2,305 research outputs found

    On practical design for joint distributed source and network coding

    Get PDF
    This paper considers the problem of communicating correlated information from multiple source nodes over a network of noiseless channels to multiple destination nodes, where each destination node wants to recover all sources. The problem involves a joint consideration of distributed compression and network information relaying. Although the optimal rate region has been theoretically characterized, it was not clear how to design practical communication schemes with low complexity. This work provides a partial solution to this problem by proposing a low-complexity scheme for the special case with two sources whose correlation is characterized by a binary symmetric channel. Our scheme is based on a careful combination of linear syndrome-based Slepian-Wolf coding and random linear mixing (network coding). It is in general suboptimal; however, its low complexity and robustness to network dynamics make it suitable for practical implementation

    A Kind of New Multicast Routing Algorithm for Application of Internet of Things

    Get PDF
    Wireless Sensor Networks (WSN) is widely used as an effective medium to integrate physical world and information world of Internet of Things (IOT). While keeping energy consumption at a minimal level, WSN requires reliable communication. Multicasting is a general operation performed by the Base Station, where data is to be transmitted to a set of destination nodes. Generally, the packets are routed in a multi-hop approach, where some intermediate nodes are also used for packet forwarding. This problem can be reduced to the well-known Steiner tree problem, which has proven to be NP-complete for deterministic link descriptors and cost functions. In this paper, we propose a novel multicast protocol, named heuristic algorithms for the solution of the Quality of Service (QoS) constrained multicast routing problem, with incomplete information in Wireless Sensor Networks (WSN). As information aggregation or randomly fluctuating traffic loads, link measures are considered to be random variables. Simulation results show that the Hop Neural Networks (HNN) based heuristics with a properly chosen additive measures can yield to a good solution for this traditionally NP complex problem, when compared to the best multicast algorithms known
    corecore