64 research outputs found

    Extensional Higher-Order Paramodulation in Leo-III

    Get PDF
    Leo-III is an automated theorem prover for extensional type theory with Henkin semantics and choice. Reasoning with primitive equality is enabled by adapting paramodulation-based proof search to higher-order logic. The prover may cooperate with multiple external specialist reasoning systems such as first-order provers and SMT solvers. Leo-III is compatible with the TPTP/TSTP framework for input formats, reporting results and proofs, and standardized communication between reasoning systems, enabling e.g. proof reconstruction from within proof assistants such as Isabelle/HOL. Leo-III supports reasoning in polymorphic first-order and higher-order logic, in all normal quantified modal logics, as well as in different deontic logics. Its development had initiated the ongoing extension of the TPTP infrastructure to reasoning within non-classical logics.Comment: 34 pages, 7 Figures, 1 Table; submitted articl

    GRUNGE: A Grand Unified ATP Challenge

    Full text link
    This paper describes a large set of related theorem proving problems obtained by translating theorems from the HOL4 standard library into multiple logical formalisms. The formalisms are in higher-order logic (with and without type variables) and first-order logic (possibly with multiple types, and possibly with type variables). The resultant problem sets allow us to run automated theorem provers that support different logical formats on corresponding problems, and compare their performances. This also results in a new "grand unified" large theory benchmark that emulates the ITP/ATP hammer setting, where systems and metasystems can use multiple ATP formalisms in complementary ways, and jointly learn from the accumulated knowledge.Comment: CADE 27 -- 27th International Conference on Automated Deductio

    Representation, Verification, and Visualization of Tarskian Interpretations for Typed First-order Logic

    Full text link
    peer reviewedThis paper describes a new format for representing Tarskian-style interpretations for formulae in typed first-order logic, using the TPTP TF0 language. It further describes a technique and an implemented tool for verifying models using this representation, and a tool for visualizing interpretations. The research contributes to the advancement of automated reasoning technology for model finding, which has several applications, including verification
    corecore