11,519 research outputs found

    Vertices with the Second Neighborhood Property in Eulerian Digraphs

    Full text link
    The Second Neighborhood Conjecture states that every simple digraph has a vertex whose second out-neighborhood is at least as large as its first out-neighborhood, i.e. a vertex with the Second Neighborhood Property. A cycle intersection graph of an even graph is a new graph whose vertices are the cycles in a cycle decomposition of the original graph and whose edges represent vertex intersections of the cycles. By using a digraph variant of this concept, we prove that Eulerian digraphs which admit a simple dicycle intersection graph have not only adhere to the Second Neighborhood Conjecture, but have a vertex of minimum outdegree that has the Second Neighborhood Property.Comment: fixed an error in an earlier version and made structural change

    Vertices with the Second Neighborhood Property in Eulerian Digraphs

    Full text link
    The Second Neighborhood Conjecture states that every simple digraph has a vertex whose second out-neighborhood is at least as large as its first out-neighborhood, i.e. a vertex with the Second Neighborhood Property. A cycle intersection graph of an even graph is a new graph whose vertices are the cycles in a cycle decomposition of the original graph and whose edges represent vertex intersections of the cycles. By using a digraph variant of this concept, we prove that Eulerian digraphs which admit a simple cycle intersection graph have not only adhere to the Second Neighborhood Conjecture, but that local simplicity can, in some cases, also imply the existence of a Seymour vertex in the original digraph.Comment: This is the version accepted for publication in Opuscula Mathematic

    Clique versus Independent Set

    Get PDF
    Yannakakis' Clique versus Independent Set problem (CL-IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn)O(n^{\log n}), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cHc_H for which we find a O(ncH)O(n^{c_H}) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck)O(n^{c_k}) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cHc_H is of order O(HlogH)O(|H| \log |H|) resulting from Vapnik-Chervonenkis dimension, and on the other side, ckc_k is exponential. One of the main reason why Yannakakis' CL-IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon-Saks-Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn)O(n^{\log n}) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator

    Moduli spaces of metric graphs of genus 1 with marks on vertices

    Get PDF
    In this paper we study homotopy type of certain moduli spaces of metric graphs. More precisely, we show that the spaces MG1,nvMG_{1,n}^v, which parametrize the isometry classes of metric graphs of genus 1 with nn marks on vertices are homotopy equivalent to the spaces TM1,nTM_{1,n}, which are the moduli spaces of tropical curves of genus 1 with nn marked points. Our proof proceeds by providing a sequence of explicit homotopies, with key role played by the so-called scanning homotopy. We conjecture that our result generalizes to the case of arbitrary genus.Comment: Topology and its Applications, In Press, Corrected Proof, Available online 3 August 200

    Recovering sparse graphs

    Get PDF
    We construct a fixed parameter algorithm parameterized by d and k that takes as an input a graph G' obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets of the vertex set of G and outputs a graph H such that G and H agree on all but f(d,k) vertices. Our work is motivated by the first order model checking in graph classes that are first order interpretable in classes of sparse graphs. We derive as a corollary that if G_0 is a graph class with bounded expansion, then the first order model checking is fixed parameter tractable in the class of all graphs that can obtained from a graph G from G_0 by complementing on at most k arbitrary subsets of the vertex set of G; this implies an earlier result that the first order model checking is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded maximum degree
    corecore