3 research outputs found

    Causality study on a feedforward active noise control headset with different noise coming directions in free field

    Full text link
    A systematic analysis is proposed to predict the performance of a typical feedforward single channel ANC headset in terms of the delay, especially the non-causal delay caused by different noise coming directions. First, the performance of a non-causal feedforward system for a band-limited noise is analyzed by using a simplified pure delay model, where it is found that the noise reduction bandwidth is narrowed and the maximum noise reduction is decreased with the increase of the non-causal delay. Second, a systematic method is developed, which can be used to predict the system performance with measured primary and secondary path transfer functions in most practical sound fields and to study the effects of the control filter length and the path delay on the performance. Then, the causality of a typical feedforward active noise control headset with the primary source at 0 and 90 positions in an anechoic chamber is analyzed, and the performance for the two locations predicted by the systematic analysis is shown in good agreements with the experiment results. Finally, an experiment of a typical feedforward active noise control headset in a reverberation chamber is carried out, which shows the validity of the proposed systematic analysis for other more practical sound fields. © 2014 Elsevier Ltd. All rights reserved

    Performance analysis and design of FxLMS algorithm in broadband ANC system with online secondary-path modeling

    Get PDF
    The filtered-x LMS (FxLMS) algorithm has been widely used in active noise control (ANC) systems, where the secondary path is usually estimated online by injecting auxiliary noises. In such an ANC system, the ANC controller and the secondary-path estimator are coupled with each other, which make it difficult to analyze the performance of the entire system. Therefore, a comprehensive performance analysis of broadband ANC systems is not available currently to our best knowledge. In this paper, the convergence behavior of the FxLMS algorithm in broadband ANC systems with online secondary-path modeling is studied. Difference equations which describe the mean and mean square convergence behaviors of the adaptive algorithms are derived. Using these difference equations, the stability of the system is analyzed. Finally, the coupled equations at the steady state are solved to obtain the steady-state excess mean square errors (EMSEs) for the ANC controller and the secondary-path estimator. Computer simulations are conducted to verify the agreement between the simulated and theoretically predicted results. Moreover, using the proposed theoretical analysis, a systematic and simple design procedure for ANC systems is proposed. The usefulness of the theoretical results and design procedure is demonstrated by means of a design example. © 2012 IEEE.published_or_final_versio

    The statistical behavior of phase error for deficient-order secondary path modeling

    No full text
    When implementing active noise control (ANC) systems, the filtered-x LMS (FXLMS) algorithm is often used, where the secondary path transfer function between the output of the adaptive control filter and the error sensor has to be modeled. To model the secondary path precisely, the secondary path estimation filter should be of sufficient order. However, too large an order increases the computation load of the FXLMS algorithm. In this letter, the relationship between the modeling phase error and the order of the secondary path modeling filter is analyzed
    corecore