3,420 research outputs found

    Transversal numbers over subsets of linear spaces

    Full text link
    Let MM be a subset of Rk\mathbb{R}^k. It is an important question in the theory of linear inequalities to estimate the minimal number h=h(M)h=h(M) such that every system of linear inequalities which is infeasible over MM has a subsystem of at most hh inequalities which is already infeasible over M.M. This number h(M)h(M) is said to be the Helly number of M.M. In view of Helly's theorem, h(Rn)=n+1h(\mathbb{R}^n)=n+1 and, by the theorem due to Doignon, Bell and Scarf, h(Zd)=2d.h(\mathbb{Z}^d)=2^d. We give a common extension of these equalities showing that h(Rn×Zd)=(n+1)2d.h(\mathbb{R}^n \times \mathbb{Z}^d) = (n+1) 2^d. We show that the fractional Helly number of the space M⊆RdM \subseteq \mathbb{R}^d (with the convexity structure induced by Rd\mathbb{R}^d) is at most d+1d+1 as long as h(M)h(M) is finite. Finally we give estimates for the Radon number of mixed integer spaces

    Enumeration of points, lines, planes, etc

    Full text link
    One of the earliest results in enumerative combinatorial geometry is the following theorem of de Bruijn and Erd\H{o}s: Every set of points EE in a projective plane determines at least ∣E∣|E| lines, unless all the points are contained in a line. Motzkin and others extended the result to higher dimensions, who showed that every set of points EE in a projective space determines at least ∣E∣|E| hyperplanes, unless all the points are contained in a hyperplane. Let EE be a spanning subset of a dd-dimensional vector space. We show that, in the partially ordered set of subspaces spanned by subsets of EE, there are at least as many (d−k)(d-k)-dimensional subspaces as there are kk-dimensional subspaces, for every kk at most d/2d/2. This confirms the "top-heavy" conjecture of Dowling and Wilson for all matroids realizable over some field. The proof relies on the decomposition theorem package for ℓ\ell-adic intersection complexes.Comment: 18 pages, major revisio

    Quantitative Tverberg theorems over lattices and other discrete sets

    Full text link
    This paper presents a new variation of Tverberg's theorem. Given a discrete set SS of RdR^d, we study the number of points of SS needed to guarantee the existence of an mm-partition of the points such that the intersection of the mm convex hulls of the parts contains at least kk points of SS. The proofs of the main results require new quantitative versions of Helly's and Carath\'eodory's theorems.Comment: 16 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Free nilpotent and HH-type Lie algebras. Combinatorial and orthogonal designs

    Full text link
    The aim of our paper is to construct pseudo HH-type algebras from the covering free nilpotent two-step Lie algebra as the quotient algebra by an ideal. We propose an explicit algorithm of construction of such an ideal by making use of a non-degenerate scalar product. Moreover, as a bypass result, we recover the existence of a rational structure on pseudo HH-type algebras, which implies the existence of lattices on the corresponding pseudo HH-type Lie groups. Our approach substantially uses combinatorics and reveals the interplay of pseudo HH-type algebras with combinatorial and orthogonal designs. One of the key tools is the family of Hurwitz-Radon orthogonal matrices

    Quantitative Tverberg, Helly, & Carath\'eodory theorems

    Full text link
    This paper presents sixteen quantitative versions of the classic Tverberg, Helly, & Caratheodory theorems in combinatorial convexity. Our results include measurable or enumerable information in the hypothesis and the conclusion. Typical measurements include the volume, the diameter, or the number of points in a lattice.Comment: 33 page
    • …
    corecore