117,210 research outputs found

    Deep learning investigation for chess player attention prediction using eye-tracking and game data

    Get PDF
    This article reports on an investigation of the use of convolutional neural networks to predict the visual attention of chess players. The visual attention model described in this article has been created to generate saliency maps that capture hierarchical and spatial features of chessboard, in order to predict the probability fixation for individual pixels Using a skip-layer architecture of an autoencoder, with a unified decoder, we are able to use multiscale features to predict saliency of part of the board at different scales, showing multiple relations between pieces. We have used scan path and fixation data from players engaged in solving chess problems, to compute 6600 saliency maps associated to the corresponding chess piece configurations. This corpus is completed with synthetically generated data from actual games gathered from an online chess platform. Experiments realized using both scan-paths from chess players and the CAT2000 saliency dataset of natural images, highlights several results. Deep features, pretrained on natural images, were found to be helpful in training visual attention prediction for chess. The proposed neural network architecture is able to generate meaningful saliency maps on unseen chess configurations with good scores on standard metrics. This work provides a baseline for future work on visual attention prediction in similar contexts

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Neural Models of Motion Integration, Segmentation, and Probablistic Decision-Making

    Full text link
    When brain mechanism carry out motion integration and segmentation processes that compute unambiguous global motion percepts from ambiguous local motion signals? Consider, for example, a deer running at variable speeds behind forest cover. The forest cover is an occluder that creates apertures through which fragments of the deer's motion signals are intermittently experienced. The brain coherently groups these fragments into a trackable percept of the deer in its trajectory. Form and motion processes are needed to accomplish this using feedforward and feedback interactions both within and across cortical processing streams. All the cortical areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the form stream through V2, such as the seperation of occluding boundaries of the forest cover from the boundaries of the deer, select the motion signals which determine global object motion percepts in the motion stream through MT. Sparse, but unambiguous, feauture tracking signals are amplified before they propogate across position and are intergrated with far more numerous ambiguous motion signals. Figure-ground and integration processes together determine the global percept. A neural model predicts the processing stages that embody these form and motion interactions. Model concepts and data are summarized about motion grouping across apertures in response to a wide variety of displays, and probabilistic decision making in parietal cortex in response to random dot displays.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore