2,120 research outputs found

    Calibrations for minimal networks in a covering space setting

    Full text link
    In this paper we define a notion of calibration for an equivalent approach to the classical Steiner problem in a covering space setting and we give some explicit examples. Moreover we introduce the notion of calibration in families: the idea is to divide the set of competitors in a suitable way, defining an appropriate (and weaker) notion of calibration. Then, calibrating the candidate minimizers in each family and comparing their perimeter, it is possible to find the minimizers of the minimization problem. Thanks to this procedure we prove the minimality of the Steiner configurations spanning the vertices of a regular hexagon and of a regular pentagon

    Variational approximation of functionals defined on 1-dimensional connected sets: the planar case

    Full text link
    In this paper we consider variational problems involving 1-dimensional connected sets in the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert-Steiner) problem. We relate them to optimal partition problems and provide a variational approximation through Modica-Mortola type energies proving a Γ\Gamma-convergence result. We also introduce a suitable convex relaxation and develop the corresponding numerical implementations. The proposed methods are quite general and the results we obtain can be extended to nn-dimensional Euclidean space or to more general manifold ambients, as shown in the companion paper [11].Comment: 30 pages, 5 figure

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    A multi-material transport problem and its convex relaxation via rectifiable GG-currents

    Full text link
    In this paper we study a variant of the branched transportation problem, that we call multi-material transport problem. This is a transportation problem, where distinct commodities are transported simultaneously along a network. The cost of the transportation depends on the network used to move the masses, as it is common in models studied in branched transportation. The main novelty is that in our model the cost per unit length of the network does not depend only on the total flow, but on the actual quantity of each commodity. This allows to take into account different interactions between the transported goods. We propose an Eulerian formulation of the discrete problem, describing the flow of each commodity through every point of the network. We provide minimal assumptions on the cost, under which existence of solutions can be proved. Moreover, we prove that, under mild additional assumptions, the problem can be rephrased as a mass minimization problem in a class of rectifiable currents with coefficients in a group, allowing to introduce a notion of calibration. The latter result is new even in the well studied framework of the "single-material" branched transportation.Comment: Accepted: SIAM J. Math. Ana

    Some Further Evidence about Magnification and Shape in Neural Gas

    Full text link
    Neural gas (NG) is a robust vector quantization algorithm with a well-known mathematical model. According to this, the neural gas samples the underlying data distribution following a power law with a magnification exponent that depends on data dimensionality only. The effects of shape in the input data distribution, however, are not entirely covered by the NG model above, due to the technical difficulties involved. The experimental work described here shows that shape is indeed relevant in determining the overall NG behavior; in particular, some experiments reveal richer and complex behaviors induced by shape that cannot be explained by the power law alone. Although a more comprehensive analytical model remains to be defined, the evidence collected in these experiments suggests that the NG algorithm has an interesting potential for detecting complex shapes in noisy datasets
    • …
    corecore