205,099 research outputs found

    Cosmological perturbations in FRW model with scalar field within Hamilton-Jacobi formalism and symplectic projector method

    Full text link
    The Hamilton-Jacobi analysis is applied to the dynamics of the scalar fluctuations about the Friedmann-Robertson-Walker (FRW). The gauge conditions are found from the consistency conditions. The physical degrees of freedom of the model are obtain by symplectic projector method. The role of the linearly dependent Hamiltonians and the gauge variables in Hamilton-Jacobi formalism is discussed.Comment: 11 page

    Operatorial quantization of Born-Infeld Skyrmion model and hidden symmetries

    Get PDF
    The SU(2) collective coordinates expansion of the Born-Infeld\break Skyrmion Lagrangian is performed. The classical Hamiltonian is computed from this special Lagrangian in approximative way: it is derived from the expansion of this non-polynomial Lagrangian up to second-order variable in the collective coordinates. This second-class constrained model is quantized by Dirac Hamiltonian method and symplectic formalism. Although it is not expected to find symmetries on second-class systems, a hidden symmetry is disclosed by formulating the Born-Infeld Skyrmion %model as a gauge theory. To this end we developed a new constraint conversion technique based on the symplectic formalism. Finally, a discussion on the role played by the hidden symmetry on the computation of the energy spectrum is presented.Comment: A new version of hep-th/9901133. To appear in JP

    Observer Dependent Horizon Temperatures: a Coordinate-Free Formulation of Hawking Radiation as Tunneling

    Full text link
    We reformulate the Hamilton-Jacobi tunneling method for calculating Hawking radiation in static, spherically-symmetric spacetimes by explicitly incorporating a preferred family of frames. These frames correspond to a family of observers tied to a locally static timelike Killing vector of the spacetime. This formulation separates the role of the coordinates from the choice of vacuum and thus provides a coordinate-independent formulation of the tunneling method. In addition, it clarifies the nature of certain constants and their relation to these preferred observers in the calculation of horizon temperatures. We first use this formalism to obtain the expected temperature for a static observer at finite radius in the Schwarzschild spacetime. We then apply this formalism to the Schwarzschild-de Sitter spacetime, where there is no static observer with 4-velocity equal to the static timelike Killing vector. It is shown that a preferred static observer, one whose trajectory is geodesic, measures the lowest temperature from each horizon. Furthermore, this observer measures horizon temperatures corresponding to the well-known Bousso-Hawking normalization.Comment: 11 pages, 1 2-part figure, references added, appendix added, discussion streamline

    The Role of Ground State Correlations in the Single-Particle Strength of Odd Nuclei with Pairing

    Get PDF
    A method based on the consistent use of the Green function formalism has been developed to calculate the distribution of the single-particle strength in odd nuclei with pairing. The method takes into account the quasiparticle-phonon interaction, ground state correlations and a "refinement" of phenomenological single-particle energies and pairing gap values from the quasiparticle-phonon interaction under consideration. The calculations for 121Sn and 119Sn that were performed in the quasiparticle⊗\otimesphonon approximation, have shown a reasonable agreement with experiment. The ground state correlations play a noticeable role and mostly improve the agreement with experiment or shift the results to the right direction.Comment: 11 page

    Calculation of the static and dynamical correlation energy of pseudo-one-dimensional beryllium systems via a many-body expansion

    Get PDF
    Low-dimensional beryllium systems constitute interesting case studies for the test of correlation methods because of the importance of both static and dynamical correlation in the formation of the bond. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. However, in order to do so an insight into the wave function was necessary. Therefore we started by focusing on the description of small Be chains via standard quantum chemical methods and gave a brief analysis of the main characteristics of their wave functions. We then applied the MoI to larger beryllium systems, starting from the Be6 ring. First, the complete active space formalism (CAS-MoI) was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Despite this approach is well established for the calculation of systems with limited multireference character, its application to the description of whole dissociation curves still requires further testing. After discussing the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain

    Influence of the intermediate material on the singular stress field in tri-material junctions

    Get PDF
    According to the mathematical formalism of the eigenfunction expansion method, the problem of stress-singularities arising from multi-material junctions is addressed. The wedges are composed of isotropic homogeneous materials and are in a condition of plane stress or strain. The order of the stress-singularity is provided for tri-material junctions, paying special attention to the role played by Mode-I and Mode-II deformation. The effect of cracks inside either the softer or the stiffer material is also investigated. Numerical results can be profitably used for establishing optimum material configurations
    • …
    corecore