2,269 research outputs found

    The Space of EDF Feasible Deadlines

    Get PDF
    It is well known that the performance of computer controlled systems is heavily affected by delays and jitter occurring in the control loops, which are mainly caused by the interference introduced by other concurrent activities. A common approach adopted to reduce delay and jitter in periodic task systems is to decrease relative deadlines as much as possible, but without jeopardising the schedulability of the task set. In this paper, we formally characterise the region of admissible deadlines so that the system designer can appropriately select the desired values to maximise a given performance index defined over the task set. Finally we also provide a sufficient region of feasible deadlines which is proved to be convex

    Scheduling of Early Quantum Tasks

    Get PDF
    An Early Quantum Task (EQT) is a Quantum EDF task that has shrunk its first period into one quantum time slot. Its purpose is to be executed as soon as possible, without causing deadline overflow of other tasks. We will derive the conditions under which an EQT can be admitted and can have an immediate start. The advantage of scheduling EQTs is shown by its use in a buffered multi-media server. The EQT is associated with a multimedia stream and it will use its first invocation to fill the buffer, such that a client can start receiving data immediately

    A C-DAG task model for scheduling complex real-time tasks on heterogeneous platforms: preemption matters

    Full text link
    Recent commercial hardware platforms for embedded real-time systems feature heterogeneous processing units and computing accelerators on the same System-on-Chip. When designing complex real-time application for such architectures, the designer needs to make a number of difficult choices: on which processor should a certain task be implemented? Should a component be implemented in parallel or sequentially? These choices may have a great impact on feasibility, as the difference in the processor internal architectures impact on the tasks' execution time and preemption cost. To help the designer explore the wide space of design choices and tune the scheduling parameters, in this paper we propose a novel real-time application model, called C-DAG, specifically conceived for heterogeneous platforms. A C-DAG allows to specify alternative implementations of the same component of an application for different processing engines to be selected off-line, as well as conditional branches to model if-then-else statements to be selected at run-time. We also propose a schedulability analysis for the C-DAG model and a heuristic allocation algorithm so that all deadlines are respected. Our analysis takes into account the cost of preempting a task, which can be non-negligible on certain processors. We demonstrate the effectiveness of our approach on a large set of synthetic experiments by comparing with state of the art algorithms in the literature

    Real-time scheduling of a tertiary-storage juke-box

    Get PDF
    We present a jukebox scheduler for real-time data. The scheduler is part of a hierarchical real-time file system to be used over a network. A jukebox is a large tertiary storage device whose removable media (e.g. cd-rom, dvd-rom) are loaded and unloaded from one or more drives by a robot. The problem with tertiary storage is that media exchange times are high and the number of drives is limited. This makes scheduling tertiary storage complicated. The storage media switching time in a jukebox is in the order of tens of seconds. Therefore multiplexing between two files stored in different media is many orders of magnitude slower than doing the same in secondary storage. The goal of the scheduler is to schedule the use of the jukebox devices (arm and drives) in such a way that the system can guarantee the deadlines while minimizing the response time. The problem is similar to that of scheduling multiple processors with the additional difficulty of having to deal with the high switching times and the use of a shared resource (the arm). Finding an optimal schedule is an NP-hard problem. We provide a near-optimal polynomial solution by using heuristics to prune the tree of solutions. The scheduling time is in average less than 100 ms. The incoming requests are scheduled on-line

    Feasibility Tests for Recurrent Real-Time Tasks in the Sporadic DAG Model

    Full text link
    A model has been proposed in [Baruah et al., in Proceedings of the IEEE Real-Time Systems Symposium 2012] for representing recurrent precedence-constrained tasks to be executed on multiprocessor platforms, where each recurrent task is modeled by a directed acyclic graph (DAG), a period, and a relative deadline. Each vertex of the DAG represents a sequential job, while the edges of the DAG represent precedence constraints between these jobs. All the jobs of the DAG are released simultaneously and have to be completed within some specified relative deadline. The task may release jobs in this manner an unbounded number of times, with successive releases occurring at least the specified period apart. The feasibility problem is to determine whether such a recurrent task can be scheduled to always meet all deadlines on a specified number of dedicated processors. The case of a single task has been considered in [Baruah et al., 2012]. The main contribution of this paper is to consider the case of multiple tasks. We show that EDF has a speedup bound of 2-1/m, where m is the number of processors. Moreover, we present polynomial and pseudopolynomial schedulability tests, of differing effectiveness, for determining whether a set of sporadic DAG tasks can be scheduled by EDF to meet all deadlines on a specified number of processors

    Runtime Scheduling, Allocation, and Execution of Real-Time Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence

    Get PDF
    This paper describes a novel way to exploit the computation capabilities delivered by modern Field-Programmable Gate Arrays (FPGAs), not only towards a higher performance, but also towards an improved reliability. Computation-specific pieces of circuitry are dynamically scheduled and allocated to different resources on the chip based on a set of novel algorithms which are described in detail in this article. These algorithms consider most of the technological constraints existing in modern partially reconfigurable FPGAs as well as spontaneously occurring faults and emerging permanent damage in the silicon substrate of the chip. In addition, the algorithms target other important aspects such as communications and synchronization among the different computations that are carried out, either concurrently or at different times. The effectiveness of the proposed algorithms is tested by means of a wide range of synthetic simulations, and, notably, a proof-of-concept implementation of them using real FPGA hardware is outlined
    corecore