5 research outputs found

    Instances for the Recoverable Robust Two-Level Network Design Problem

    Get PDF
    We provide the instances used in the paper "The Recoverable Robust Two-Level Network Design Problem", by E. Alvarez-Miranda, I. Ljubic, S. Raghavan and P. Toth, accepted for publication in the INFORMS J. on Computing, 2014 (http://dx.doi.org/10.1287/ijoc.2014.0606). This repository contains both the instances used in the paper as well as the results obtained by the proposed algorithm

    A parameterized view to the robust recoverable base problem of matroids under structural uncertainty

    Get PDF
    We study a robust recoverable version of the matroid base problem where the uncertainty is imposed on combinatorial structures rather than on weights as studied in the literature. We prove that the problem is NP-hard even when a given matroid is uniform or graphic. On the other hand, we prove that the problem is fixed-parameter tractable with respect to the number of scenarios

    Networks, Uncertainty, Applications and a Crusade for Optimality

    Get PDF
    In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm
    corecore