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Abstract

It is well known that the performance of computer con-
trolled systems is heavily affected by delays and jitter oc-
curring in the control loops, which are mainly caused by
the interference introduced by other concurrent activities.
A common approach adopted to reduce delay and jitter in
periodic task systems is to decrease relative deadlines as
much as possible, but without jeopardising the schedulabil-
ity of the task set.

In this paper, we formally characterise the region of ad-
missible deadlines so that the system designer can appropri-
ately select the desired values to maximise a given perfor-
mance index defined over the task set. Finally we also pro-
vide a sufficient region of feasible deadlines which is proved
to be convex.

1. Introduction

The software of control systems is typically imple-
mented through a set of periodic activities performing data
sampling, sensory processing, control, action planning, and
actuation. Although not strictly necessary, periodic execu-
tion simplifies the design of control algorithms and allows
using standard control theory to guarantee system stability
and performance requirements.

When several of such activities execute concurrently in
the same processor, however, each task may experience a
variable delay and jitter, mainly due to the interference cre-
ated by the other tasks. The amount of delay and jitter expe-
rienced by each task depends on several factors, including
the scheduling algorithm running in the kernel, the over-
all workload, and the task parameters (computation times,
periods, and deadlines). If not properly taken into account,
delays and jitter may degrade the performance of the system
and even jeopardise its stability [17, 18, 14].

The problem of jitter in real-time control applications
has received increased attention during the last decade and
several techniques have been proposed to cope with it. Nils-
son [22] analysed the stability and performance of real-time

control systems with random delays and derived an optimal,
jitter-compensating controller. Martı́ el al. [21] proposed a
compensation technique for controllers based on the pole
placement design method. Di Natale and Stankovic [15]
proposed the use of simulated annealing to find the optimal
configuration of task offsets that minimises jitter, accord-
ing to some user defined cost function. Cervin et al. [11]
presented a method for finding an upper bound of the input-
output jitter of each task under EDF scheduling, and intro-
duced the concept of jitter margin to simplify the analysis
of control systems and guarantee their stability when certain
conditions on jitter are satisfied.

A common practice to reduce jitter in control applica-
tions is to separate each control task into three distinct sub-
tasks performing data input, processing, and control output.
Then, the input-output jitter is reduced by postponing the
input-output subtasks to some later point in time, so trading
jitter with delay [13]. Cervin [10] proposed to split the con-
trol algorithm into two parts (Calculate Output and Update
State), which are scheduled as separate tasks. This method
works fine for simple control applications, but introduces
a number of problems. In particular, the jitter reduction is
obtained by inserting extra delays in task execution, since
input and output parts are always separated by exactly a
period, while normally the average delay could be smaller.
The effect of having a higher delay in the control loop has to
be carefully analysed, since it could be more negative than
the effect of jitter. A recent performance study involving
several LQG controllers (with a direct term) indicates that
delay is worse than jitter, except when the sampling rate is
extremely low [20].

Another approach widely adopted for reducing jitter and
delay is to limit the execution interval of each task by setting
a suitable relative deadline. Working on this line, Baruah
et al. [3] proposed two methods (with different complex-
ity and performance) for assigning shorter relative deadlines
to tasks and guaranteeing the schedulability of the task set.
A comparative evaluation of different jitter reduction ap-
proaches has been presented by Cervin and Buttazzo [8].

Several authors [26, 9, 1, 16] independently proposed
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different algorithms for computing the minimum deadline
of a newly arrived task, assuming the existing task set is
feasibly schedulable by EDF. The problem of these meth-
ods is that they can hardly be extended to reduce a set of
arbitrary deadlines, but can only be applied to a single task
at the time, following a given order, as suggested by [16].
In this way, however, the only task which experiences a sig-
nificant deadline reduction is the first task in the sequence,
since it can use all the slack available in the task set to min-
imise its deadline, leaving little margin for the remaining
tasks. To apply a more uniform deadline reduction in the
task set, Balbastre et al. [1] proposed an algorithm able
to scale all deadlines by the same factor. The problem of
this approach, however, is that a uniform deadline reduc-
tion may not achieve a significant improvement in terms of
jitter and delays, because all deadlines are reduced and, in
some cases, the schedule could even remain unchanged.

In this paper, we present a general analysis methodology
for identifying the feasibility region of the task deadlines,
when tasks are scheduled by the Earliest Deadline First al-
gorithm [19]. The knowledge of such a region is very useful
in the design process, since it allows the designer to perform
sensitivity analysis and select the set of relative deadlines
that maximises a given performance index defined over the
task set.

Different methods for optimising the performance of pe-
riodic task sets have been proposed in the literature, both
under fixed priority [6] and EDF [25], but only with respect
to periods. Sensitivity analysis in the domain of computa-
tion times has also been addressed in [7], while sensitivity
analysis of any parameters was proposed at the cost of high
complexity by Racu et al. [23] using binary search. Hence,
this paper fills the missing gap, allowing the designer to rea-
son also in the space of task deadlines.

The rest of the paper is organised as follows. Section 2
presents the system model, the terminology and the basic
assumptions. Section 3 formally defines the problem to
be solved and provides a simplified explanation of the ap-
proach, deriving the feasibility region for two tasks. Sec-
tion 4 describes the general method for n tasks, and presents
the algorithm for deriving the region. Section 7 presents an
approximate solution to reduce the complexity of the ap-
proach. Finally, Section 8 states our conclusions and future
work.

2. Terminology and Assumptions

We consider a set T = {τ1, τ2, . . . , τn} of n periodic (or
sporadic) tasks that have to be executed on a uniprocessor
system under the Earliest Deadline First (EDF) scheduling
algorithm [19]. Each task τi consists of an infinite sequence
of task instances, or jobs, having the same worst-case ex-
ecution time (WCET), the same relative deadline, and the
same interarrival period. The following notation is used

throughout the paper.

τik denotes the k-th job of task τi, with k ∈ N .

Ci denotes the worst-case execution time (WCET) of task
τi, that is, the WCET of each job of τi. The vector of
all the computation times (C1, . . . , Cn) is denoted by
C.

Ti denotes the period of task τi (or the minimum interar-
rival time for sporadic tasks).

Di denotes the relative deadline of task τi, that is, the max-
imum finishing time allowed for any job, relative to
the its activation time. The vector of all the deadlines
(D1, . . . , Dn) is denoted by D.

rik denotes the release time of job τik . If the first job is
released at time ri,1 = Φi, also referred to as the task
phase, the generic k-th job is released at time

rik = Φi + (k − 1)Ti.

dik denotes the absolute deadline of job τik, that is the
maximum absolute time job τik is allowed to complete.

Ui denotes the utilisation of task τi, that is, the fraction of
CPU time used by τi (Ui = Ci/Ti).

U denotes the total utilisation of the task set, that is, the
sum of all tasks utilisations (Ui =

∑n
i=1 Ui).

We assume all tasks are fully preemptive and are simul-
taneously activated at time t = 0 (that is, Φi = 0, for all
tasks).

3. Problem statement

We consider the problem of determining the region of the
feasible task deadlines (also called the D-space), when tasks
are scheduled by the Earliest Deadline First algorithm [19].
Reasoning in such a region allows the designer to perform
sensitivity analysis or to select the set of relative deadlines
that maximises a given performance index defined over the
task set. Later in Section 7, we will also propose an ap-
proximate method, based on a simpler sufficient feasibility
condition, to identify a convex region entirely enclosed in
the D-space.

Before entering into the mathematical details of the pro-
posed approach, we describe a simple example to visualise
such a feasibility region of task deadlines. As we pro-
ceed with the explanation, this example will be considered
throughout the paper as a sample application of the theoret-
ical results.

Let us consider two periodic tasks, τ1 and τ2, with com-
putation times C1 = 2 and C2 = 3, and periods T1 = 4
and T2 = 7, respectively. By setting the relative deadlines

19th Euromicro Conference on Real-Time Systems (ECRTS'07)
0-7695-2914-3/07 $20.00  © 2007



equal to periods, the task set is feasible by EDF, since the
processor utilisation factor is less than one, in fact

U =
2
4

+
3
7

=
13
14

< 1.

Figure 1 illustrates the corresponding schedule (in the fig-
ures, consecutive jobs are drawn using alternated colours).

τ 2

τ 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0 4 8 12 16 20 24 28

Figure 1. EDF schedule when Di = Ti.

Now note that if we shorten the deadline of τ1 as much as
possible, that is if we set D1 = C1, the maximum response
time of τ2 becomes R2 = 7, meaning that D2 cannot be less
than 7 if the task set must be feasible. The corresponding
schedule produced by EDF with D1 = 2 and D2 = 7 is
shown in Figure 2.

τ 2

τ 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0 4 8 12 16 20 24 28

Figure 2. EDF schedule when minimising D1.

Similarly, if we shorten the deadline of τ2 back to its
computation time, setting D2 = C2 = 3, the maximum
response time for τ1 becomes R1 = 5, meaning that D1

cannot be less than 5 to keep the task set schedulable. The
corresponding schedule produced by EDF with D1 = 5 and
D2 = 3 is shown in Figure 3.

τ 2

τ 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0 4 8 12 16 20 24 28

Figure 3. EDF schedule when minimising D2.

Notice, however, that a feasible schedule can also be
achieved with D1 = 3 and D2 = 5, as shown in Figure 4.

τ 2

τ 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0 4 8 12 16 20 24 28

Figure 4. Schedule with D1 = 3 and D2 = 5.

Moreover, we know that EDF on a single processor is
sustainable with respect to task deadlines [2], meaning that

if EDF can feasibly schedule a task set T , then it can also
feasibly schedule any task set T ′ with the same computation
times and periods as in T and larger deadlines.

From this observation and the cases reported above, we
can state that all deadlines corresponding to points in the
grey area depicted in Figure 5 generate a feasible EDF
schedule (in the figure the deadline values previously dis-
cussed are indicated by a black thick dot). Hence, we can
observe that;

Observation 1 The exact EDF feasibility region is larger
than or equal to the grey area shown in Figure 5.

D2

D1

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Figure 5. Space of feasible deadlines.

In the remainder of the paper we will show that the re-
gion of Figure 5 is necessary and sufficient and present a
method for deriving such a region.

4. The space of EDF feasible deadlines

Unfortunately, the feasibility region cannot be described
by a closed formula. In fact, as shown by Baruah, Rosier,
and Howell [4], a set of periodic tasks simultaneously ac-
tivated at time t = 0 is schedulable by EDF if and only if
U < 1 and

∀t ≥ 0
n∑

i=1

max
{

0,

⌊
t + Ti − Di

Ti

⌋}
Ci ≤ t (1)

Baruah, Mok, and Rosier [5] showed that the points in
which the test has to be performed can be restricted to those
deadlines within the hyperperiod H not exceeding the value

Lmax = max{D1, . . . , Dn, L∗}
where

L∗ =
∑n

i=1(Ti − Di)Ui

1 − U
.

Hence, we can say that condition (1) has to be tested ∀t ∈
dlSet, where

dlSet = {dik | dik ≤ min(Lmax, H)}. (2)
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Depending on the convenience, sometimes we will use
the schedulability condition as expressed by equation (1),
whereas some other times we will restrict the variable t to
range in the set dlSet.

The difficulty of finding a closed formulation in terms of
the deadlines is due to the presence of the floor operator in
Equation (1). To overcome this problem we follow the same
intuition used by Seto, Lehoczhy and Sha [24] to find all the
admissible periods in a fixed priority scheduler.

We introduce a set of n functions Ki : R+ × R+ → N

defined as

Ki(t, Di) = max
{

0,

⌊
t + Ti − Di

Ti

⌋}
. (3)

Each function Ki(t, Di) compactly denotes the number of
jobs of task τi entirely included in the interval [0, t]. We also
observe that, by the definition of Equation (3), Ki(t, Di) is
the unique integer satisfying the following constraint:{

Ki(t, Di) = 0 if t − Di < 0
t−Di

Ti
< Ki(t, Di) ≤ t−Di

Ti
+ 1 otherwise

(4)

Finally, all the n integer functions can be condensed in a
single function K : R+ × R

n
+ → N

n defined as

K(t,D) = (K1(t, D1), . . . ,Kn(t, Dn)). (5)

The introduction of function K is very convenient to write
the schedulability conditions with a more compact nota-
tion. For example the necessary and sufficient schedulabil-
ity condition by Baruah et al. expressed in Eq. (1) becomes

∀t ≥ 0 K(t,D) ·C ≤ t. (6)

We are now ready for a step forward. The condition result-
ing from Equation (1), and its equivalent Equation (6), has
the disadvantage that it is not clear how to extract a con-
straint on task deadlines D. The following lemma provides
a necessary and sufficient condition from where deadlines
constraints can be derived. Although apparently more com-
plicated than condition (6), Lemma 1 allows to find a closed
formulation of the EDF schedulability condition.

Lemma 1 A set of periodic tasks T is feasibly schedulable
by EDF if and only if U ≤ 1 and:

∀ t ≥ 0, ∀k ∈ N
n

(k = K(t,D) ∧ k ·C ≤ t) ∨ k 	= K(t,D). (7)

Proof. We prove the lemma by showing that Eq. (7) is
equivalent to Eq. (1).

Eq. (7) ⇒ Eq. (1) The proof is performed by contradic-
tion. Let us assume that Eq. (1) is false, meaning that

∃t∗ > 0
n∑

i=1

max
{

0,

⌊
t∗ + Ti − Di

Ti

⌋}
Ci > t∗. (8)

Let us denote, for all i, k∗
i = max

{
0,

⌊
t∗+Ti−Di

Ti

⌋}
which

is also equal to Ki(t∗, Di) by the definition of K given in
Eq. (3), and k∗ = (k∗

1 , . . . , k∗
n). We show that for such

special t∗ and k∗ Eq. (7) is false as well. In fact, Eq. (8) can
be rewritten as

∃t∗ > 0 k ·C > t∗

and k∗ = K(t∗,D). Hence we have that

∃ t∗ ≥ 0, ∃k∗ ∈ N
n

(k∗ = K(t∗,D) ∧ k∗ ·C > t∗)

which implies that Eq. (7) is false, as required.

Eq. (1) ⇒ Eq. (7) Again we proceed by contradiction
showing that when Eq. (7) is false then Eq. (1) is false as
well. From the negation of Eq. (7), we have that

∃ t∗ ≥ 0, ∃k∗ ∈ N
n

(k∗ 	= K(t∗,D) ∨ k∗ ·C > t∗) ∧ k∗ = K(t∗,D) (9)

which is equivalent to

∃ t∗ ≥ 0, ∃k∗ ∈ N
n k∗ · C > t∗ ∧ k∗ = K(t∗,D)

∃ t∗ ≥ 0, K(t∗,D) · C > t∗

∃ t∗ ≥ 0,

n∑
i=1

Ki(t∗,D)Ci > t∗

∃ t∗ ≥ 0,

n∑
i=1

max
{

0,

⌊
t∗ + Ti − Di

Ti

⌋}
Ci > t∗

which contradicts Eq. (1) and proves the lemma. �

Lemma 1 has the clear advantage that it is possible to
find a constraint on the task deadlines D starting from the
relationship k = K(t,D). In fact from Eq. (4) it follows
that

k = K(t,D){
ki = 0 if t − Di < 0
t−Di

Ti
< ki ≤ t−Di

Ti
+ 1 otherwise{

Di > t if ki = 0
t − ki Ti < Di ≤ t − (ki − 1)Ti otherwise

(10)

which gives us the desired constraint on the deadline values.
The set of deadlines satisfying the constraint of Eq. (10),

for a specific selection of t and k, is denoted by domD(t,k),
and its complement is denoted by domDc(t,k). Due to the
equivalence between Eq. (4) and (10), we have

k = K(t,D) ⇔ D ∈ domD(t,k)
k 	= K(t,D) ⇔ D ∈ domDc(t,k)

(11)

As it can be noticed from Eq. (10), the region domD(t,k)
is a multi-dimensional box in the space of deadlines, which
reduces to a simple rectangle if n = 2. If some ki in k is

19th Euromicro Conference on Real-Time Systems (ECRTS'07)
0-7695-2914-3/07 $20.00  © 2007



equal to zero, then domD(t,k) is a degenerate box because
its projection on the ith axis is a right-unbounded interval.
Figure 6 shows some examples of domD for the same task

D2

D1

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18
0

−2

domD(4, (0, 1))

domD(7, (2, 0))

domD(12, (2, 1))

domD(16, (2, 1))

Figure 6. Samples of domD, when T = (4, 7).

parameters used in the previous example. In the figure it
can be also noticed that, when some ki = 0, then the corre-
sponding deadline Di is not upper bounded in domD. An-
other property that will be used later is that for the same
value of k, as t increases by a certain amount Δ, the corre-
sponding box translates by Δ along all the coordinates. Fi-
nally, the complement domDc(t,k) basically is all the space
with a “boxed hole”.

Using the definition of region domD, it is possible to
formulate a result which describes the space of all feasible
deadlines.

Theorem 1 A set of periodic tasks T is feasibly schedula-
ble by EDF if and only if U ≤ 1 and:

∀k ∈ N
n, ∀ t ∈ [0,k ·C) D ∈ domDc(t,k) (12)

where the set of deadlines domD(t,k) is defined by{
Di > t if ki = 0
t − ki Ti < Di ≤ t − (ki − 1)Ti otherwise

(13)

and domDc denotes its complement.

Proof. From Lemma 1 and the equivalence expressed by
Equation (11) it follows that the task set T is feasible by
EDF if and only if

∀ t ≥ 0, ∀k ∈ N
n D ∈ domDc(t,k) ∨
(D ∈ domD(t,k) ∧ k ·C ≤ t) (14)

Since the two “for all” quantifiers do not depend on each
other, they can be exchanged obtaining the following con-
dition

∀k ∈ N
n, ∀ t ≥ 0 D ∈ domDc(t,k) ∨

(D ∈ domD(t,k) ∧ k ·C ≤ t).

Let us now study how the condition depends on t.
First of all, we remind that ∀t ≥ 0 means that the con-

dition must be intersected for all values of t greater than or
equal to zero. For arbitrarily large values of t the condition
k · C ≤ t is always true. Hence, for arbitrarily large t the
resulting space is the union of domD(t,k) with its comple-
ment domDc(t,k), which is trivially the entire space. Thus,
we can say that large values of t do not constrain vector
D in any way. As t becomes smaller than k · C, then the
condition k · C ≤ t becomes false and the region of the
admissible deadlines becomes domDc(t,k). Since we are
performing the intersection as t varies, we can get rid of the
big values of t by reformulating the necessary and sufficient
EDF schedulability condition as follows:

∀k ∈ N
n, ∀ t ∈ [0,k · C) D ∈ domDc(t,k)

as required. �

It is quite insightful to study Eq. (12). As explained ear-
lier, region domDc(t,k) is the entire space with a boxed
hole described by Eq. (13) (remember that special care must
be taken when some ki is equal to 0). As t increases by Δ,
the hole linearly translates by the same amount along all
coordinates, in the space of deadlines. Figure 7 shows the

D1

D2

2

4

6

8

0−2−4

−2

−4

2 4 6 8 10

domD(k · C,k)

\

t∈[0,k·C)

domDc(t,k)

Dvert

Figure 7. Intersection of domDc(t,k).

intersection of the regions domDc(t,k) for all t in the inter-
val [0,k · C), as indicated by Eq. (12). The figure is drawn
assuming the same computation times and periods used in
the previous example, that is, C = (2, 3) and T = (4, 7).

Figure 7 also highlights a special deadline vector, called
deepest vertex Dvert(k) = (Dvert

1 , . . . , Dvert
n ), associated

with a given value of k. The coordinates corresponding to a
deepest vertex are the largest deadlines on the boundary of
region domD(k ·C,k). In particular, each coordinate Dvert

i

is the upper bound of the deadline interval from Eq. (13),
when t = k · C. As it can be noticed from Eq. (13), such
an upper bound Dvert

i exists only when the corresponding
integer ki is different than zero. In fact, if ki = 0, then
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the interval is right-unbounded. If we let I be the set of
indexes of tasks whose number of jobs ki is non-zero (for-
mally, ki 	= 0 ⇔ i ∈ I), then by replacing t = k · C in
Eq. (13), we find that the coordinates of the deepest vertex
Dvert(k) are

Dvert
i (k) =

{
k ·C − (ki − 1)Ti i ∈ I

+∞ i /∈ I
(15)

Let us evaluate the vertex in some special cases. When
k = (0, . . . , 0, 1, 0, . . . , 0), with a 1 at the ith position, then
Dvert

i = Ci and the feasibility condition of Eq. (12) becomes
Di ≥ Dvert

i = Ci, which means that the deadline must be
not smaller than the computation time, as it is reasonable to
expect.

More in general, as we intersect the regions⋂
t∈[0,k·C) domDc(t,k) (also shown in Figure 7) for

all possible integers k, the resulting space of feasible
deadlines becomes very similar to the one shown in
Figure 5. Hence, the region of feasible deadlines can also
be expressed by⋂

k∈Nn

⋃
i:ki �=0

Di ≥ k · C− (ki − 1)Ti. (16)

From Eq. (16) it follows that the EDF schedulability re-
gion in the space of task deadlines can be derived by com-
puting the deepest vertexes, for all vectors k ∈ N

n. How-
ever, as it will be shown in the next section, the number of
vertexes to be computed can be drastically reduced, because
certain regions (those associated with small ki’s) dominate
all the others, due to the intersection operator.

The following example shows that, for the usual task set
considered in this paper, only four deepest vertexes need
to be computed for completely describing the region illus-
trated in Figure 5.

An example Let us take the usual task set considered
throughout the paper, with two periodic tasks having C =
(2, 3) and T = (4, 7). By applying Eq. (15), we can com-
pute the deepest vertexes associated with a set of integer
vectors purposely selected for the example. For each se-
lected vector k, Table 1 shows the two resulting coordi-
nates of the corresponding deepest vertex Dvert(k) derived
by Eq. (15). The deepest vertexes computed in Table 1 are
also graphically illustrated in Figure 8, which shows the in-
tersection of the 8 corresponding regions. Note that the first
four vertexes dominate the others, meaning that the region
described by them is not restricted by the other constraints.
In fact, Dvert(1, 0) and Dvert(0, 1) are degenerate and cor-
responds to the thick horizontal and vertical lines, whereas
Dvert(1, 1) and Dvert(2, 1) fall on the internal vertexes and
are denoted by black dots. The other four vertexes (the three
white dots and the dashed line) fall outside the region (or on
its border) and do not alter it.

k = (k1, k2) Dvert
1 (k) Dvert

2 (k)

(1, 0) C1 = 2 +∞
(0, 1) +∞ C2 = 3
(1, 1) C1 + C2 = 5 C1 + C2 = 5
(2, 1) 2C1 + C2 − T1 = 3 2C1 + C2 = 7

(0, 2) +∞ 2C2 − T2 = −1
(1, 2) C1 + 2C2 = 8 C1 + 2C2 − T2 = 1
(2, 2) 2C1 + 2C2 − T1 = 6 2C1 + 2C2 − T2 = 3
(3, 2) 3C1 + 2C2 − 2T1 = 4 3C1 + 2C2 − T2 = 5

Table 1. Vertexes for the sample task set.

D1

D2
0 2 4 6 8 10 12 14−2

4

6

8

10

−2

2 Dvert(1, 0)

Dvert(0, 1)
Dvert(1, 1)

Dvert(2, 1)
Dvert(0, 2) Dvert(1, 2)

Dvert(2, 2)

Dvert(3, 2)

Figure 8. Feasible region resulting from the 8
deepest vertexes.

It is worth observing that continuing intersecting regions
for other values of k may, eventually, only reduce the region
depicted in Figure 8. As a consequence, we can observe
that:

Observation 2 The exact EDF schedulability region is
smaller than or equal to the one shown in Figure 8.

From Observation 1 and Observation 2 we conclude that
the grey area illustrated in both Figure 5 and Figure 8 is the
exact feasible region, for the considered task set.

This example suggests that the exact feasibility region
can be simply computed from a finite set of integer vectors.
The next section provides a method for determining such a
set, by removing redundant points.

5. Reducing the set of k’s

The derivation of the feasible deadline space based on
Eq. (16) is still poorly effective, because it requires the in-
tersection of infinite regions, derived from all possible k’s
ranging in N

n.
However, as we observed in the previous section, a re-

gion associated to a vector k̂ can be neglected if its corre-
sponding vertex Dvert(k̂) is dominated by some other ver-
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tex. For instance, in Figure 8, Dvert(3, 2) = (4, 5) is domi-
nated by Dvert(1, 1) = (5, 5). In general, an integer vector
k̂ is dominated by another integer vector k if

∀i = 1, . . . , n Dvert
i (k̂) ≤ Dvert

i (k). (17)

In fact, if all the coordinates of Dvert(k̂) are smaller than
or equal to the corresponding coordinates of Dvert(k), then
intersecting the region associated with k̂ cannot eliminate
any point that has not already been eliminated by the region
associated with k. To translate Eq. (17) as a constraint on
the integers k̂ = (k̂1, . . . , k̂n), let us define I = {i : ki 	=
0}. From Eq. (17) we have that{

∀i ∈ I Dvert
i (k̂) ≤ Dvert

i (k)
∀i /∈ I Dvert

i (k̂) ≤ Dvert
i (k){

∀i ∈ I Dvert
i (k̂) ≤ k · C− (ki − 1)Ti

∀i /∈ I Dvert
i (k̂) ≤ +∞

∀i ∈ I k̂ · C− (k̂i − 1)Ti ≤ k · C− (ki − 1)Ti

∀i ∈ I (k̂i − ki)(Ti − Ci) −
∑
j �=i

(k̂j − kj)Cj ≥ 0 (18)

For a given k, Eq. (18) describes the region of the integer
vectors k̂ that are dominated by k. Such a region is a cone
delimited by hyperplanes whose vertex is k, the number of
hyperplanes being equal to the number of non-zero coordi-
nates of k (i.e., |I|). It is important to point out that when
|I| is small, the cone is less constrained, and hence a high
number of dominated vectors k̂ can be neglected.

As a consequence, the cone eliminating the highest num-
ber of redundant integer vectors is the one corresponding to
k = (0, 0, . . . , 1, . . . , 0), where the 1 is at the ith position
(in this case I = {i}). From Eq. (18) we find that the inte-
gers k̂ dominated by such a special value of k must satisfy
the following constraint:

k̂i(Ti − Ci) −
∑
j �=i

k̂jCj ≥ Ti − Ci. (19)

Hence, if domK ⊆ N
n denotes the reduced set of integer

vectors that have to be considered for deriving the deadline
region, we can certainly assert that the n special vectors
with only a single 1 must belong to domK, together with the
remaining vectors not dominated by any of the n previous
ones (i.e., those k’s that do not satisfy Eq. (19) for all i).
Formally, domK can be written as:

domK =
n⋃

i=1

{k : ki = 1, kj = 0, j 	= i} ∪

n⋂
i=1

⎧⎨
⎩k : ki(Ti − Ci) −

∑
j �=i

kjCj < Ti − Ci

⎫⎬
⎭ . (20)

It follows that the exact EDF feasibility region in the space
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Figure 9. The set domK.

of deadlines can be restated as⋂
k∈domK

⋃
i:ki �=0

Di ≥ k ·C− (ki − 1)Ti. (21)

Now, it is worth showing how the previous result can
be applied to compute the set domK for the sample task
set used in this paper, consisting of two periodic tasks with
C = (2, 3) and T = (4, 7).

From Equation (20), we start considering the points
(1, 0) and (0, 1), and then all integer points satisfying the
following constraint:{

2 k1 − 3 k2 < 2
−2 k1 + 4 k2 < 4

(22)

Figure 9 depicts by a black dot the admissible values for
k that need to be visited to determine the space of feasi-
ble deadlines. Note that the values determined in this way
are sufficient but not necessary to derive the feasibility re-
gion, meaning that there may be still points that could be
discarded. The figure also shows by white dots all the in-
teger vectors that do not belong to domK, because they are
dominated by some k ∈ domK.

To see whether the set domK is finite, it is useful to
compute the intersection of the n hyperplanes described by
Eq. (19), corresponding to those k’s with a single 1 . Such
an intersection is denoted as kmax in Figure 9. The co-
ordinates of kmax are the solution of the following linear
system:

T1 − C1 −C2 · · · −Cn

−C1 T2 − C2 · · · −Cn

...
...

. . .
...

−C1 −C2 . . . Tn − Cn

· kmax =

T1 − C1

T2 − C2

...
Tn − Cn

and, by the Cramer’s rule, we find

kmax
i =

(Ti − Ci)(1 − ∑
j �=i Uj) +

∑
j �=i Cj(1 − Uj)

Ti(1 − U)
.

(23)
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It is worth noticing that the coordinates of kmax are in-
versely proportional to 1 − U , meaning that the set domK
grows as U approaches 1. In the extreme case of U = 1,
kmax diverges to infinity and the set domK, as defined in
Eq. (20), is unbounded. In the next section we discuss fur-
ther implications of the achieved results.

6. Potential Implications

This section discusses some potential implications of the
results presented so far and points out some novel research
directions for future investigation on the topic.

Intrinsic complexity of EDF tests The existence of the
kmax bound given in Eq. (23) allows enumerating domK
using n nested loops, for each ki ranging from 0 to kmax

i ,
where we apply Equation (19) to check whether the candi-
date point belongs to domK or not.

As it can be argued, the complexity of such an algorithm
is exponential in the number of tasks. Moreover, the com-
plexity is tightly related to the value of kmax which is in-
versely proportional to 1 − U . This means that, for small
values of U , kmax is small and the enumeration of domK
is more tractable. On the other hand, as the total utilisa-
tion U approaches 1, the size of domK increases and, con-
sequently, the complexity of Eq. (21) grows exponentially
with n. Note that the dependency of the complexity on the
total processor utilisation is also typical of the processor de-
mand test proposed by Baruah et al. [4], confirming that, as
the total utilisation U approaches 1, the EDF schedulability
guarantee tests become intrinsically more complex.

Reducing complexity The number of points in domK
can be reduced further by eliminating additional redundant
points in the region described by Eq. (20). In fact, from
Figure 9 we can see that the candidate integers inside the
region are more than the 4 strictly necessary reported in Ta-
ble 1, namely (1, 0), (0, 1), (1, 1) and (2, 1).

From Eq. (18) we can see that the integer vectors domi-
nated by k lay into a cone whose vertex is exactly k. Hence,
after examining a vector k, all the integers laying into the
cone of Eq. (18) can be removed from domK.

In our usual example, this means that, after we explored
the points (1, 0), (0, 1), (1, 1) and (2, 1), we can neglect
the other two points (3, 2) and (5, 3) (also represented by
white dots in Figure 10), since they are both dominated by
(1, 1). Such an observation allows us to significantly reduce
the number of points in domK and improve the efficiency of
the algorithm.

U approaching 1 Although real-time systems should be
designed to have a total utilisation well below 1, overload
conditions can occur for several reasons, so it is interesting
to analyse what happens when the total processor utilisation

2k

1k

2

4

0 2 4 6 8

Figure 10. Reducing domK.

U approaches the value of 1.
We already observed that as U approaches 1 the point

kmax diverges to +∞ and the set domK becomes larger and
larger. When U is exactly 1, domK becomes unbounded.
Hence, it seems that Eq. (21) becomes again impractical,
since it requires to check an infinite number of vectors k.
Let us depict such a situation by an example. To achieve
U = 1 we choose C = (2, 3.5) and T = (4, 7). Thus, the
constraints of Eq. (20) become{

2 k1 − 3.5 k2 < 2
−2 k1 + 3.5 k2 < 3.5

(24)

and the resulting region domK is drawn in Figure 11.

2k
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8

0 2 4 6 8 10 12

Figure 11. domK when U = 1.

When U = 1, the cone of the region dominated by k
becomes degenerate, i.e., a half line (see dashed lines in
Figure 11). Hence, the integers that can be removed from
domK, because dominated by some k, are those falling ex-
actly on the half-line originated from k. Thus, it is impor-
tant to understand whether an integer vector falls on that
half line or not.

By examining Eq. (18), and also from the coefficients of
the constraint in Eq. (24), we see that the “slope” of the half-
line is tightly related to the task parameters. When task pa-
rameters have a large greatest common divisor, many more
integers fall on the half-line originating from a dominant k,
and fewer points need to be considered in domK.
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Such a remark is in accordance to the well-known prop-
erty of the EDF guarantee test [4], which becomes more
complex as the least common multiple of the periods in-
creases.

7. Approximate solution

Considering the substantial complexity of the method for
determining the exact EDF feasibility region in the space
of deadlines, in this section we propose an alternative ap-
proach for deriving an approximate region with reduced
complexity.

The complexity for finding the exact region mainly
comes from the presence of the floor operator, which caused
us to introduce the integer variables ki to account for it.

Now we attempt to simplify the analysis by relaxing the
floor operator. Clearly, the resulting analysis loses neces-
sity, but it gains simplicity with respect to the exact ap-
proach.

We start from the classical processor demand tests,
which says that a set T = {τ1, . . . , τn} of n periodic tasks
is schedulable by EDF if and only if

∀t ∈ dlSet
n∑

i=1

max
{

0,

⌊
t + Ti − Di

Ti

⌋}
Ci ≤ t. (25)

A first simplification can be done by removing the “max”
operator. As shown by Chantem et al. [12], the max can be
removed when the second term is greater than or equal to
zero. That is when

∀t ∈ dlSet ∀i

⌊
t + Ti − Di

Ti

⌋
≥ 0

∀t ∈ dlSet ∀i
t + Ti − Di

Ti
≥ 0

∀t ∈ dlSet ∀i t + Ti − Di ≥ 0
∀t ∈ dlSet ∀i Di ≤ t + Ti

∀i Di ≤ Ti + Dmin (26)

where Dmin denotes the minimum deadline. Under this as-
sumption, the necessary and sufficient condition becomes:

∀t ∈ dlSet
n∑

i=1

⌊
t + Ti − Di

Ti

⌋
Ci ≤ t. (27)

By removing the floor we easily find the following suffi-
cient condition:

∀t ∈ dlSet
n∑

i=1

t + Ti − Di

Ti
Ci ≤ t (28)

from which it directly follows that the feasible deadlines
must satisfy

∀t ∈ dlSet
n∑

i=1

Ui Di ≥
n∑

i=1

Ci − t (1 −
n∑

i=1

Ui). (29)

Now we observe that Eq. (29) must be intersected for all
values of t in dlSet. The condition becomes more and more
stringent as t decreases. Hence, the most stringent condi-
tion is achieved when t = Dmin, which is the minimum
deadline. As a consequence, the sufficient schedulability
condition results

n∑
i=1

Ui Di ≥
n∑

i=1

Ci − Dmin (1 −
n∑

i=1

Ui). (30)

In Figure 12 we compare the approximated region
(darker) with the exact region in the task set example C =
(2, 4) and T = (4, 7).
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Figure 12. The approximated region.

Convexity We now like to investigate whether the result-
ing region is convex or not. First of all we recall that
Eq. (30) is valid only in the hypothesis of Eq. (26), which
can be restated as follows:

∀i Di ≤ Ti + Dmin

∀i, j Di ≤ Ti + Dmin ≤ Ti + Dj

∀i, j Di − Dj ≤ Ti (31)

which is convex because intersection of half spaces. Simi-
larly, the condition in Eq. (30) is equivalent to

∀j Dj (1 −
n∑

i=1

Ui) +
n∑

i=1

Ui Di ≥
n∑

i=1

Ci (32)

which is convex for the same reason. Since the overall re-
gion is determined by intersecting Eq. (31) and (32) it is
also convex, and delimited by n2 linear constraints.

8. Conclusions

In this paper we addressed the problem of finding the
region of feasible deadlines for a periodic task set sched-
uled by EDF. In particular, we presented a general analysis
technique to describe the exact region and we provided a
method to reduce the number of points aimed at decreasing
the complexity of the computation.
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We finally presented an O(n2) method for identifying an
approximate convex region, which can be efficiently used to
apply performance optimisation.

We believe that the present approach is promising for
enhancing the performance of delay/jitter sensitive applica-
tions and applying sensitivity analysis in the deadline do-
main.
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