2,191 research outputs found

    Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing

    Get PDF
    The replica method is a non-rigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated MAP estimate of an n-dimensional vector "decouples" as n scalar postulated MAP estimators. The result is based on applying a hardening argument to the replica analysis of postulated posterior mean estimators of Tanaka and of Guo and Verdu. The replica-symmetric postulated MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero norm-regularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for precisely predicting various performance metrics including mean-squared error and sparsity pattern recovery probability.Comment: 22 pages; added details on the replica symmetry assumptio

    Generalized Approximate Message-Passing Decoder for Universal Sparse Superposition Codes

    Get PDF
    Sparse superposition (SS) codes were originally proposed as a capacity-achieving communication scheme over the additive white Gaussian noise channel (AWGNC) [1]. Very recently, it was discovered that these codes are universal, in the sense that they achieve capacity over any memoryless channel under generalized approximate message-passing (GAMP) decoding [2], although this decoder has never been stated for SS codes. In this contribution we introduce the GAMP decoder for SS codes, we confirm empirically the universality of this communication scheme through its study on various channels and we provide the main analysis tools: state evolution and potential. We also compare the performance of GAMP with the Bayes-optimal MMSE decoder. We empirically illustrate that despite the presence of a phase transition preventing GAMP to reach the optimal performance, spatial coupling allows to boost the performance that eventually tends to capacity in a proper limit. We also prove that, in contrast with the AWGNC case, SS codes for binary input channels have a vanishing error floor in the limit of large codewords. Moreover, the performance of Hadamard-based encoders is assessed for practical implementations

    Cleaning large correlation matrices: tools from random matrix theory

    Full text link
    This review covers recent results concerning the estimation of large covariance matrices using tools from Random Matrix Theory (RMT). We introduce several RMT methods and analytical techniques, such as the Replica formalism and Free Probability, with an emphasis on the Marchenko-Pastur equation that provides information on the resolvent of multiplicatively corrupted noisy matrices. Special care is devoted to the statistics of the eigenvectors of the empirical correlation matrix, which turn out to be crucial for many applications. We show in particular how these results can be used to build consistent "Rotationally Invariant" estimators (RIE) for large correlation matrices when there is no prior on the structure of the underlying process. The last part of this review is dedicated to some real-world applications within financial markets as a case in point. We establish empirically the efficacy of the RIE framework, which is found to be superior in this case to all previously proposed methods. The case of additively (rather than multiplicatively) corrupted noisy matrices is also dealt with in a special Appendix. Several open problems and interesting technical developments are discussed throughout the paper.Comment: 165 pages, article submitted to Physics Report

    Phase Transitions in Semidefinite Relaxations

    Full text link
    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family, and are surprisingly well-suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that, when the `statistical noise' is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several `detection thresholds,' as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins, and use non-rigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems.Comment: 71 pages, 24 pdf figure

    Replica Symmetry Breaking in Compressive Sensing

    Full text link
    For noisy compressive sensing systems, the asymptotic distortion with respect to an arbitrary distortion function is determined when a general class of least-square based reconstruction schemes is employed. The sampling matrix is considered to belong to a large ensemble of random matrices including i.i.d. and projector matrices, and the source vector is assumed to be i.i.d. with a desired distribution. We take a statistical mechanical approach by representing the asymptotic distortion as a macroscopic parameter of a spin glass and employing the replica method for the large-system analysis. In contrast to earlier studies, we evaluate the general replica ansatz which includes the RS ansatz as well as RSB. The generality of the solution enables us to study the impact of symmetry breaking. Our numerical investigations depict that for the reconstruction scheme with the "zero-norm" penalty function, the RS fails to predict the asymptotic distortion for relatively large compression rates; however, the one-step RSB ansatz gives a valid prediction of the performance within a larger regime of compression rates.Comment: 7 pages, 3 figures, presented at ITA 201
    corecore