200 research outputs found

    Constrained shortest paths for QoS routing and path protection in communication networks.

    Get PDF
    The CSDP (k) problem requires the selection of a set of k > 1 link-disjoint paths with minimum total cost and with total delay bounded by a given upper bound. This problem arises in the context of provisioning paths in a network that could be used to provide resilience to link failures. Again we studied the LP relaxation of the ILP formulation of the problem from the primal perspective and proposed an approximation algorithm.We have studied certain combinatorial optimization problems that arise in the context of two important problems in computer communication networks: end-to-end Quality of Service (QoS) and fault tolerance. These problems can be modeled as constrained shortest path(s) selection problems on networks with each of their links associated with additive weights representing the cost, delay etc.The problems considered above assume that the network status is known and accurate. However, in real networks, this assumption is not realistic. So we considered the QoS route selection problem under inaccurate state information. Here the goal is to find a path with the highest probability that satisfies a given delay upper bound. We proposed a pseudo-polynomial time approximation algorithm, a fully polynomial time approximation scheme, and a strongly polynomial time heuristic for this problem.Finally we studied the constrained shortest path problem with multiple additive constraints. Using the LARAC algorithm as a building block and combining ideas from mathematical programming, we proposed a new approximation algorithm.First we studied the QoS single route selection problem, i.e., the constrained shortest path (CSP) problem. The goal of the CSP problem is to identify a minimum cost route which incurs a delay less than a specified bound. It can be formulated as an integer linear programming (ILP) problem which is computationally intractable. The LARAC algorithm reported in the literature is based on the dual of the linear programming relaxation of the ILP formulation and gives an approximate solution. We proposed two new approximation algorithms solving the dual problem. Next, we studied the CSP problem using the primal simplex method and exploiting certain structural properties of networks. This led to a novel approximation algorithm

    Combining Quality of Service and Topology Control in Directional Hybrid Wireless Networks

    Get PDF
    Recent advancements in information and communications technology are changing the information environment in both quantitative and qualitative measures. The developments in directional wireless capabilities necessitate the ability to model these new capabilities, especially in dynamic environments typical of military combat operations. This thesis establishes a foundation for the definition and consideration of the unique network characteristics and requirements introduced by this novel instance of the Network Design Problem (NDP). Developed are a Mixed-Integer Linear Program (MILP) formulation and two heuristic strategies for solving the NDP. A third solution strategy using the MILP formulation with a degree-constrained Minimum Spanning Tree starting solution is also considered. The performance of the various methods are evaluated on the basis of solution quality, computation time, and other network metrics via randomly generated data sets for several different problem sizes

    QOS Multimedia Multicast Routing: A Component Based Primal Dual Approach

    Get PDF
    The QoS Steiner Tree Problem asks for the most cost efficient way to multicast multimedia to a heterogeneous collection of users with different data consumption rates. We assume that the cost of using a link is not constant but rather depends on the maximum bandwidth routed through the link. Formally, given a graph with costs on the edges, a source node and a set of terminal nodes, each one with a bandwidth requirement, the goal is to find a Steiner tree containing the source, and the cheapest assignment of bandwidth to each of its edges so that each source-to-terminal path in the tree has bandwidth at least as large as the bandwidth required by the terminal. Our main contributions are: (1) New flow-based integer linear program formulation for the problem; (2) First implementation of 4.311 primal-dual constant factor approximation algorithm; (3) an extensive experimental study of the new heuristics and of several previously proposed algorithms

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Quality-of-service routing with two concave constraints

    Get PDF
    Routing is a process of finding a network path from a source node to a destination node. A good routing protocol should find the "best path" from a source to a destination. When there are independent constraints to be considered, the "best path" is not well-defined. In our previous work, we developed a line segment representation for Quality-of-Service routing with bandwidth and delay requirements. In this paper, we propose how to adopt the line segment when a request has two concave constraints. We have developed a series of operations for constructing routing tables under the distance-vector protocol. We evaluate the performance through extensive simulations. ©2008 IEEE.published_or_final_versio

    Alternative Distributed Algorithms for Network Utility Maximization: Framework and Applications

    Full text link

    Bi-criteria network optimization: problems and algorithms

    Get PDF
    Several approaches, exact and heuristics, have been designed in order to generate the Pareto frontier for multi-objective combinatorial optimization problems. Although several classes of standard optimization models have been studied in their multi- objective version, there still exists a big gap between the solution techniques and the complexity of the mathematical models that derive from the most recent real world applications. In this thesis such aspect is highlighted with reference to a specific application field, the telecommunication sector, where several emerging optimization problems are characterized by a multi-objective nature. The study of some of these problems, analyzed and solved in the thesis, has been the starting point for an assessment of the state of the art in multicriteria optimization with particular focus on multi-objective integer linear programming. A general two-phase approach for bi-criteria integer network flow problems has been proposed and applied to the bi-objective integer minimum cost flow and the bi-objective minimum spanning tree problem. For both of them the two-phase approach has been designed and tested to generate a complete set of efficient solutions. This procedure, with appropriate changes according to the specific problem, could be applied on other bi-objective integer network flow problems. In this perspective, this work can be seen as a first attempt in the direction of closing the gap between the complex models associated with the most recent real world applications and the methodologies to deal with multi-objective programming. The thesis is structured in the following way: Chapter 1 reports some preliminary concepts on graph and networks and a short overview of the main network flow problems; in Chapter 2 some emerging optimization problems are described, mathematically formalized and solved, underling their multi-objective nature. Chapter 3 presents the state of the art on multicriteria optimization. Chapter 4 describes the general idea of the solution algorithm proposed in this work for bi-objective integer network flow problems. Chapter 5 is focused on the bi-objective integer minimum cost flow problem and on the adaptation of the procedure proposed in Chapter 4 on such a problem. Analogously, Chapter 6 describes the application of the same approach on the bi-objective minimum spanning tree problem. Summing up, the general scheme appears to adapt very well to both problems and can be easily implemented. For the bi-objective integer minimum cost flow problem, the numerical tests performed on a selection of test instances, taken from the literature, permit to verify that the algorithm finds a complete set of efficient solutions. For the bi-objective minimum spanning tree problem, we solved a numerical example using two alternative methods for the first phase, confirming the practicability of the approach
    • …
    corecore