90 research outputs found

    The {RDF}-3X Engine for Scalable Management of {RDF} Data

    Get PDF
    RDF is a data model for schema-free structured information that is gaining momentum in the context of Semantic-Web data, life sciences, and also Web 2.0 platforms. The ``pay-as-you-go'' nature of RDF and the flexible pattern-matching capabilities of its query language SPARQL entail efficiency and scalability challenges for complex queries including long join paths. This paper presents the RDF-3X engine, an implementation of SPARQL that achieves excellent performance by pursuing a RISC-style architecture with streamlined indexing and query processing. The physical design is identical for all RDF-3X databases regardless of their workloads, and completely eliminates the need for index tuning by exhaustive indexes for all permutations of subject-property-object triples and their binary and unary projections. These indexes are highly compressed, and the query processor can aggressively leverage fast merge joins with excellent performance of processor caches. The query optimizer is able to choose optimal join orders even for complex queries, with a cost model that includes statistical synopses for entire join paths. Although RDF-3X is optimized for queries, it also provides good support for efficient online updates by means of a staging architecture: direct updates to the main database indexes are deferred, and instead applied to compact differential indexes which are later merged into the main indexes in a batched manner. Experimental studies with several large-scale datasets with more than 50 million RDF triples and benchmark queries that include pattern matching, manyway star-joins, and long path-joins demonstrate that RDF-3X can outperform the previously best alternatives by one or two orders of magnitude

    An Empirical Study of Real-World SPARQL Queries

    Get PDF
    Understanding how users tailor their SPARQL queries is crucial when designing query evaluation engines or fine-tuning RDF stores with performance in mind. In this paper we analyze 3 million real-world SPARQL queries extracted from logs of the DBPedia and SWDF public endpoints. We aim at finding which are the most used language elements both from syntactical and structural perspectives, paying special attention to triple patterns and joins, since they are indeed some of the most expensive SPARQL operations at evaluation phase. We have determined that most of the queries are simple and include few triple patterns and joins, being Subject-Subject, Subject-Object and Object-Object the most common join types. The graph patterns are usually star-shaped and despite triple pattern chains exist, they are generally short.Comment: 1st International Workshop on Usage Analysis and the Web of Data (USEWOD2011) in the 20th International World Wide Web Conference (WWW2011), Hyderabad, India, March 28th, 201

    Leveraging Semantic Annotations to Link Wikipedia and News Archives

    No full text
    The incomprehensible amount of information available online has made it difficult to retrospect on past events. We propose a novel linking problem to connect excerpts from Wikipedia summarizing events to online news articles elaborating on them. To address the linking problem, we cast it into an information retrieval task by treating a given excerpt as a user query with the goal to retrieve a ranked list of relevant news articles. We find that Wikipedia excerpts often come with additional semantics, in their textual descriptions, representing the time, geolocations, and named entities involved in the event. Our retrieval model leverages text and semantic annotations as different dimensions of an event by estimating independent query models to rank documents. In our experiments on two datasets, we compare methods that consider different combinations of dimensions and find that the approach that leverages all dimensions suits our problem best

    Compressed k2-Triples for Full-In-Memory RDF Engines

    Get PDF
    Current "data deluge" has flooded the Web of Data with very large RDF datasets. They are hosted and queried through SPARQL endpoints which act as nodes of a semantic net built on the principles of the Linked Data project. Although this is a realistic philosophy for global data publishing, its query performance is diminished when the RDF engines (behind the endpoints) manage these huge datasets. Their indexes cannot be fully loaded in main memory, hence these systems need to perform slow disk accesses to solve SPARQL queries. This paper addresses this problem by a compact indexed RDF structure (called k2-triples) applying compact k2-tree structures to the well-known vertical-partitioning technique. It obtains an ultra-compressed representation of large RDF graphs and allows SPARQL queries to be full-in-memory performed without decompression. We show that k2-triples clearly outperforms state-of-the-art compressibility and traditional vertical-partitioning query resolution, remaining very competitive with multi-index solutions.Comment: In Proc. of AMCIS'201

    Diversifying Search Results Using Time

    No full text
    Getting an overview of a historic entity or event can be difficult in search results, especially if important dates concerning the entity or event are not known beforehand. For such information needs, users would benefit if returned results covered diverse dates, thus giving an overview of what has happened throughout history. Diversifying search results based on important dates can be a building block for applications, for instance, in digital humanities. Historians would thus be able to quickly explore longitudinal document collections by querying for entities or events without knowing associated important dates apriori. In this work, we describe an approach to diversify search results using temporal expressions (e.g., in the 1990s) from their contents. Our approach first identifies time intervals of interest to the given keyword query based on pseudo-relevant documents. It then re-ranks query results so as to maximize the coverage of identified time intervals. We present a novel and objective evaluation for our proposed approach. We test the effectiveness of our methods on the New York Times Annotated corpus and the Living Knowledge corpus, collectively consisting of around 6 million documents. Using history-oriented queries and encyclopedic resources we show that our method indeed is able to present search results diversified along time

    New Results for Non-preemptive Speed Scaling

    No full text
    We consider the speed scaling problem introduced in the seminal paper of Yao et al.. In this problem, a number of jobs, each with its own processing volume, release time, and deadline needs to be executed on a speed-scalable processor. The power consumption of this processor is P(s)=sαP(s) = s^\alpha, where ss is the processing speed, and α>1\alpha > 1 is a constant. The total energy consumption is power integrated over time, and the goal is to process all jobs while minimizing the energy consumption. The preemptive version of the problem, along with its many variants, has been extensively studied over the years. However, little is known about the non-preemptive version of the problem, except that it is strongly NP-hard and allows a constant factor approximation. Up until now, the (general) complexity of this problem is unknown. In the present paper, we study an important special case of the problem, where the job intervals form a laminar family, and present a quasipolynomial-time approximation scheme for it, thereby showing that (at least) this special case is not APX-hard, unless NP⊆DTIME(2poly(log⁥n))NP \subseteq DTIME(2^{poly(\log n)}). The second contribution of this work is a polynomial-time algorithm for the special case of equal-volume jobs, where previously only a 2α2^\alpha approximation was known. In addition, we show that two other special cases of this problem allow fully polynomial-time approximation schemes (FPTASs)

    HAQWA: a Hash-based and Query Workload Aware Distributed RDF Store

    Get PDF
    Abstract. Like most data models encountered in the Big Data ecosystem, RDF stores are managing large data sets by partitioning triples across a cluster of machines. Nevertheless, the graphical nature of RDF data as well as its associated SPARQL query execution model makes the efficient data distribution more involved than in other data models, e.g., relational. In this paper, we propose a novel system that is characterized by a trade-off between complexity of data partitioning and efficiency of query answering in cases where a query workload is known. The prototype is implemented over the Apache Spark framework, ensuring high availability, fault tolerance and scalability. This short paper presents the main features of the system and highlights the omnipresence of parallel computation across data fragmentation and allocation, encoding and query processing tasks

    On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark

    Full text link
    Querying very large RDF data sets in an efficient manner requires a sophisticated distribution strategy. Several innovative solutions have recently been proposed for optimizing data distribution with predefined query workloads. This paper presents an in-depth analysis and experimental comparison of five representative and complementary distribution approaches. For achieving fair experimental results, we are using Apache Spark as a common parallel computing framework by rewriting the concerned algorithms using the Spark API. Spark provides guarantees in terms of fault tolerance, high availability and scalability which are essential in such systems. Our different implementations aim to highlight the fundamental implementation-independent characteristics of each approach in terms of data preparation, load balancing, data replication and to some extent to query answering cost and performance. The presented measures are obtained by testing each system on one synthetic and one real-world data set over query workloads with differing characteristics and different partitioning constraints.Comment: 16 pages, 3 figure
    • 

    corecore