657 research outputs found

    Achieving secrecy without knowing the number of eavesdropper antennas

    Get PDF
    The existing research on physical layer security commonly assumes the number of eavesdropper antennas to be known. Although this assumption allows one to easily compute the achievable secrecy rate, it can hardly be realized in practice. In this paper, we provide an innovative approach to study secure communication systems without knowing the number of eavesdropper antennas by introducing the concept of spatial constraint into physical layer security. Specifically, the eavesdropper is assumed to have a limited spatial region to place (possibly an infinite number of) antennas. From a practical point of view, knowing the spatial constraint of the eavesdropper is much easier than knowing the number of eavesdropper antennas. We derive the achievable secrecy rates of the spatially-constrained system with and without friendly jamming. We show that a non-zero secrecy rate is achievable with the help of a friendly jammer, even if the eavesdropper places an infinite number of antennas in its spatial region. Furthermore, we find that the achievable secrecy rate does not monotonically increase with the jamming power, and hence, we obtain the closed-form solution of the optimal jamming power that maximizes the secrecy rate.Comment: IEEE transactions on wireless communications, accepted to appea

    Relay Selection for Wireless Communications Against Eavesdropping: A Security-Reliability Tradeoff Perspective

    Full text link
    This article examines the secrecy coding aided wireless communications from a source to a destination in the presence of an eavesdropper from a security-reliability tradeoff (SRT) perspective. Explicitly, the security is quantified in terms of the intercept probability experienced at the eavesdropper, while the outage probability encountered at the destination is used to measure the transmission reliability. We characterize the SRT of conventional direct transmission from the source to the destination and show that if the outage probability is increased, the intercept probability decreases, and vice versa. We first demonstrate that the employment of relay nodes for assisting the source-destination transmissions is capable of defending against eavesdropping, followed by quantifying the benefits of single-relay selection (SRS) as well as of multi-relay selection (MRS) schemes. More specifically, in the SRS scheme, only the single "best" relay is selected for forwarding the source signal to the destination, whereas the MRS scheme allows multiple relays to participate in this process. It is illustrated that both the SRS and MRS schemes achieve a better SRT than the conventional direct transmission, especially upon increasing the number of relays. Numerical results also show that as expected, the MRS outperforms the SRS in terms of its SRT. Additionally, we present some open challenges and future directions for the wireless relay aided physical-layer security.Comment: 16 pages, IEEE Network, 201

    Coding Schemes for Achieving Strong Secrecy at Negligible Cost

    Full text link
    We study the problem of achieving strong secrecy over wiretap channels at negligible cost, in the sense of maintaining the overall communication rate of the same channel without secrecy constraints. Specifically, we propose and analyze two source-channel coding architectures, in which secrecy is achieved by multiplexing public and confidential messages. In both cases, our main contribution is to show that secrecy can be achieved without compromising communication rate and by requiring only randomness of asymptotically vanishing rate. Our first source-channel coding architecture relies on a modified wiretap channel code, in which randomization is performed using the output of a source code. In contrast, our second architecture relies on a standard wiretap code combined with a modified source code termed uniform compression code, in which a small shared secret seed is used to enhance the uniformity of the source code output. We carry out a detailed analysis of uniform compression codes and characterize the optimal size of the shared seed.Comment: 15 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    On the Interference Alignment Designs for Secure Multiuser MIMO Systems

    Full text link
    In this paper, we propose two secure multiuser multiple-input multiple-output transmission approaches based on interference alignment (IA) in the presence of an eavesdropper. To deal with the information leakage to the eavesdropper as well as the interference signals from undesired transmitters (Txs) at desired receivers (Rxs), our approaches aim to design the transmit precoding and receive subspace matrices to minimize both the total inter-main-link interference and the wiretapped signals (WSs). The first proposed IA scheme focuses on aligning the WSs into proper subspaces while the second one imposes a new structure on the precoding matrices to force the WSs to zero. When the channel state information is perfectly known at all Txs, in each proposed IA scheme, the precoding matrices at Txs and the receive subspaces at Rxs or the eavesdropper are alternatively selected to minimize the cost function of an convex optimization problem for every iteration. We provide the feasible conditions and the proofs of convergence for both IA approaches. The simulation results indicate that our two IA approaches outperform the conventional IA algorithm in terms of average secrecy sum rate.Comment: Updated version, updated author list, accepted to be appear in IEICE Transaction

    Secure Communication with a Wireless-Powered Friendly Jammer

    Get PDF
    In this paper, we propose to use a wireless-powered friendly jammer to enable secure communication between a source node and destination node, in the presence of an eavesdropper. We consider a two-phase communication protocol with fixed-rate transmission. In the first phase, wireless power transfer is conducted from the source to the jammer. In the second phase, the source transmits the information-bearing signal under the protection of a jamming signal sent by the jammer using the harvested energy in the first phase. We analytically characterize the long-time behavior of the proposed protocol and derive a closed-form expression for the throughput. We further optimize the rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. Our analytical results show that the throughput performance differs significantly between the single-antenna jammer case and the multi-antenna jammer case. For instance, as the source transmit power increases, the throughput quickly reaches an upper bound with single-antenna jammer, while the throughput grows unbounded with multi-antenna jammer. Our numerical results also validate the derived analytical results.Comment: accepted for publication in IEEE Transactions on Wireless Communication

    Partial Strong Converse for the Non-Degraded Wiretap Channel

    Full text link
    We prove the partial strong converse property for the discrete memoryless \emph{non-degraded} wiretap channel, for which we require the leakage to the eavesdropper to vanish but allow an asymptotic error probability ϵ[0,1)\epsilon \in [0,1) to the legitimate receiver. We show that when the transmission rate is above the secrecy capacity, the probability of correct decoding at the legitimate receiver decays to zero exponentially. Therefore, the maximum transmission rate is the same for ϵ[0,1)\epsilon \in [0,1), and the partial strong converse property holds. Our work is inspired by a recently developed technique based on information spectrum method and Chernoff-Cramer bound for evaluating the exponent of the probability of correct decoding
    corecore