64,810 research outputs found

    The Power of Online Learning in Stochastic Network Optimization

    Full text link
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(ϵ),O([log(1/ϵ)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(ϵ2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    The Power of Online Learning in Stochastic Network Optimization

    Get PDF
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(ϵ),O([log(1/ϵ)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(ϵ2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    Local learning algorithms for stochastic spiking neural networks

    Get PDF
    This dissertation focuses on the development of machine learning algorithms for spiking neural networks, with an emphasis on local three-factor learning rules that are in keeping with the constraints imposed by current neuromorphic hardware. Spiking neural networks (SNNs) are an alternative to artificial neural networks (ANNs) that follow a similar graphical structure but use a processing paradigm more closely modeled after the biological brain in an effort to harness its low power processing capability. SNNs use an event based processing scheme which leads to significant power savings when implemented in dedicated neuromorphic hardware such as Intel’s Loihi chip. This work is distinguished by the consideration of stochastic SNNs based on spiking neurons that employ a stochastic spiking process, implementing generalized linear models (GLM) rather than deterministic thresholded spiking. In this framework, the spiking signals are random variables which may be sampled from a distribution defined by the neurons. The spiking signals may be observed or latent variables, with neurons whose outputs are observed termed visible neurons and otherwise termed hidden neurons. This choice provides a strong mathematical basis for maximum likelihood optimization of the network parameters via stochastic gradient descent, avoiding the issue of gradient backpropagation through the discontinuity created by the spiking process. Three machine learning algorithms are developed for stochastic SNNs with a focus on power efficiency, learning efficiency and model adaptability; characteristics that are valuable in resource constrained settings. They are studied in the context of applications where low power learning on the edge is key. All of the learning rules that are derived include only local variables along with a global learning signal, making these algorithms tractable to implementation in current neuromorphic hardware. First, a stochastic SNN that includes only visible neurons, the simplest case for probabilistic optimization, is considered. A policy gradient reinforcement learning (RL) algorithm is developed in which the stochastic SNN defines the policy, or state-action distribution, of an RL agent. Action choices are sampled directly from the policy by interpreting the outputs of the read-out neurons using a first to spike decision rule. This study highlights the power efficiency of the SNN in terms of spike frequency. Next, an online meta-learning framework is proposed with the goal of progressively improving the learning efficiency of an SNN over a stream of tasks. In this setting, SNNs including both hidden and visible neurons are considered, posing a more complex maximum likelihood learning problem that is solved using a variational learning method. The meta-learning rule yields a hyperparameter initialization for SNN models that supports fast adaptation of the model to individualized data on edge devices. Finally, moving away from the supervised learning paradigm, a hybrid adver-sarial training framework for SNNs, termed SpikeGAN, is developed. Rather than optimize for the likelihood of target spike patterns at the SNN outputs, the training is mediated by an auxiliary discriminator that provides a measure of how similar the spiking data is to a target distribution. Because no direct spiking patterns are given, the SNNs considered in adversarial learning include only hidden neurons. A Bayesian adaptation of the SpikeGAN learning rule is developed to broaden the range of temporal data that a single SpikeGAN can estimate. Additionally, the online meta-learning rule is extended to include meta-learning for SpikeGAN, to enable efficient generation of data from sequential data distributions

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network
    corecore