21,543 research outputs found

    Geometry of random interactions

    Get PDF
    It is argued that spectral features of quantal systems with random interactions can be given a geometric interpretation. This conjecture is investigated in the context of two simple models: a system of randomly interacting d bosons and one of randomly interacting fermions in a j=7/2 shell. In both examples the probability for a given state to become the ground state is shown to be related to a geometric property of a polygon or polyhedron which is entirely determined by particle number, shell size, and symmetry character of the states. Extensions to more general situations are discussed

    Data depth and floating body

    Full text link
    Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth
    corecore