56 research outputs found

    How to Evaluate your Question Answering System Every Day and Still Get Real Work Done

    Full text link
    In this paper, we report on Qaviar, an experimental automated evaluation system for question answering applications. The goal of our research was to find an automatically calculated measure that correlates well with human judges' assessment of answer correctness in the context of question answering tasks. Qaviar judges the response by computing recall against the stemmed content words in the human-generated answer key. It counts the answer correct if it exceeds agiven recall threshold. We determined that the answer correctness predicted by Qaviar agreed with the human 93% to 95% of the time. 41 question-answering systems were ranked by both Qaviar and human assessors, and these rankings correlated with a Kendall's Tau measure of 0.920, compared to a correlation of 0.956 between human assessors on the same data.Comment: 6 pages, 3 figures, to appear in Proceedings of the Second International Conference on Language Resources and Evaluation (LREC 2000

    A new metric for patent retrieval evaluation

    Get PDF
    Patent retrieval is generally considered to be a recall-oriented information retrieval task that is growing in importance. Despite this fact, precision based scores such as mean average precision (MAP) remain the primary evaluation measures for patent retrieval. Our study examines different evaluation measures for the recall-oriented patent retrieval task and shows the limitations of the current scores in comparing different IR systems for this task. We introduce PRES, a novel evaluation metric for this type of application taking account of recall and user search effort. The behaviour of PRES is demonstrated on 48 runs from the CLEF-IP 2009 patent retrieval track. A full analysis of the performance of PRES shows its suitability for measuring the retrieval effectiveness of systems from a recall focused perspective taking into account the expected search effort of patent searchers

    Preliminary Experiments using Subjective Logic for the Polyrepresentation of Information Needs

    Full text link
    According to the principle of polyrepresentation, retrieval accuracy may improve through the combination of multiple and diverse information object representations about e.g. the context of the user, the information sought, or the retrieval system. Recently, the principle of polyrepresentation was mathematically expressed using subjective logic, where the potential suitability of each representation for improving retrieval performance was formalised through degrees of belief and uncertainty. No experimental evidence or practical application has so far validated this model. We extend the work of Lioma et al. (2010), by providing a practical application and analysis of the model. We show how to map the abstract notions of belief and uncertainty to real-life evidence drawn from a retrieval dataset. We also show how to estimate two different types of polyrepresentation assuming either (a) independence or (b) dependence between the information objects that are combined. We focus on the polyrepresentation of different types of context relating to user information needs (i.e. work task, user background knowledge, ideal answer) and show that the subjective logic model can predict their optimal combination prior and independently to the retrieval process
    corecore