6 research outputs found

    GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Clusters, grids, and peer-to-peer (P2P) networks have emerged as popular paradigms for next generation parallel and distributed computing. The management of resources and scheduling of applications in such large-scale distributed systems is a complex undertaking. In order to prove the effectiveness of resource brokers and associated scheduling algorithms, their performance needs to be evaluated under different scenarios such as varying number of resources and users with different requirements. In a grid environment, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. To overcome this limitation, we have developed a Java-based discrete-event grid simulation toolkit called GridSim. The toolkit supports modeling and simulation of heterogeneous grid resources (both time- and space-shared), users and application models. It provides primitives for creation of application tasks, mapping of tasks to resources, and their management. To demonstrate suitability of the GridSim toolkit, we have simulated a Nimrod-G like grid resource broker and evaluated the performance of deadline and budget constrained cost- and time-minimization scheduling algorithms

    Efficient techniques to provide scalability for token-based cache coherence protocols

    Full text link
    Cache coherence protocols based on tokens can provide low latency without relying on non-scalable interconnects thanks to the use of efficient requests that are unordered. However, when these unordered requests contend for the same memory block, they may cause protocols races. To resolve the races and ensure the completion of all the cache misses, token protocols use a starvation prevention mechanism that is inefficient and non-scalable in terms of required storage structures and generated traffic. Besides, token protocols use non-silent invalidations which increase the latency of write misses proportionally to the system size. All these problems make token protocols non-scalable. To overcome the main problems of token protocols and increase their scalability, we propose a new starvation prevention mechanism named Priority Requests. This mechanism resolves contention by an efficient, elegant, and flexible method based on ordered requests. Furthermore, thanks to Priority Requests, efficient techniques can be applied to limit the storage requirements of the starvation prevention mechanism, to reduce the total traffic generated for managing protocol races, and to reduce the latency of write misses. Thus, the main problems of token protocols can be solved, which, in turn, contributes to wide their efficiency and scalability.Cuesta Sáez, BA. (2009). Efficient techniques to provide scalability for token-based cache coherence protocols [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6024Palanci

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    Applications Development for the Computational Grid

    Get PDF

    ABSTRACT The Second-generation Processor Module for AlphaServer 2100 Systems

    No full text
    systems performs significantly better than the first-generation KN460 module and was designed to be swap-compatible as an upgrade. The KN470 processor module derives its performance improvements from the enhanced architecture of Digital's new Alpha 21164 microprocessor, the synchronous design of the third-level cache and system interface, the implementation of a duplicate tag of the third-level cache, and the implementation of a write-invalidate cache coherence protocol for the multiprocessor system bus. Additional design features such as read-miss pipelining, system bus grant parking, hidden coherence transactions to the duplicate tag, and Alpha 21164 microprocessor write transactions to the system bus back-off and replay were combined to produce a higher performance processor module. The scope of the project required implementing functionality in system components such as the memory, the backplane, the system bus arbiter, and the I/O bridge, which shipped one year ahead of the KN470 module
    corecore