2,564 research outputs found

    The Schrödinger-Poisson system on the sphere

    No full text
    International audienceWe study the Schrödinger-Poisson system on the unit sphere \SS^2 of \RR^3, modeling the quantum transport of charged particles confined on a sphere by an external potential. Our first results concern the Cauchy problem for this system. We prove that this problem is regularly well-posed on every H^s(\SS ^2) with s>0s>0, and not uniformly well-posed on L^2(\SS ^2). The proof of well-posedness relies on multilinear Strichartz estimates, the proof of ill-posedness relies on the construction of a counterexample which concentrates exponentially on a closed geodesic. In a second part of the paper, we prove that this model can be obtained as the limit of the three dimensional Schrödinger-Poisson system, singularly perturbed by an external potential that confines the particles in the vicinity of the sphere

    Quantitative Properties on the Steady States to A Schr\"odinger-Poisson-Slater System

    Full text link
    A relatively complete picture on the steady states of the following Schro¨\ddot{o}dinger-Poisson-Slater (SPS) system \begin{cases} -\Delta Q+Q=VQ-C_{S}Q^{2}, & Q>0\text{ in }\mathbb{R}^{3}\\ Q(x)\to0, & \mbox{as }x\to\infty,\\ -\Delta V=Q^{2}, & \text{in }\mathbb{R}^{3}\\ V(x)\to0 & \mbox{as }x\to\infty. \end{cases} is given in this paper: existence, uniqueness, regularity and asymptotic behavior at infinity, where CS>0C_{S}>0 is a constant. To the author's knowledge, this is the first uniqueness result on SPS system

    Differential Geometry of Quantum States, Observables and Evolution

    Full text link
    The geometrical description of Quantum Mechanics is reviewed and proposed as an alternative picture to the standard ones. The basic notions of observables, states, evolution and composition of systems are analised from this perspective, the relevant geometrical structures and their associated algebraic properties are highlighted, and the Qubit example is thoroughly discussed.Comment: 20 pages, comments are welcome

    Bohmian Mechanics, Collapse Models and the emergence of Classicality

    Full text link
    We discuss the emergence of classical trajectories in Bohmian Mechanics (BM), when a macroscopic object interacts with an external environment. We show that in such a case the conditional wave function of the system follows a dynamics which, under reasonable assumptions, corresponds to that of the Ghirardi-Rimini-Weber (GRW) collapse model. As a consequence, Bohmian trajectories evolve classically. Our analysis also shows how the GRW (istantaneous) collapse process can be derived by an underlying continuous interaction of a quantum system with an external agent, thus throwing a light on how collapses can emerge from a deeper level theory.Comment: 19 pages, 2 figure
    • …
    corecore