104,913 research outputs found

    Optical properties of carbon grains: Influence on dynamical models of AGB stars

    Get PDF
    For amorphous carbon several laboratory extinction data are available, which show quite a wide range of differences due to the structural complexity of this material. We have calculated self-consistent dynamic models of circumstellar dust-shells around carbon-rich asymptotic giant branch stars, based on a number of these data sets. The structure and the wind properties of the dynamical models are directly influenced by the different types of amorphous carbon. In our test models the mass loss is not severely dependent on the difference in the optical properties of the dust, but the influence on the degree of condensation and the final outflow velocity is considerable. Furthermore, the spectral energy distributions and colours resulting from the different data show a much wider spread than the variations within the models due to the variability of the star. Silicon carbide was also considered in the radiative transfer calculations to test its influence on the spectral energy distribution.Comment: 12 pages, 6 figures. To appear in A&

    Systematic Study of Electron Localization in an Amorphous Semiconductor

    Full text link
    We investigate the electronic structure of gap and band tail states in amorphous silicon. Starting with two 216-atom models of amorphous silicon with defect concentration close to the experiments, we systematically study the dependence of electron localization on basis set, density functional and spin polarization using the first principles density functional code Siesta. We briefly compare three different schemes for characterizing localization: information entropy, inverse participation ratio and spatial variance. Our results show that to accurately describe defect structures within self consistent density functional theory, a rich basis set is necessary. Our study revealed that the localization of the wave function associated with the defect states decreases with larger basis sets and there is some enhancement of localization from GGA relative to LDA. Spin localization results obtained via LSDA calculations, are in reasonable agreement with experiment and with previous LSDA calculations on a-Si:H models.Comment: 16 pages, 11 Postscript figures, To appear in Phys. Rev.

    Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing

    Get PDF
    Amorphous tantala (a-Ta2O5) is an important technological material that has wide ranging applications in electronics, optics and the biomedical industry. It is used as the high refractive index layers in the multi-layer dielectric mirror coatings in the latest generation of gravitational wave interferometers, as well as other precision interferometers. One of the current limitations in sensitivity of gravitational wave detectors is Brownian thermal noise that arises from the tantala mirror coatings. Measurements have shown differences in mechanical loss of the mirror coatings, which is directly related to Brownian thermal noise, in response to thermal annealing. We utilise scanning electron diffraction to perform Fluctuation Electron Microscopy (FEM) on Ion Beam Sputtered (IBS) amorphous tantala coatings, definitively showing an increase in the medium range order (MRO), as determined from the variance between the diffraction patterns in the scan, due to thermal annealing at increasing temperatures. Moreover, we employ Virtual Dark-Field Imaging (VDFi) to spatially resolve the FEM signal, enabling investigation of the persistence of the fragments responsible for the medium range order, as well as the extent of the ordering over nm length scales, and show ordered patches larger than 5 nm in the highest temperature annealed sample. These structural changes directly correlate with the observed changes in mechanical loss.Comment: 22 pages, 5 figure

    Link between the diversity, heterogeneity and kinetic properties of amorphous ice structures

    Full text link
    Based on neutron wide-angle diffraction and small-angle neutron scattering experiments, we show that there is a correlation between the preparational conditions of amorphous ice structures, their microscopic structural properties, the extent of heterogeneities on a mesoscopic spatial scale and the transformation kinetics. There are only two modifications that can be identified as homogeneous disordered structures, namely the very high-density vHDA and the low-density amorphous LDA ice. Structures showing an intermediate static structure factor with respect to vHDA and LDA are heterogeneous phases. This holds independently from their preparation procedure, i.e. either obtained by pressure amorphisation of ice I_h or by heating of vHDA. The degree of heterogeneity can be progressively suppressed when higher pressures and temperatures are applied for the sample preparation. In accordance with the suppressed heterogeneity the maximum of the static structure factor displays a pronounced narrowing of the first strong peak, shifting towards higher Q-numbers. Moreover, the less heterogeneous the obtained structures are the slower is the transformation kinetics from the high--density modifications into LDA. The well known high-density amorphous structure HDA does not constitute any particular state of the amorphous water network. It is formed due to the preparational procedure working in liquid nitrogen as thermal bath, i.e. at about 77 K

    On the heterogeneous character of water's amorphous polymorphism

    Get PDF
    In this letter we report {\it in situ} small--angle neutron scattering results on the high--density (HDA) and low-density amorphous (LDA) ice structures and on intermediate structures as found during the temperature induced transformation of HDA into LDA. We show that the small--angle signal is characterised by two QQ regimes featuring different properties (QQ is the modulus of the scattering vector defined as Q=4πsin(Θ)/λiQ = 4\pi\sin{(\Theta)}/\lambda_{\rm i} with Θ\Theta being half the scattering angle and λi\lambda_{\rm i} the incident neutron wavelength). The very low--QQ regime (<5×102< 5\times 10^{-2} \AA 1^{-1}) is dominated by a Porod--limit scattering. Its intensity reduces in the course of the HDA to LDA transformation following a kinetics reminiscent of that observed in wide--angle diffraction experiments. The small--angle neutron scattering formfactor in the intermediate regime of 5×102<Q<0.55 \times 10^{-2} < Q < 0.5 \AA1^{-1} HDA and LDA features a rather flat plateau. However, the HDA signal shows an ascending intensity towards smaller QQ marking this amorphous structure as heterogeneous. When following the HDA to LDA transition the formfactor shows a pronounced transient excess in intensity marking all intermediate structures as strongly heterogeneous on a length scale of some nano--meters
    corecore