9 research outputs found

    The Query-commit Problem

    Full text link
    In the query-commit problem we are given a graph where edges have distinct probabilities of existing. It is possible to query the edges of the graph, and if the queried edge exists then its endpoints are irrevocably matched. The goal is to find a querying strategy which maximizes the expected size of the matching obtained. This stochastic matching setup is motivated by applications in kidney exchanges and online dating. In this paper we address the query-commit problem from both theoretical and experimental perspectives. First, we show that a simple class of edges can be queried without compromising the optimality of the strategy. This property is then used to obtain in polynomial time an optimal querying strategy when the input graph is sparse. Next we turn our attentions to the kidney exchange application, focusing on instances modeled over real data from existing exchange programs. We prove that, as the number of nodes grows, almost every instance admits a strategy which matches almost all nodes. This result supports the intuition that more exchanges are possible on a larger pool of patient/donors and gives theoretical justification for unifying the existing exchange programs. Finally, we evaluate experimentally different querying strategies over kidney exchange instances. We show that even very simple heuristics perform fairly well, being within 1.5% of an optimal clairvoyant strategy, that knows in advance the edges in the graph. In such a time-sensitive application, this result motivates the use of committing strategies

    Random Order Vertex Arrival Contention Resolution Schemes for Matching, with Applications

    Get PDF

    Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few Queries

    Full text link
    The stochastic matching problem deals with finding a maximum matching in a graph whose edges are unknown but can be accessed via queries. This is a special case of stochastic kk-set packing, where the problem is to find a maximum packing of sets, each of which exists with some probability. In this paper, we provide edge and set query algorithms for these two problems, respectively, that provably achieve some fraction of the omniscient optimal solution. Our main theoretical result for the stochastic matching (i.e., 22-set packing) problem is the design of an \emph{adaptive} algorithm that queries only a constant number of edges per vertex and achieves a (1−ϵ)(1-\epsilon) fraction of the omniscient optimal solution, for an arbitrarily small ϵ>0\epsilon>0. Moreover, this adaptive algorithm performs the queries in only a constant number of rounds. We complement this result with a \emph{non-adaptive} (i.e., one round of queries) algorithm that achieves a (0.5−ϵ)(0.5 - \epsilon) fraction of the omniscient optimum. We also extend both our results to stochastic kk-set packing by designing an adaptive algorithm that achieves a (2k−ϵ)(\frac{2}{k} - \epsilon) fraction of the omniscient optimal solution, again with only O(1)O(1) queries per element. This guarantee is close to the best known polynomial-time approximation ratio of 3k+1−ϵ\frac{3}{k+1} -\epsilon for the \emph{deterministic} kk-set packing problem [Furer and Yu, 2013] We empirically explore the application of (adaptations of) these algorithms to the kidney exchange problem, where patients with end-stage renal failure swap willing but incompatible donors. We show on both generated data and on real data from the first 169 match runs of the UNOS nationwide kidney exchange that even a very small number of non-adaptive edge queries per vertex results in large gains in expected successful matches

    Failure-aware kidney exchange

    Full text link

    Beating Greedy for Stochastic Bipartite Matching

    Full text link
    We consider the maximum bipartite matching problem in stochastic settings, namely the query-commit and price-of-information models. In the query-commit model, an edge e independently exists with probability pep_e. We can query whether an edge exists or not, but if it does exist, then we have to take it into our solution. In the unweighted case, one can query edges in the order given by the classical online algorithm of Karp, Vazirani, and Vazirani to get a (1−1/e)(1-1/e)-approximation. In contrast, the previously best known algorithm in the weighted case is the (1/2)(1/2)-approximation achieved by the greedy algorithm that sorts the edges according to their weights and queries in that order. Improving upon the basic greedy, we give a (1−1/e)(1-1/e)-approximation algorithm in the weighted query-commit model. We use a linear program (LP) to upper bound the optimum achieved by any strategy. The proposed LP admits several structural properties that play a crucial role in the design and analysis of our algorithm. We also extend these techniques to get a (1−1/e)(1-1/e)-approximation algorithm for maximum bipartite matching in the price-of-information model introduced by Singla, who also used the basic greedy algorithm to give a (1/2)(1/2)-approximation.Comment: Published in ACM-SIAM Symposium on Discrete Algorithms (SODA19
    corecore