64,349 research outputs found

    Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism

    Get PDF
    We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how to construct a unique sequential algorithm which computes a given monotone and stable function, and describing the conditions on sequential algorithms which correspond to continuity with respect to each order. We illustrate by defining may and must-testing denotational semantics for a sequential functional language with bounded and unbounded choice operators. We prove that these are computationally adequate, despite the non-continuity of the must-testing semantics of unbounded nondeterminism. In the bounded case, we prove that our continuous models are fully abstract with respect to may and must-testing by identifying a simple universal type, which may also form the basis for models of the untyped lambda-calculus. In the unbounded case we observe that our model contains computable functions which are not denoted by terms, by identifying a further "weak continuity" property of the definable elements, and use this to establish that it is not fully abstract

    Effective lambda-models vs recursively enumerable lambda-theories

    Get PDF
    A longstanding open problem is whether there exists a non syntactical model of the untyped lambda-calculus whose theory is exactly the least lambda-theory (l-beta). In this paper we investigate the more general question of whether the equational/order theory of a model of the (untyped) lambda-calculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of lambda-calculus calculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be l-beta or l-beta-eta. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott's semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is minimum among all theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

    Probabilistic Argumentation with Epistemic Extensions and Incomplete Information

    Full text link
    Abstract argumentation offers an appealing way of representing and evaluating arguments and counterarguments. This approach can be enhanced by a probability assignment to each argument. There are various interpretations that can be ascribed to this assignment. In this paper, we regard the assignment as denoting the belief that an agent has that an argument is justifiable, i.e., that both the premises of the argument and the derivation of the claim of the argument from its premises are valid. This leads to the notion of an epistemic extension which is the subset of the arguments in the graph that are believed to some degree (which we defined as the arguments that have a probability assignment greater than 0.5). We consider various constraints on the probability assignment. Some constraints correspond to standard notions of extensions, such as grounded or stable extensions, and some constraints give us new kinds of extensions
    • …
    corecore