3 research outputs found

    The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs

    Get PDF
    The Weisfeiler-Leman procedure is a widely-used approach for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into 2- and 3-connected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its 3-connected components. Thus, the dimension of the algorithm needed to distinguish two given graphs is at most the dimension required to distinguish the corresponding decompositions into 3-connected components (assuming it is at least 2). This result implies that for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of graphs of treewidth at most k. Using a construction by Cai, F\"urer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.Comment: 30 pages, 4 figures, full version of a paper accepted at MFCS 201

    Une rencontre entre les noyaux de graphes et la détection d’anomalies dans les réseaux

    Get PDF
    International audienceLa dĂ©tection d’anomalies demeure une tĂąche cruciale pour assurer une gestion efficace et flexible d’un rĂ©seau. RĂ©cemment, les noyaux de graphes ont connu un grand succĂšs dans de nombreux domaines, notamment en bio-informatique et vision artificielle. Notre travail vise Ă  Ă©tudier leur pouvoir de discrimination dans le domaine des rĂ©seaux afin de dĂ©tecter les vulnĂ©rabilitĂ©s et catĂ©goriser le trafic. Dans cet article, nous prĂ©sentons Nadege, un systĂšme d’apprentissage Ă  l’intĂ©rieur duquel nous concevons un nouveau noyau de graphe adaptĂ© au profilage de rĂ©seaux. De surcroĂźt, nousproposons des algorithmes avec des garanties d’approximation thĂ©oriques ainsi qu’une politique de dĂ©tection hybride. Finalement, nous Ă©valuons les performances de Nadege en menant des expĂ©riences approfondies sur une variĂ©tĂ© d’environnements rĂ©seaux. Pour diffĂ©rents scĂ©narios, nous montrons son efficacitĂ© Ă  empĂȘcher les anomalies de perturber le rĂ©seau tout en fournissant une assistance pour la surveillance du trafic

    Logarithmic Weisfeiler-Leman Identifies All Planar Graphs

    Get PDF
    The Weisfeiler-Leman (WL) algorithm is a well-known combinatorial procedure for detecting symmetries in graphs and it is widely used in graph-isomorphism tests. It proceeds by iteratively refining a colouring of vertex tuples. The number of iterations needed to obtain the final output is crucial for the parallelisability of the algorithm. We show that there is a constant k such that every planar graph can be identified (that is, distinguished from every non-isomorphic graph) by the k-dimensional WL algorithm within a logarithmic number of iterations. This generalises a result due to Verbitsky (STACS 2007), who proved the same for 3-connected planar graphs. The number of iterations needed by the k-dimensional WL algorithm to identify a graph corresponds to the quantifier depth of a sentence that defines the graph in the (k+1)-variable fragment C^{k+1} of first-order logic with counting quantifiers. Thus, our result implies that every planar graph is definable with a C^{k+1}-sentence of logarithmic quantifier depth
    corecore