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Performance Analysis and Design of FxLMS
Algorithm in Broadband ANC System With

Online Secondary-Path Modeling
Shing-Chow Chan and Yijing Chu

Abstract—The filtered-x LMS (FxLMS) algorithm has been
widely used in active noise control (ANC) systems, where the
secondary path is usually estimated online by injecting auxiliary
noises. In such an ANC system, the ANC controller and the
secondary-path estimator are coupled with each other, which
make it difficult to analyze the performance of the entire system.
Therefore, a comprehensive performance analysis of broadband
ANC systems is not available currently to our best knowledge. In
this paper, the convergence behavior of the FxLMS algorithm in
broadband ANC systems with online secondary-path modeling
is studied. Difference equations which describe the mean and
mean square convergence behaviors of the adaptive algorithms
are derived. Using these difference equations, the stability of the
system is analyzed. Finally, the coupled equations at the steady
state are solved to obtain the steady-state excess mean square
errors (EMSEs) for the ANC controller and the secondary-path
estimator. Computer simulations are conducted to verify the
agreement between the simulated and theoretically predicted
results. Moreover, using the proposed theoretical analysis, a sys-
tematic and simple design procedure for ANC systems is proposed.
The usefulness of the theoretical results and design procedure is
demonstrated by means of a design example.

Index Terms—Active noise control (ANC), design, filtered-x
LMS (FxLMS), online secondary-path modeling, performance
analysis.

I. INTRODUCTION

A CTIVE noise control (ANC) systems [1]–[3] are fre-
quently employed to reduce undesired noise sound in

headsets, industrial ducts, automobiles, etc. Compared with
other passive methods, ANC offers more flexibility in con-
trolling low-frequency noises. One of the most widely used
adaptive control algorithms for ANC systems is the filtered-x
LMS (FxLMS) algorithm [4], [5]. An important issue in the
FxLMS algorithm is the modeling of the secondary path. In
the simplest case, the secondary path is assumed to be known
or estimated offline using system identification techniques. Re-
cently, more attention has been paid to online secondary-path
modeling so as to combat the modeling errors and other
variations or uncertainties encountered in practical situations
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[6]–[12]. The well-known structure in [6] with auxiliary noise
injection is commonly employed, where the secondary path is
identified online during the operation of the ANC controller.

The performance of the ANC system is affected both by the
ANC controller and the secondary-path estimator. More pre-
cisely, the filtered input of the ANC controller is determined
by the secondary-path modeling. On the other hand, the accu-
racy of the secondary-path modeling depends on the residue
of the controller. Hence, the performance analysis of such an
ANC system becomes very difficult due to the interaction or
coupling of the two adaptive systems. For narrowband ANC
systems with online secondary-path modeling, a comprehensive
theoretical analysis was recently carried out in [13] and [14].
In [13], the difference equations governing the dynamics of the
entire system were developed and the steady-state estimation of
mean square errors (MSEs) of both the ANC controller and the
secondary-path estimator were derived in a closed form. Sim-
ilar work was conducted for the narrowband ANC system with
scaled auxiliary noise [14].

For broadband ANC systems, factors affecting the system
performance were studied in [15]. The convergence behavior of
the aforementioned methods in [7]–[10] was also compared and
evaluated preliminarily through statistical analysis, which pro-
vides useful guidance to the design of broadband systems. How-
ever, to our best knowledge, a detailed performance analysis on
important issues such as convergence rate, steady-state excess
mean square error (EMSE) over the ideal Wiener filter, and max-
imum step-sizes to achieve stability is unavailable. Driven by
the practical advantages of broadband ANC systems, the present
paper is devoted to bridge this gap in the literature of broadband
ANC systems.

In particular, we conduct a detailed performance analysis of
broadband ANC systems with online secondary-path modeling
for Gaussian inputs and additive noises. The difference equa-
tions describing the mean and mean square convergence behav-
iors of the FxLMS algorithm for the ANC controller and the
LMS algorithm for online secondary-path modeling are derived.
The Wiener solutions are derived from these difference equa-
tions and it is found that a modeling error may exist between
the Wiener solution and the true solution if the filter length is
insufficient. The difference equations also characterize the cou-
pling between the controller and the secondary-path estimator.
Using the difference equations of the coupled adaptive systems,
the convergence conditions are discussed. Finally, the decou-
pled equations at the steady state are solved to obtain formulas
of the EMSE for the ANC controller and the secondary-path
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estimator. Consequently, useful guidelines for step-size selec-
tion to achieve a given EMSE can be provided. This provides
valuable insight and possible guidance for future ANC system
design. Computer simulations show that the theoretical analyses
can satisfactorily predict the convergence behaviors of the ANC
systems and can lead to the proposed design procedure for ANC
systems.

The rest of the paper is organized as follows. In Section II,
the ANC system is briefly introduced. Section III is devoted to
the mean and mean square convergence performance analyses
of the above system. Simulation results and comparison with the
theoretical analyses will be presented in Section IV. Finally, a
conclusion is drawn in Section V.

II. ANC SYSTEM WITH ONLINE SECONDARY-PATH MODELING

Consider the ANC system with online secondary-path mod-
eling in Fig. 1, where the undesirable acoustic signal generated
from a source at location is to be minimized by the
acoustic signal generated from a loudspeaker through an
appropriate excitation using an adaptive filter-based controller

. An error microphone at is used to pick up the
residual signal at time instant to be minimized. The
acoustic path from to , called the primary path, is mod-
eled as a discrete time linear system with impulse response

. Similarly, the acoustic path from to
, called the secondary path, is modeled as and it is

estimated online using an adaptive filter by injecting
an auxiliary noise at . For time-invariant channels,

and will be independent of the time index .
The ANC controller approximates after
cascading with so that the undesirable contribution
from the noise source to location is minimized. is
usually chosen as a finite duration impulse (FIR) filter, say with
length , which
can be updated using variants of the LMS algorithm, called
the FxLMS-based algorithms. More precisely, we can see from
Fig. 1 that the contribution of at is , and the
contribution of the loudspeaker at is ,
where , ,
and the symbol “ ” stands for the discrete time convolution.
Let be the background noise and other acoustic signals at

, then

(1)

where . The mean squares error of
can be minimized by the well-known LMS algorithm with

desired input and output . Since the discrete-time
convolution is commutative, the equivalent input of the adaptive
filter should be . However, since
is unknown, it is replaced by its estimated value and
the input to the adaptive filter is . This
gives the following update equations for the ANC system:

(2)

(3)

(4)

Fig. 1. ANC system with online secondary-path modeling.

where ,
and are, respectively, the step-sizes for updating

and , which is chosen as an -tap adap-
tive filter ,

, and .
Since is filtered by in (3), the algorithm is
called the FxLMS algorithm.

In this paper, we shall study the convergence performance
of the above ANC system using the conventional FxLMS al-
gorithm and the LMS algorithm. The analytical approach to be
presented is sufficiently general to be extended to other adaptive
filter algorithms.

III. PERFORMANCE ANALYSIS

In this section, the convergence performance analysis of the
FxLMS algorithm with online secondary-path modeling given
by (1)–(4) will be studied. The difference equations describing
the mean and mean square behaviors of this system and the
steady-state EMSE will be derived. To simplify the analysis, the
following assumptions will be used.
(A1) The input

is an independent identically distributed (i.i.d.) Gaussian
random sequence with zero-mean and covariance .

(A2) The auxiliary noise is Gaussian-distributed with
zero-mean and covariance and the background
white Gaussian noise is zero mean with vari-
ance . , and are independent
with each other.

(A3) The weight vector and are independent with
and , which is the widely used indepen-

dence assumption [16].
(A4) The primary and secondary paths are assumed to be

linear shift invariant filters of finite duration, i.e.,
and .

From (A1)(A4) and Fig. 1, we have:
, , where

and
. Hence,

(5)

(6)
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A. Mean Convergence Analysis

We shall analyze the mean convergence performance of the
secondary-path adaptive filter and the FxLMS algorithm-based
ANC controller in turn.

1) Secondary-Path Adaptive Filter: First of all, we note that
the Wiener solution to is

(7)

It can be seen that for , . Otherwise, a modeling

error will exist. Consequently, and hence all
the cross-correlation matrices of the form will be asymp-
totic symmetric. As we shall see later, this considerably simpli-
fies the mean and mean squares convergence analyses. There-
fore, for simplicity, we shall assume in the sequel that ,
and hence and . A possible limitation
is that a longer adaptive filter may be used to ensure that the
performance predicted by the analysis is reasonably accurate.
Fortunately, from the simulation results to be presented later in
Section IV-B, we found that the theoretical analysis is not so
sensitive to possible channel length mismatches.

Let the weight error vector be and taking
expectation on both sides of (4), one gets

(8)

where and .
Note that is independent of . It can be seen from (8)
that the mean weight vector will converge to its Wiener
solution , if the step-size satisfies
or equivalently , where is the max-
imum eigenvalue of . It can be seen the convergence speed
for a given step-size is the fastest when the injection is
white since all eigenvalues of are identical and of equal
power, i.e., . To avoid unnecessary complications, we only
consider the case where is white in subsequent sections.
Consequently, the step-size has to satisfy and a
larger step-size or larger noise power will lead to a faster con-
vergence rate [11]. However, the auxiliary noise is expected to
be as small as possible in order to reduce the interference noise
to the ANC controller at . Two solutions to the problem are 1)
to vary the auxiliary noise power according to the residual noise
power [11], [21] and 2) to use a variable step-size algorithm to
obtain a fast convergence rate and low MSE as in [17].

2) FxLMS ANC Controller: For the ANC controller,
we shall assume that the algorithm converges so as to
derive its steady-state solution . Later, we shall deter-
mine the condition for convergence. At the steady state,
we have from (3) that

, which gives

(9)

where and
. To evaluate the expectations, we note that

.
If we assume that is updated sufficiently slowly so that

, then
, where .

Hence, . Since the
term converges to asymptotically,

, which is symmetric. Similarly,
we have for large . Thus,

.
Let be the weight error vector, (3)

can be rewritten as

(10)

where . The stability of (10) is determined
asymptotically by the eigenvalues of . Let be the
eigendecomposition of , where is an unitary matrix and

is a diagonal matrix containing eigen-
values of . Therefore, the mean weight vector will con-
verge if or equivalently

, where is the maximum eigenvalue
of . It should be noted that when there is a step change in
the system impulse response, the transient will decay with the
slowness mode corresponding to the smallest eigenvalue above.
In order to increase the tracking speed, variable step-size adap-
tive methods usually employ a larger step-size to damp down
the transient first and gradually decrease its value to achieve a
lower EMSE. The above step-size bound will serve as a guide-
line for choosing this maximum step-size.

B. Mean Square Convergence Analysis

Again, we shall analyze the mean square convergence per-
formance of the secondary-path modeling and ANC in turn. Fi-
nally, the two results are used to analyze the steady-state be-
havior of the whole system.

1) Secondary-Path Adaptive Filter: Multiplying by its
transpose and taking expectation on both sides of its updating
equation, one gets a difference equation in the weight error co-
variance matrix as follows:

(11)

The expectation of the last term above,
, can be evaluated in Appendix A

as

(12)

where ,
is the residual noise power, and are the

variances of and , respectively. Substituting (12)
into (11) and noting that is white, we get

(13)
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where .
It can be seen from (13) that the difference equation for the

weight error covariance matrix of the secondary-path estimator
is coupled with that of the ANC controller through the last
driving term . Note,
since the coupling only affects the driving term, the stability
behavior of (13) can be easily analyzed by treating it as an
ordinary LMS algorithm [19], provided that the driving term is
finite. Furthermore, the coupling effect due to the last driving
term can be made smaller by using a smaller step-size and
auxiliary noise power . Under this assumption, one gets the
condition for stability to be

(14)

Next, we wish to study the EMSE, which is defined as the
additional or excess MSE over the minimum value achieved by
the Wiener solution. It represents the additional MSE introduced
due to the use of the LMS algorithm. It can be shown that for
an adaptive filter with input and weight vector which
converges in the mean to the Wiener solution, the EMSE at time
instant is equal to , where is the covari-
ance matrix of and is the covariance of . For
the secondary-path adaptive estimator, the term in (13)
vanishes at the steady state. Hence, the steady-state EMSE can
be derived from (13) as

(15)

where . The coupling term still
needs to be determined, which will be presented after the anal-
ysis of the ANC controller. In addition, since the coupling effect
has not been taking into account by assuming that the driving
term is finite, (14) only serves as a maximum possible value of

for achieving stability. A joint bound for the two step-sizes
will be derived later at Section III-C, where the steady-state
EMSE of the two coupled systems will be solved approximately.

2) FxLMS ANC Controller: For the ANC controller, the evo-
lution equation of the covariance matrix can be similarly
derived from (3) as (A-3) in Appendix B

(16)

where

is the driving term and
. Since (16) in-

volves the expectation of several quantities with respect to the
input, it can be rather difficult to obtain an explicit formula on
the EMSE. To proceed further, we assume that the input is
Gaussian distributed and evaluate the expectation on the right
hand side of (16) using the Gaussian factoring theorem [18].
More precisely, the -element of the term can be
simplified to

where is the th element of the vector . Thus,

By substituting the above result into (16), a difference equa-
tion describing the behavior of the ANC controller is obtained.
Compared to the difference equation in (13), the secondary-path
affects both the driving term and the system stability. On the
other hand, the steady-state behavior can be studied by replacing

in (16) with , since converges quickly
to and . This gives for large

(17)

where we have used the fact that

To study the stability of the difference equation for the ANC
controller, we note that serves the role
of the Lyapunov function which is always positive. Taking the
trace on both sides of (17), one gets

where and

For Gaussian inputs, the first term
above can be written as

. If
the secondary path adaptive filter converges, then the driving
term in in (16) and (17) will be finite. Since

is positive, the system will be stable if

or equivalently:

(18)
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For a given probability density function (pdf) of , one
needs to evaluate in order to determine .
A simplification occurs when is Gaussian dis-
tributed and is weakly correlated
with . Then, using the inequality,

for positive definite matrices and
, we have

and .
Thus, using this expression of , (18) can be simplified to

where we have used the fact that
. Consequently, an approx-

imate sufficient condition for to converge in the mean
square sense is

(19)

Equation (19) provides a useful bound for selecting
the maximum step-size of . If variable step-size is
used, this upper bound can be estimated online from
the ensemble average of as

using a forgetting factor . Similar
to (14), (19) serves as a maximum possible value of for
achieving stability. The joint effect of the two systems will be
analyzed further at Section III-C.

Since both and are usually chosen as small values to
achieve a low steady-state error, the term containing both
and (i.e., the third term) on the right-hand side of (17) is
usually small and can be neglected when studying the behavior
near convergence. Using the following transformation

:

(20)

where the subscript , denotes the -element of the corre-
sponding matrices.

At the steady state, ,
. Since the optimal

residual is weakly uncorrelated with ,

and hence,

(21)

where and
.

Substituting (21) into (20) gives

(22)

where we have used the equality sign for simplicity and is
the th diagonal element of the matrix . The EMSE of
is . Using (22), we
have

(23)

where and
. For small

where we have used (21) and the independency of from
assumption (A-1) in arriving at the second identity. Equation
(23) is similar to the conventional LMS algorithm except for the
term , which shows the coupling of the ANC controller
with the secondary-path estimator through .

Next, we shall combine the two steady-state results ob-
tained in (15) and (23) above to solve the coupled equa-
tions for the steady-state MSE of the entire system at ,

. Moreover, due to the coupling,
is found to diverge if the product of the step-sizes of the ANC
controller and secondary-path estimator is larger than a certain
value. This gives an additional joint condition on and
for achieving stability.

C. Steady-State MSE

From Fig. 1 and (5), the steady-state MSE is given by

(24)

where is defined in (13). Next, we shall evaluate
by solving the coupled equations in (15) and (23) and

utilize it to analyze the steady-state MSE of two commonly
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used noise injection methods depending on whether the noise
variance is constant (Case2) or proportional to MSE (Case1).

First of all, we have from (23) that

(25)

where . To simplify the analytical
expression, we seek an upper bound of by noting that

. Consequently,

(26)

where and we have used (15)
for the derivation of the first equality above. Therefore, an upper
bound of can be obtained by equating both sides of (26),
which gives

(27)

where . For simplicity, we
shall use this upper bound as an estimate. Consequently, by
substituting (27) into (15), an approximate EMSE for the sec-
ondary-path estimator in terms of can be obtained. For Case
1, where the variance of injected noise is proportional to

, one will need to compute , whose analytical ex-
pression will be derived later in this section. It will be shown
in the simulation results to be presented that this approximation
gives good estimation of the EMSE values. Similarly, by using
the same approximation above

one can get an upper bound of the EMSE of the ANC controller
using (23) and the small step-size approximation

. This again depends on and its
computation will be similar to that described above.

Next, we consider two widely used systems with different
choices of noise injection sequences : Case 1)

[11], [21] and Case 2) , where
is a zero-mean white Gaussian sequence with variance

, is the es-
timated residue noise power, and is a forgetting factor with

. Following the discussion after (8), Case 1 usu-
ally leads to a faster convergence rate than Case 2 because the
residual noise power is incorporated.

The steady-state MSEs are first derived and then the joint
stability bounds of the ANC controller and secondary-path
adaptive filter are analyzed. The difference equations of each
subsystem determine their individual maximum possible values
through (14) and (19). On the other hand, since the two subsys-
tems are coupled together, their product needs to satisfy a joint
stability condition as shown next.

Case 1) At the steady state,

for large . Using the above expres-
sion for and the upper bound of (27), one gets
from (24) that

where
and

denotes the estimated value of by using the
assumptions above. After some manipulation, we
obtain

(28)
It can be seen that will be unbounded
when or

. The latter condition in-
dicates that the injected noise variance has to
be limited by . Using the fact

, the former sug-
gests an upper bound for

where . Consequently, the max-
imum possible injection noise power is equal to

which has to be positive. It suggests
, which after a

slight manipulation becomes

Again, we have
and

hence .
Combining with the bound on in (19),
denoted by , one has the following
upper bound value for

(29)

We also notice that (14) can be enforced by using
the instantaneous value of computed and the
minimum of this value or that calculated from (29)
should be used, though it is expected that (29) will
be smaller in general.
Since also depends on through

, (28) is a highly nonlinear equation in
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. To seek a closed-form expression of
for practical use, we take advantages of the com-
monly encountered small step-size situation to sim-
plify further the denominator of (28). For notational
convenience, let . Then, by using bi-
nomial expansion of the denominator and retaining
the first order term of on the right-hand side,
(28) becomes for small

(30)

where
, are defined above,

is defined in
(27), and is the minimum modeling error of the
Wiener solution, which can be computed from
in (9) as .
Quantities and

can be computed
using Monte Carlo simulation or from the given pdf
of .
We can also see from (30) that the approximate

will be unbounded if the denominator van-
ishes. This suggests that, other than the general
upper bounds for the step-sizes in (14), (19), and
(29), an approximate constraint on the product of
the step-sizes of the ANC and secondary-path esti-
mator should also be satisfied

(31)

to achieve stability. Simulation result shows that
these bounds are reasonably tight. The details are
omitted due to page limitation and are available from
the authors upon request.

Case 2) Similar to the analysis in Case 1 and using the con-
stant variance noise sequence , one can
get from (24) and (27) that

(32)

where . Therefore, in
Case 2, the following is required for stability other
than the two general upper bounds in (14) and (19)

(33)

Due to the small step-sizes and other approxima-
tions used, it is found from simulation results that
(33) somewhat overestimates the product of the two
step-sizes within about one order of magnitude. A
useful guideline is to divide the product of the step-
sizes computed above by a factor of 10. On the other

hand, the bounds in (14) and (19) are rather sharp in
detecting instability. The use of these expressions in
the design of ANC systems will be further illustrated
in Example 3 in Section IV.

IV. SIMULATION RESULTS

In this section, computer simulations are conducted to study
the performance of the ANC system and verify the analytical
results of its convergence behavior as discussed in Section III.

The following simulations are based on Eriksson’s ANC
structure in [6]. In experiments 1 and 2, simulation and theo-
retical results of the EMSE curves (Case 2) are compared for
secondary paths with different lengths . In experiment 3, the
theoretical analysis derived is employed in an example design
of an ANC controller for Case 2. In experiment 4, two practical
ANC systems as described in Section III are compared.

The primary path is generated randomly as a FIR filter. The
ANC system is supposed to be equipped in a small cabinet, say
an automobile, and the noise source is close to the error mi-
crophone. Thus, a short primary path of length 12 is consid-
ered. The length of the controller is set to be 10, which is
slightly shorter than that of the primary path. The background
noise variance is . The auxiliary noise is a white
Gaussian sequence with a variance (Case 2). Both
white and colored inputs are considered and their variances are
normalized to be . For the colored input, a first order
autoregressive (AR) process is considered and it is given by

, where is zero-mean and
white Gaussian distributed. All simulation results are averaged
over 200 Monte Carlo runs and the covariance matrix and
other related quantities in computing the theoretical curves are
estimated from the input signal by averaging over 1000 Monte
Carlo runs.

A. Experiment 1: Sufficient-Order Secondary Path Modeling

In this experiment, the secondary path is assumed to be short
and has a length of 8. Its estimator is also assumed to have a
length of 8, i.e., the secondary path modeling is of sufficient
order. In this experiment, the maximum step-sizes are calcu-
lated, respectively, to be 0.4 and 0.03, according to (14) and
(19). The step-sizes are chosen within these bounds, which also
satisfies (33). For both white and colored inputs , the
step-size for the secondary-path estimator is identical and it is
chosen as . For the ANC controller, the step-sizes
for the white and colored inputs are, respectively,
and . Fig. 2 shows the EMSE curves for both the
ANC controller and the secondary-path estimator. It can be seen
that the theoretical and simulated EMSE curves show the good
agreement with each other. The transient behavior of the ANC
controller is slightly underestimated by the theoretical analysis
as shown in Fig. 2(b), since the last term of the difference equa-
tion (16), i.e., , has been ig-
nored in the derivation of theoretical results. Another possible
reason is that, while the ANC controller converges at around the
5000th iteration, the secondary-path estimator has not yet con-
verged. This results in the deviation between the simulation and
theoretical results. The estimated steady-state EMSE values are
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Fig. 2. Comparison of simulation and theoretical results of the EMSE curves with white Gaussian input for (a) the secondary path and (b) the ANC controller; and
with the first-order AR process input for (c) the secondary path and (d) the ANC controller. � � �. � � �����. � � ����� for the white input. � � ������
for the colored input.

TABLE I
COMPARISON OF THE EXPERIMENTAL AND ESTIMATED STEADY-STATE EMSE

FOR ANC CONTROLLER AND SECONDARY-PATH ESTIMATOR �� � ��

Simu: simulation; Theo: theoretical; WG: white Gaussian; AR: autoregres-
sive; EMSEw: steady-state EMSE of ANC controller; EMSEs: steady-state
EMSE of secondary-path estimator; SSS: small step-size; LSS: large step-size.

compared with the simulation results in Table I (SSS), which
also agree well with each other.

Next, we use comparatively larger step-sizes to evaluate the
accuracy of the small step-size assumptions. For white input,

and are evaluated. Whereas, for colored
input, and are considered. Fig. 3 shows
the simulated and the theoretically predicted EMSE curves.
Again, the theoretical and simulated results also agree well with
each other. Compared to the cases with smaller step-sizes, the
transient behavior of the ANC controller has a slightly larger
deviation from the theoretical results, as shown in Fig. 3(b),
because the step-sizes are now much larger. The estimated
steady-state EMSE values are also compared with the simu-
lation results in Table I (LSS). It shows that the steady-state

EMSE for the secondary path can be well estimated by the
theoretical analysis, and similarly the estimated steady-state
EMSE of the ANC controller slightly deviates from the true
one (within 1 dB), despite the larger step-size used. Due to
page limitation, results for the mean convergence analysis are
omitted, which also agree well with the simulation results.

B. Experiment 2: Deficient-Order Secondary Path Modeling

In order to investigate the sensitivity of the mean square
performance analysis in (13) to the modeling error of the sec-
ondary-path estimator, we consider the case below.
Simulations are conducted for a secondary path of length 50
which is to be estimated by an adaptive filter with a shorter
length of 25. To make use of the analysis, we simply truncate
the weight error vector in (13)–(15) to length 25. The step-size
for the estimator is chosen as . While for the
ANC controller, the step-size is set to be and

, respectively, for the white and colored inputs.
Fig. 4 shows the convergence curves of EMSE and Table II
shows the steady-state EMSE values of the simulated and
theoretical results. It can be seen that the theoretical analyses
can also model the transient and steady-state behaviors of the
ANC system with long secondary path and deficient estimation
order. Compared to Fig. 2(a) and (c) where the secondary path
is short, the convergence speed of its estimator becomes
slower when the secondary path is longer. It can also be seen
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Fig. 3. Comparison of simulation and theoretical results of the EMSE curves with white Gaussian input for (a) the secondary path, (b) the ANC controller; and
with the first-order AR process input for (c) the secondary path and (d) the ANC controller.� � �.� � ����� and � � ����� for the white input. � � �����
and � � ����� for the colored input.

TABLE II
COMPARISON OF THE EXPERIMENTAL AND ESTIMATED STEADY-STATE EMSE

FOR ANC CONTROLLER AND SECONDARY-PATH ESTIMATOR �� � ���

that the steady-state EMSE of the secondary path becomes
higher. This in turn affects the ANC controller due to their
coupling effect. From the curves in Figs. 2 and 4 as well as
the corresponding experimental data in Table II (SSS), it is
observed that for the white input, the steady-state EMSE of
the ANC controller, EMSEw, increases with the length of the
secondary path, while for the colored input, EMSEw remains
almost the same since a much smaller step-size is used and
the coupling effect through the term is small as shown in
(27).

Next, we compare the estimated and simulated steady-state
EMSE values by using comparatively larger step-sizes. For the
white input, and are used while for
the colored input, and are considered.

The results are shown on the column LSS in Table II. It seems
that compared to the results using small step-sizes, the deviation
between theoretical estimation and simulation EMSE values in-
creases slightly. The difference is within 1.5 dB.

C. Experiment 3: Design of a Case 2 ANC System

In this experiment, the proposed design procedure for ANC
systems is derived from the theoretical analyses and its useful-
ness is illustrated by a design example. The settings are iden-
tical to that in Experiment 1 with colored input and the noise
sequence has constant variance (Case 2). Given the prior
knowledge on the power of the input , the variances of

and and the estimated variance of the modeling
error , we shall determine the step-sizes for the ANC con-
troller and the secondary-path estimator in order to achieve a
desired steady- state EMSE for the controller using the small
step-sizes assumption. The proposed design procedure is sum-
marized in Table III.

Suppose the power of the input is 1.5 and the
modeling error variance is estimated to be 0.2, which
has a mismatch with its true value due to say
channel length mismatch. The desired steady-state EMSE
for the ANC controller is set to be dB. First
of all, can be calculated directly from (21) to be 0.7,
where , and (Step 1 in
Table III). On the other hand, to achieve a good performance
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Fig. 4. Comparison of simulation and theoretical results of the EMSE curves with white Gaussian input for (a) the secondary path and (b) the ANC controller;
and with the first-order AR process input for (c) the secondary path and (d) the ANC controller. � � ��. � � ������. � � ����� for the white input.
� � ������ for the colored input.

TABLE III
PROPOSED DESIGN PROCEDURE FOR CASE2 SSS ANC SYSTEMS

we assume that a small step-size for the secondary-path es-
timator is used so that is approximately equal as

, since the other term is

small compared to . Then, the step-size for the ANC
controller can be calculated from (23). Since is usually
very small, the term in the denominator of (23)
can be ignored to yield .
To determine the step-size for the secondary-path estimator,
we assume that is a small portion of

as mentioned before, say 0.1% of . Thus,
and by neglecting the

small term in the denominator of (15), one gets
(Step 2). Finally,

applying these two step-sizes to (14), (19), and (33), we found
that the stability constraints are satisfied (Step 3). Using the
two step-sizes in the ANC system, the obtained steady-state
EMSE for the ANC controller is dB, which is
very close to the desired value of dB. This illustrates
the effectiveness of the proposed design procedure for ANC
systems.

D. Experiment 4: Performance Comparison in Case 1 and 2

As described in Section III-C, two typical noise sequences
are usually used in ANC systems. In this experiment, the

performances of these two noise sequence generation strategies
are compared. The settings are the same as that in Experiment
1 and the input signal is a white Gaussian sequence. In Case 1,
the noise sequence with and
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Fig. 5. Comparison of the EMSE curves in Case 1 and Case 2 with white Gaussian input for (a) the secondary path and (b) the ANC controller. � � �.
� � �����. � � ���� for Case 1. � � ����� for Case 2.

is estimated by using a forgetting factor so
that the correlation between and will be sufficiently
small. In Case 2, with . To obtain similar
steady-state EMSE values for the two algorithms, the step-sizes

and are used for Case 1, whereas
and are used for Case 2. The simulation

results are shown in Fig. 5. It can be seen in Fig. 5(a) that in
Case 1, the secondary-path estimator converges at a much faster
speed and to a lower steady-state value than that in Case 2. This
agrees with the discussion in Section III-C, where a variable
noise sequence is preferable. As for the ANC controller shown
in Fig. 5(b), the convergence speed in Case 1 is slightly faster
than that in Case 2 and the steady-state values are similar.

V. CONCLUSION

The mean and mean square convergence behaviors of
FxLMS ANC systems with online secondary-path modeling
have been presented. New difference equations describing
the convergence behaviors of the ANC controller and the
secondary-path estimator have been derived. Based on these
difference equations, the stability of the system is analyzed
and the steady-state EMSEs for the ANC controller and the
secondary-path estimator are obtained. The analyses provide
useful insight as well as guidance for the design and analyses
of ANC systems with secondary-path modeling, which are
illustrated with design examples. The simulation results are
found to be in good agreement with the theoretical predictions.

APPENDIX A
EVALUATION OF

The expectation is now evaluated.
First, we note from (6) that . From (8),

can be rewritten as

(A-1)

where is the residual noise
power of at for the optimal weight vector . Since

is independent of , we obtain

(A-2)

where , and and are the vari-
ances of and , respectively. Note that in (A-2), we
have used the Gaussian factoring theorem [18] to simplify the
expression .

APPENDIX B
DERIVATION OF THE DIFFERENCE EQUATION FOR

The difference equation for the ANC controller is now de-
rived. From (5), we have , where
has been rewritten as in (A-1). Multiplying by its trans-
pose and taking expectation on both sides of the weight update
equation, one gets from (3) the following:

(A-3)

where

is the driving term.
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