4,763 research outputs found

    Improving Speech Recognition for Interviews with both Clean and Telephone Speech

    Get PDF
    High quality automatic speech recognition (ASR) depends on the context of the speech. Cleanly recorded speech has better results than speech recorded over telephone lines. In telephone speech, the signal is band-pass filtered which limits frequencies available for computation. Consequently, the transmitted speech signal may be distorted by noise, causing higher word error rates (WER). The main goal of this research project is to examine approaches to improve recognition of telephone speech while maintaining or improving results for clean speech in mixed telephone-clean speech recordings, by reducing mismatches between the test data and the available models. The test data includes recorded interviews where the interviewer was near the hand-held, single-channel recorder and the interviewee was on a speaker phone with the speaker near the recorder. Available resources include the Eesen offline transcriber and two acoustic models based on clean training data or telephone training data (Switchboard). The Eesen offline transcriber is on a virtual machine available through the Speech Recognition Virtual Kitchen and uses an approach based on a deep recurrent neural network acoustic model and a weighted finite state transducer decoder to transcribe audio into text. This project addresses the problem of high WER that comes when telephone speech is tested on cleanly-trained models by 1) replacing the clean model with a telephone model and 2) analyzing and addressing errors through data cleaning, correcting audio segmentation, and adding words to the dictionary. These approaches reduced the overall WER. This paper includes an overview of the transcriber, acoustic models, and the methods used to improve speech recognition, as well as results of transcription performance. We expect these approaches to reduce the WER on the telephone speech. Future work includes applying a variety of filters to the speech signal could reduce both additive and convolutional noise resulting from the telephone channel

    Físchlár-DiamondTouch: collaborative video searching on a table

    Get PDF
    In this paper we present the system we have developed for our participation in the annual TRECVid benchmarking activity, specically the system we have developed, Físchlár-DT, for participation in the interactive search task of TRECVid 2005. Our back-end search engine uses a combination of a text search which operates over the automatic speech recognised text, and an image search which uses low-level image features matched against video keyframes. The two novel aspects of our work are the fact that we are evaluating collaborative, team-based search among groups of users working together, and that we are using a novel touch-sensitive tabletop interface and interaction device known as the DiamondTouch to support this collaborative search. The paper summarises the backend search systems as well as presenting the interface we have developed, in detail

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197
    corecore