249,850 research outputs found

    A Cyberinfrastructure for BigData Transportation Engineering

    Get PDF
    Big Data-driven transportation engineering has the potential to improve utilization of road infrastructure, decrease traffic fatalities, improve fuel consumption, decrease construction worker injuries, among others. Despite these benefits, research on Big Data-driven transportation engineering is difficult today due to the computational expertise required to get started. This work proposes BoaT, a transportation-specific programming language, and it's Big Data infrastructure that is aimed at decreasing this barrier to entry. Our evaluation that uses over two dozen research questions from six categories show that research is easier to realize as a BoaT computer program, an order of magnitude faster when this program is run, and exhibits 12-14x decrease in storage requirements

    Enabling Data-Driven Transportation Safety Improvements in Rural Alaska

    Get PDF
    Safety improvements require funding. A clear need must be demonstrated to secure funding. For transportation safety, data, especially data about past crashes, is the usual method of demonstrating need. However, in rural locations, such data is often not available, or is not in a form amenable to use in funding applications. This research aids rural entities, often federally recognized tribes and small villages acquire data needed for funding applications. Two aspects of work product are the development of a traffic counting application for an iPad or similar device, and a review of the data requirements of the major transportation funding agencies. The traffic-counting app, UAF Traffic, demonstrated its ability to count traffic and turning movements for cars and trucks, as well as ATVs, snow machines, pedestrians, bicycles, and dog sleds. The review of the major agencies demonstrated that all the likely funders would accept qualitative data and Road Safety Audits. However, quantitative data, if it was available, was helpful

    Autonomous monitoring framework for resource-constrained environments

    Get PDF
    Acknowledgments The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub, reference: EP/G066051/1. URL: http://www.dotrural.ac.uk/RemoteStream/Peer reviewedPublisher PD

    Development and Validation of Functional Model of a Cruise Control System

    Full text link
    Modern automobiles can be considered as a collection of many subsystems working with each other to realize safe transportation of the occupants. Innovative technologies that make transportation easier are increasingly incorporated into the automobile in the form of functionalities. These new functionalities in turn increase the complexity of the system framework present and traceability is lost or becomes very tricky in the process. This hugely impacts the development phase of an automobile, in which, the safety and reliability of the automobile design should be ensured. Hence, there is a need to ensure operational safety of the vehicles while adding new functionalities to the vehicle. To address this issue, functional models of such systems are created and analysed. The main purpose of developing a functional model is to improve the traceability and reusability of a system which reduces development time and cost. Operational safety of the system is ensured by analysing the system with respect to random and systematic failures and including safety mechanism to prevent such failures. This paper discusses the development and validation of a functional model of a conventional cruise control system in a passenger vehicle based on the ISO 26262 Road Vehicles - Functional Safety standard. A methodology for creating functional architectures and an architecture of a cruise control system developed using the methodology are presented.Comment: In Proceedings FESCA 2016, arXiv:1603.0837

    Brite phase 1 report to industry : innovate ā€“ now

    Get PDF
    Trying to innovate or wanting to? Making a start is the most difficult step on any journey. Whether trying to innovate for the first time, or seeking improvements on current performance, organisations are confronted with a plethora of options. Innovate ā€• Now! makes action easier by presenting some of the key considerations for improving innovation performance. This guide has been based on the outcomes of a survey and case studies conducted between 2003 and 2005 in the Australian property and construction industry and therefore contains unique and up-to-date information, examples and suggestions tailored specifically to your industry needs

    Work domain analysis and intelligent transport systems: Implications for vehicle design

    Get PDF
    This article presents a Work Domain Analysis (WDA) of the road transport system in Victoria, Australia. A series of driver information requirements and tasks that could potentially be supported through the use of Intelligent Transport Systems (ITS) are then extracted from the WDA. The potential use of ITS technologies to circumvent these information gaps and provide additional support to drivers is discussed. It is concluded that driver information requirements are currently not entirely satisfied by contemporary vehicle design and also that there are a number of driving tasks that could be further supported through the provision of supplementary systems within vehicles
    • ā€¦
    corecore