322,482 research outputs found

    IVOA Recommendation: Data Model for Astronomical DataSet Characterisation

    Full text link
    This document defines the high level metadata necessary to describe the physical parameter space of observed or simulated astronomical data sets, such as 2D-images, data cubes, X-ray event lists, IFU data, etc.. The Characterisation data model is an abstraction which can be used to derive a structured description of any relevant data and thus to facilitate its discovery and scientific interpretation. The model aims at facilitating the manipulation of heterogeneous data in any VO framework or portal. A VO Characterisation instance can include descriptions of the data axes, the range of coordinates covered by the data, and details of the data sampling and resolution on each axis. These descriptions should be in terms of physical variables, independent of instrumental signatures as far as possible. Implementations of this model has been described in the IVOA Note available at: http://www.ivoa.net/Documents/latest/ImplementationCharacterisation.html Utypes derived from this version of the UML model are listed and commented in the following IVOA Note: http://www.ivoa.net/Documents/latest/UtypeListCharacterisationDM.html An XML schema has been build up from the UML model and is available at: http://www.ivoa.net/xml/Characterisation/Characterisation-v1.11.xsdComment: http://www.ivoa.ne

    Deep learning approach to Fourier ptychographic microscopy

    Full text link
    Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequences of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by these large spatial ensembles so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800×10800 pixel phase image using only ∼25 seconds, a 50× speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ∼ 6×. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. We further propose a mixed loss function that combines the standard image domain loss and a weighted Fourier domain loss, which leads to improved reconstruction of the high frequency information. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution.We would like to thank NVIDIA Corporation for supporting us with the GeForce Titan Xp through the GPU Grant Program. (NVIDIA Corporation; GeForce Titan Xp through the GPU Grant Program)First author draf

    Deep learning approach to Fourier ptychographic microscopy

    Full text link
    Convolutional neural networks (CNNs) have gained tremendous success in solving complex inverse problems. The aim of this work is to develop a novel CNN framework to reconstruct video sequence of dynamic live cells captured using a computational microscopy technique, Fourier ptychographic microscopy (FPM). The unique feature of the FPM is its capability to reconstruct images with both wide field-of-view (FOV) and high resolution, i.e. a large space-bandwidth-product (SBP), by taking a series of low resolution intensity images. For live cell imaging, a single FPM frame contains thousands of cell samples with different morphological features. Our idea is to fully exploit the statistical information provided by this large spatial ensemble so as to make predictions in a sequential measurement, without using any additional temporal dataset. Specifically, we show that it is possible to reconstruct high-SBP dynamic cell videos by a CNN trained only on the first FPM dataset captured at the beginning of a time-series experiment. Our CNN approach reconstructs a 12800X10800 pixels phase image using only ~25 seconds, a 50X speedup compared to the model-based FPM algorithm. In addition, the CNN further reduces the required number of images in each time frame by ~6X. Overall, this significantly improves the imaging throughput by reducing both the acquisition and computational times. The proposed CNN is based on the conditional generative adversarial network (cGAN) framework. Additionally, we also exploit transfer learning so that our pre-trained CNN can be further optimized to image other cell types. Our technique demonstrates a promising deep learning approach to continuously monitor large live-cell populations over an extended time and gather useful spatial and temporal information with sub-cellular resolution
    • …
    corecore