6,163 research outputs found

    A novel sampling theorem on the rotation group

    Get PDF
    We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by connecting the rotation group to the three-torus through a periodic extension. Our sampling theorem requires 4L34L^3 samples to capture all of the information content of a signal band-limited at LL, reducing the number of required samples by a factor of two compared to other equiangular sampling theorems. We present fast algorithms to compute the associated Fourier transform on the rotation group, the so-called Wigner transform, which scale as O(L4)O(L^4), compared to the naive scaling of O(L6)O(L^6). For the common case of a low directional band-limit NN, complexity is reduced to O(NL3)O(N L^3). Our fast algorithms will be of direct use in speeding up the computation of directional wavelet transforms on the sphere. We make our SO3 code implementing these algorithms publicly available.Comment: 5 pages, 2 figures, minor changes to match version accepted for publication. Code available at http://www.sothree.or

    Density estimation on the rotation group using diffusive wavelets

    Full text link
    This paper considers the problem of estimating probability density functions on the rotation group SO(3)SO(3). Two distinct approaches are proposed, one based on characteristic functions and the other on wavelets using the heat kernel. Expressions are derived for their Mean Integrated Squared Errors. The performance of the estimators is studied numerically and compared with the performance of an existing technique using the De La Vall\'ee Poussin kernel estimator. The heat-kernel wavelet approach appears to offer the best convergence, with faster convergence to the optimal bound and guaranteed positivity of the estimated probability density function

    On representations of the rotation group and magnetic monopoles

    Full text link
    Recently (Phys. Lett. A302 (2002) 253, hep-th/0208210; hep-th/0403146) employing bounded infinite-dimensional representations of the rotation group we have argued that one can obtain the consistent monopole theory with generalized Dirac quantization condition, 2κμZ2\kappa\mu \in \mathbb Z, where κ\kappa is the weight of the Dirac string. Here we extend this proof to the unbounded infinite-dimensional representations.Comment: References adde

    Infinite-dimensional representations of the rotation group and Dirac's monopole problem

    Full text link
    Within the context of infinite-dimensional representations of the rotation group the Dirac monopole problem is studied in details. Irreducible infinite-dimensional representations, being realized in the indefinite metric Hilbert space, are given by linear unbounded operators in infinite-dimensional topological spaces, supplied with a weak topology and associated weak convergence. We argue that an arbitrary magnetic charge is allowed, and the Dirac quantization condition can be replaced by a generalized quantization rule yielding a new quantum number, the so-called topological spin, which is related to the weight of the Dirac string.Comment: JHEP style. Extended version of hep-th/0403146. Revised version, title and some notations are changed. References and Appendix B are adde
    corecore