3,555 research outputs found

    The Simplest Solution to an Underdetermined System of Linear Equations

    Full text link
    Consider a d*n matrix A, with d<n. The problem of solving for x in y=Ax is underdetermined, and has infinitely many solutions (if there are any). Given y, the minimum Kolmogorov complexity solution (MKCS) of the input x is defined to be an input z (out of many) with minimum Kolmogorov-complexity that satisfies y=Az. One expects that if the actual input is simple enough, then MKCS will recover the input exactly. This paper presents a preliminary study of the existence and value of the complexity level up to which such a complexity-based recovery is possible. It is shown that for the set of all d*n binary matrices (with entries 0 or 1 and d<n), MKCS exactly recovers the input for an overwhelming fraction of the matrices provided the Kolmogorov complexity of the input is O(d). A weak converse that is loose by a log n factor is also established for this case. Finally, we investigate the difficulty of finding a matrix that has the property of recovering inputs with complexity of O(d) using MKCS.Comment: Proceedings of the IEEE International Symposium on Information Theory Seattle, Washington, July 9-14, 200

    Cauchy problem for integrable discrete equations on quad-graphs

    Full text link
    Initial value problems for the integrable discrete equations on quad-graphs are investigated. A geometric criterion of the well-posedness of such a problem is found. The effects of the interaction of the solutions with the localized defects in the regular square lattice are discussed for the discrete potential KdV and linear wave equations. The examples of kinks and solitons on various quad-graphs, including quasiperiodic tilings, are presented.Comment: Corrected version with the assumption of nonsingularity of solutions explicitly state

    Truncated Moment Problem for Dirac Mixture Densities with Entropy Regularization

    Full text link
    We assume that a finite set of moments of a random vector is given. Its underlying density is unknown. An algorithm is proposed for efficiently calculating Dirac mixture densities maintaining these moments while providing a homogeneous coverage of the state space.Comment: 18 pages, 6 figure

    Compressive and Noncompressive Power Spectral Density Estimation from Periodic Nonuniform Samples

    Get PDF
    This paper presents a novel power spectral density estimation technique for band-limited, wide-sense stationary signals from sub-Nyquist sampled data. The technique employs multi-coset sampling and incorporates the advantages of compressed sensing (CS) when the power spectrum is sparse, but applies to sparse and nonsparse power spectra alike. The estimates are consistent piecewise constant approximations whose resolutions (width of the piecewise constant segments) are controlled by the periodicity of the multi-coset sampling. We show that compressive estimates exhibit better tradeoffs among the estimator's resolution, system complexity, and average sampling rate compared to their noncompressive counterparts. For suitable sampling patterns, noncompressive estimates are obtained as least squares solutions. Because of the non-negativity of power spectra, compressive estimates can be computed by seeking non-negative least squares solutions (provided appropriate sampling patterns exist) instead of using standard CS recovery algorithms. This flexibility suggests a reduction in computational overhead for systems estimating both sparse and nonsparse power spectra because one algorithm can be used to compute both compressive and noncompressive estimates.Comment: 26 pages, single spaced, 9 figure
    • …
    corecore