming a major role in the medical area, to grant the quality of medical assistance, supporting physicians with evidence-based information of interventions in the treatment of single pathologies. The treatment of patients affected by multiple diseases (comorbid patients) is one of the main challenges for the modern healthcare. It requires the development of new methodologies, supporting physicians in the treatment of interactions between CPGs. Several approaches have started to face such a challenging problem. However, they suffer from a substantial limitation: they do not take into account the temporal dimension. Indeed, practically speaking, interactions occur in time. For instance, the effects of two actions taken from different guidelines may potentially conflict, but practical conflicts happen only if the times of execution of such actions are such that their effects overlap in time. Objectives We aim at devising a methodology to detect and analyse interactions between CPGs that considers the temporal dimension. Methods In this paper, we first extend our previous ontological model to deal with the fact that actions, goals, effects and interactions occur in time, and to model both qualitative and quantitative temporal constraints between them. Then, we identify different application scenarios, and, for each of them, we propose different types of facilities for user physicians, useful to support the temporal detection of interactions. Results We provide a modular approach in which different Artificial Intelligence temporal reasoning techniques, based on temporal constraint propagation, are widely exploited to provide users with such facilities. We applied our methodology to two cases of comorbidities, using simplified versions of CPGs. Conclusion We propose an innovative approach to the detection and analysis of interactions between CPGs considering different sources of temporal information (CPGs, ontological knowledge and execution logs), which is the first one in the literature that takes into account the temporal issues, and accounts for different application scenarios

    Information Systems and Healthcare XXXIV: Clinical Knowledge Management Systems—Literature Review and Research Issues for Information Systems

    Get PDF
    Knowledge Management (KM) has emerged as a possible solution to many of the challenges facing U.S. and international healthcare systems. These challenges include concerns regarding the safety and quality of patient care, critical inefficiency, disparate technologies and information standards, rapidly rising costs and clinical information overload. In this paper, we focus on clinical knowledge management systems (CKMS) research. The objectives of the paper are to evaluate the current state of knowledge management systems diffusion in the clinical setting, assess the present status and focus of CKMS research efforts, and identify research gaps and opportunities for future work across the medical informatics and information systems disciplines. The study analyzes the literature along two dimensions: (1) the knowledge management processes of creation, capture, transfer, and application, and (2) the clinical processes of diagnosis, treatment, monitoring and prognosis. The study reveals that the vast majority of CKMS research has been conducted by the medical and health informatics communities. Information systems (IS) researchers have played a limited role in past CKMS research. Overall, the results indicate that there is considerable potential for IS researchers to contribute their expertise to the improvement of clinical process through technology-based KM approaches

    An extended HD Fluent Analysis of Temporal knowledge in OWL-based clinical Guideline System

    Get PDF
    The Web Ontology Language (OWL) based clinical guideline system is a kind of clinical decision support system which is often used to assist health professionals to find clinical recommendations from the guidelines and check clinical compliance issues in terms of the guideline recommendations. However, due to some limitations of the current OWL language constructs, temporal knowledge contained in various knowledge domains cannot be directly represented in OWL. As a result, the representation, query and reasoning of temporal knowledge are largely ignored in many OWL-based clinical guideline ontology systems. The aim of this research is to investigate a temporal knowledge modelling method namely “4D fluent” and extend it to represent the temporal constraints contained in clinical guideline recommendations within OWL language constructs. The extended 4D fluent method can model temporal constraints including valid calendar time, interval, duration, repetitive or cyclical temporal constraints and temporal relations such that it can enable reasoning over these temporal constraints in the OWL-based clinical guideline ontology system and overcome the shortcoming of the traditional OWL-based clinical guideline system to an extent
    corecore