233 research outputs found

    Survey of Vertical Handoff Decision Criteria in LTE Cellular Networks

    Get PDF
    Vertical handover advantage brilliant importance because of the upgrades in mobility fashions by way of the Fourth era (4G) technology. A handover desire scheme in LTE networks both based totally on unmarried or multiple criteria. The wide variety of standards is right away depending on the overall handover time. In addition, the time required for deciding on a target network at some point of handover is also extended with the growth in a number of parameters. Conventional handover choice Strategies are specifically based at the unmarried parameter. But, with the advent of heterogeneous Wi-Fi networks, the overall performance of those unmarried parameter choice schemes is highly decreased. Consequently, researchers introduce multirequirements handover selection schemes. those enhancements are restricted to specific situations and for this reason do now not offer help for mounted mobility. Further, numerous schemes are proposed

    Fuzzy Based Vertical Handoff Decision Controller for Future Networks

    Full text link
    — In Next generation wireless Networks, the received signals (RSS) from different networks do not have a same meaning since each network is composed of its specific characteristics and there is no common pilot signal. Then, RSS comparisons are insufficient for handoff decision and may be inefficient and impractical. A more complex decision criterion that combines a large number of parameters or factors such as monetary cost, bandwidth, and power consumption and user profile is necessary. Though there are a lot works available for vertical handoff decision (VHD) for wireless networks, the selection of best network is still challenging problem. In this paper we propose a Fuzzy based vertical handoff decision controller (FVHDC) Which performs handover decision based on the output of fuzzy based rules

    Modeling Seamless Vertical Handovers in Heterogeneous Wireless Networks

    Get PDF
    Vertical handover in heterogeneous wireless networks provides customers with better Quality of Service (QoS) experience. For seamless handover, timely initiation of handover process plays a key role. Various vertical handover management protocols have been proposed and standardized to support mobility across heterogeneous networks. In Media Independent Handover (MIH) based schemes, distributed handover decision is made via certain predefined triggers that consider user context. In this paper, we present a comprehensive review of the modeling techniques used during management of vertical handover. We have also defined a novel architecture, HRPNS: Handoff Resolving and Preferred Network Selection module enabling vertical handover that ensures QoS. The construction of HRPNS module involves integration of fuzzy logic and Markov Decision Process (MDP) for providing precise decision of handover

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    Comparison of vertical handover decision-based techniques in heterogeneous networks

    Get PDF
    Industry leaders are currently setting out standards for 5G Networks projected for 2020 or even sooner. Future generation networks will be heterogeneous in nature because no single network type is capable of optimally meeting all the rapid changes in customer demands. Heterogeneous networks are typically characterized by some network architecture, base stations of varying transmission power, transmission solutions and the deployment of a mix of technologies (multiple radio access technologies). In heterogeneous networks, the processes involved when a mobile node successfully switches from one radio access technology to the other for the purpose of quality of service continuity is termed vertical handover or vertical handoff. Active calls that get dropped, or cases where there is discontinuity of service experienced by mobile users can be attributed to the phenomenon of delayed handover or an outright case of an unsuccessful handover procedure. This dissertation analyses the performance of a fuzzy-based VHO algorithm scheme in a Wi-Fi, WiMAX, UMTS and LTE integrated network using the OMNeT++ discrete event simulator. The loose coupling type network architecture is adopted and results of the simulation are analysed and compared for the two major categories of handover basis; multiple and single criteria based handover methods. The key performance indices from the simulations showed better overall throughput, better call dropped rate and shorter handover time duration for the multiple criteria based decision method compared to the single criteria based technique. This work also touches on current trends, challenges in area of seamless handover and initiatives for future Networks (Next Generation Heterogeneous Networks)

    Wireless Heterogeneous Network

    Get PDF
    Heterogeneous network environment can be viewed as connecting computers and network devices such as switches, repeaters and routers with different protocols and different operating systems which varies in type, size, and topology; differences and how these networks can relate or interact with each other. Heterogeneous networks (HetNets) are an attractive means of expanding or increasing mobile network capacity thereby eradicating the problems to communicate between other networks when switching from one access technology to another. A heterogeneous network is typically composed of multiple radio access technologies, architectures, transmission solutions, and base stations of varying transmission power. Heterogeneous network integrate many up to date wireless technologies together to provide multimedia services by session initiation protocol (SIP) – based Internet protocol (IP) multimedia subsystems via mobile multiple mode devices

    A hybrid decision approach for the association problem in heterogeneous networks

    Full text link
    The area of networking games has had a growing impact on wireless networks. This reflects the recognition in the important scaling advantages that the service providers can benefit from by increasing the autonomy of mobiles in decision making. This may however result in inefficiencies that are inherent to equilibria in non-cooperative games. Due to the concern for efficiency, centralized protocols keep being considered and compared to decentralized ones. From the point of view of the network architecture, this implies the co-existence of network-centric and terminal centric radio resource management schemes. Instead of taking part within the debate among the supporters of each solution, we propose in this paper hybrid schemes where the wireless users are assisted in their decisions by the network that broadcasts aggregated load information. We derive the utilities related to the Quality of Service (QoS) perceived by the users and develop a Bayesian framework to obtain the equilibria. Numerical results illustrate the advantages of using our hybrid game framework in an association problem in a network composed of HSDPA and 3G LTE systems.Comment: 5 pages, 4 figures, IEEE Infocom, San Diego, USA, March 2010

    Performance Analysis of Vertical Handover in Vehicular Ad-hoc Network Using Media Independent Handover Services

    Get PDF
    Next-generation of the mobile communication, network services allow users to move in freedom while accessing the Internet and network applications with seamless communication through the different wireless networks technologies. Integrating different system networks is called vertical handover which is critically a challenging task using the traditional decision algorithm for the next-generation networks. In this study, we proposed a simulation result of performance quality of service (QoS) of the vertical handover in vehicle-to- Infrastructure (V2I) on Road-Side Unit (RSU) between Wifi, WiMAX, and LTE networks using IEEE 802.21 Media Independent Handover (MIH) standard. The simulation is carried out using the NS-2 simulator and the VanetMobiSim traffic generator for the IEEE 802.21 MIH standard. The results show the performance analysis of IEEE 802.21 MIH in terms of handover latency, throughput, end-to-end delay and packet loss. Hence, this study will help and guide the Intelligent Transport System (ITS) and Telecommunication System (Telcos) provider in Malaysia to cater the problems of internet services by increasing the QoS of networks for the user's convenience
    • …
    corecore