3,053 research outputs found

    Mobile robot controller using novel hybrid system

    Get PDF
    Hybrid neuro-fuzzy controller is one of the techniques that is used as a tool to control a mobile robot in unstructured environment. In this paper a novel neuro-fuzzy technique is proposed in order to tackle the problem of mobile robot autonomous navigation in unstructured environment. Obstacle avoidance is an important task in the field of robotics, since the goal of autonomous robot is to reach the destination without collision. The objective is to make the robot move along a collision free trajectory until it reaches its target. The proposed approach uses the artificial neural network instead of the fuzzified engine then the output from it is processed using adaptive inference engine and defuzzification engine. In this approach, the real processing time is reduce that is increase the mobile robot response. The proposed neuro-fuzzy controller is evaluated subjectively and objectively with other approaches and also the processing time is taken in consideration

    Analysis of Hybrid Soft Computing Techniques for Intrusion Detection on Network

    Get PDF
    Intrusion detection is an action towards security of a network when a system or network is being used inappropriately or without authorization. The use of Soft Computing Approaches in intrusion detection is an Appealing co ncept for two reasons: firstly, the Soft Computing Approaches achieve tractability, robustness, low solution cost, and better report with reality. Secondly, current techniques used in network security from intrusion are not able to cope with the dynamic and increasingly complex nature of network and their security. It is hoped that Soft Computing inspired approaches in this area will be able to meet this challenge. Here we analyze the approaches including the examination of efforts in hybrid system of SC su ch as neuro - fuzzy, fuzzy - genetic, neuro - genetic, and neuro - fuzzy - genetic used the development of the systems and outcome their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestio ns for future research

    Building agent-based hybrid intelligent systems : a case study

    Full text link
    Many complex problems (e.g., financial investment planning, foreign exchange trading, data mining from large/multiple databases) require hybrid intelligent systems that integrate many intelligent techniques (e.g., fuzzy logic, neural networks, and genetic algorithms). However, hybrid intelligent systems are difficult to develop because they have a large number of parts or components that have many interactions. On the other hand, agents offer a new and often more appropriate route to the development of complex systems, especially in open and dynamic environments. Thus, this paper discusses the development of an agent-based hybrid intelligent system for financial investment planning, in which a great number of heterogeneous computing techniques/packages are easily integrated into a unifying agent framework. This shows that agent technology can indeed facilitate the development of hybrid intelligent systems.<br /

    Soft Computing Tool Approach for Texture Classification Using Discrete Cosine Transform

    Get PDF
    Texture can be considered as a repeating pattern of local variation of pixel intensities. Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing are used. A feedforward neural network is used to train the backpropagation learning algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and the remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. It is observed that the proposed neuro-fuzzy model performed better than the neural network

    Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems

    Full text link
    In a universe with a single currency, there would be no foreign exchange market, no foreign exchange rates, and no foreign exchange. Over the past twenty-five years, the way the market has performed those tasks has changed enormously. The need for intelligent monitoring systems has become a necessity to keep track of the complex forex market. The vast currency market is a foreign concept to the average individual. However, once it is broken down into simple terms, the average individual can begin to understand the foreign exchange market and use it as a financial instrument for future investing. In this paper, we attempt to compare the performance of hybrid soft computing and hard computing techniques to predict the average monthly forex rates one month ahead. The soft computing models considered are a neural network trained by the scaled conjugate gradient algorithm and a neuro-fuzzy model implementing a Takagi-Sugeno fuzzy inference system. We also considered Multivariate Adaptive Regression Splines (MARS), Classification and Regression Trees (CART) and a hybrid CART-MARS technique. We considered the exchange rates of Australian dollar with respect to US dollar, Singapore dollar, New Zealand dollar, Japanese yen and United Kingdom pounds. The models were trained using 70% of the data and remaining was used for testing and validation purposes. It is observed that the proposed hybrid models could predict the forex rates more accurately than all the techniques when applied individually. Empirical results also reveal that the hybrid hard computing approach also improved some of our previous work using a neuro-fuzzy approach

    Perbandingan Type-1 Fuzzy Logic System (T1FLS) dan Interval Type-2 Fuzzy Logic System (IT2FLS) pada Mobile Robot

    Get PDF
    Pada Paper ini menyajikan perbedaan antara Type-1 Fuzzy Logic System (T1FLS) dan Interval Type-2 Fuzzy Logic System (IT2FLS). T1FLS memiliki tiga proses utama, yaitu fuzzifikasi, inferensi / Rule Base, dan defuzzifikasi. Sedangkan, pada IT2FLS memiliki lima proses utama, yaitu fuzzifikasi, inferensi / Rule Base, tipe-reduksi, dan defuzzifikasi. Perbedaan yang terlihat jelas dapat dilihat pada tipe-reduksi, yang membuatnya lebih kompleks daripada T1FLS. Setiap keuntungan dan kekurangan juga mempengaruhi terhadap efisiensi dan kemampuan dari Fuzzy Logic Systems sendiri

    Emergent situations for smart cities: A survey

    Get PDF
    A smart city is a community that uses communication and information technology to improve sustainability, livability, and feasibility. As any community, there are always unexpected emergencies, which must be treated to preserve the regular order. However, a smart system is needed to be able to respond effectively to these emergent situations. The contribution made in this survey is twofold. Firstly, it provides a comprehensive exhaustive and categorized overview of the existing surveys for smart cities.  The categorization is based on several criteria such as structures, benefits, advantages, applications, challenges, issues, and future directions. Secondly, it aims to analyze several studies with respect to emergent situations and management to smart cities. The analysis is based on several factors such as the challenges and issues discussed, the solutions proposed, and opportunities for future research. The challenges include security, privacy, reliability, performance, scalability, heterogeneity, scheduling, resource management, and latency. Few studies have investigated the emergent situations of smart cities and despite the importance of latency factor for smart city applications, it is rarely discussed
    • …
    corecore